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PRECONDITIONERS FOR MIXED FINITE ELEMENT
DISCRETIZATIONS OF INCOMPRESSIBLE MHD EQUATIONS∗

MICHAEL WATHEN† , CHEN GREIF† , AND DOMINIK SCHÖTZAU‡

Abstract. We consider preconditioning techniques for a mixed finite element discretization of
an incompressible magnetohydrodynamics (MHD) problem. Upon discretization and linearization,
a 4-by-4 nonsymmetric block-structured linear system needs to be (repeatedly) solved. One of the
principal challenges is the presence of a skew-symmetric term that couples the fluid velocity with
the magnetic field. We propose a preconditioner that exploits the block structure of the underlying
linear system, utilizing and combining effective solvers for the mixed Maxwell and the Navier–Stokes
subproblems. We perform a spectral analysis for an ideal version of the preconditioner, and develop
and test a practical version of it. Large-scale numerical results for linear systems of dimensions up
to 107 in two and three dimensions validate the effectiveness of our approach.
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1. Introduction. Incompressible magnetohydrodynamics (MHD) describes the
behavior of electrically conductive incompressible fluids (liquid metals, plasma, salt
water, etc.) in an electromagnetic field [1, 6]. It has a number of important applica-
tions in technology and industry, along with geophysical and astrophysical applica-
tions. Some such applications are electromagnetic pumping, aluminum electrolysis,
the Earth’s molten core, and solar flares.

Following the formulation in [7, 19], we consider the steady-state incompressible
MHD model equation in mixed form:

−ν∆u+ (u · ∇)u+∇p− κ (∇× b)× b = f in Ω,(1.1a)

∇ · u = 0 in Ω,(1.1b)

κνm∇× (∇× b) +∇r − κ∇× (u× b) = g in Ω,(1.1c)

∇ · b = 0 in Ω.(1.1d)

Here, Ω is a bounded Lipschitz polygonal or polyhedral domain of Rd for d = 2, 3
with boundary ∂Ω. The unknowns are the velocity u, the hydrodynamic pressure p,
the magnetic field b, and the Lagrange multiplier r associated with the divergence
constraint on the magnetic field. The functions f and g represent external forcing
terms. Equations (1.1) are characterized by three dimensionless parameters: the
hydrodynamic Reynolds number Re = 1/ν, the magnetic Reynolds number Rm = 1/νm,
and the coupling number κ. For further discussion of these parameters and their
typical values, we refer the reader to [1, 6] and the references therein.
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For simplicity, we consider homogeneous Dirichlet boundary conditions:

(1.2) u = 0, n× b = 0, r = 0 on ∂Ω,

with n being the unit outward normal on ∂Ω. We note that extensions to inhomoge-
neous and other boundary conditions can easily be developed but are omitted.

By taking the divergence of the magnetostatic equation (1.1c), we obtain the
Poisson problem

(1.3) ∆r = ∇ · g in Ω, r = 0 on ∂Ω.

Since g is divergence-free in physically relevant applications, the multiplier r is typi-
cally zero, and its primary purpose is to ensure stability; see also [7].

In the case of liquid metals, the ratio between magnetic viscosity, νm, and fluid
viscosity, ν, tends to be small. For example, mercury has a ratio of about 10−7 with
νm ≈ 104− 105, ν ≈ 10−2− 10−4, and κ ≈ 102− 109; cf. [1]. In [1] the authors define
strong coupling for 102 ≤ κ ≤ 109. For more discussion of the physical parameters,
we refer the reader to [1, 6, 18, 21].

Incompressible MHD problems have been extensively studied in the context of
various discretizations and formulations. However, the development of preconditioned
iterative solutions to large-scale MHD problems has been rather limited so far. The re-
cent work presented in [17] considers preconditioners for an exact penalty formulation
of a stationary MHD model. The approach is based on utilizing effective precondi-
tioners for the separate subproblems, and then incorporating the coupling terms.

The discretizations considered in [17] are based on standard nodal elements for
the approximation of the magnetic fields. Nodal discretizations are effective in smooth
settings, but they often fail to capture singularities in nonsmooth domains; see [19] and
the references therein. Our proposed method uses edge elements for the magnetic field;
these are more natural for the approximation of the curl-operator and can be applied
in a seamless fashion, without penalty or stabilization, to problems that involve non-
smooth domains, singularities, and other challenging settings.

The goal in this paper is to design a scalable numerical solution procedure for
problem (1.1)–(1.2). We consider mixed finite element methods based on Taylor–
Hood elements for the fluid variables and the lowest order Nédélec element pair for
the magnetic unknowns on triangular or tetrahedral meshes; these discretizations
belong to the class of conforming mixed methods considered and analyzed in [19].
A first attempt at developing block preconditioning techniques in the context of this
work was done in [12, 20], where the above-mentioned finite element framework was
established. In this paper we significantly expand that work and derive new Schur
complement–based preconditioners, combining state-of-the-art solvers for the Navier–
Stokes and Maxwell subproblems. We perform a spectral analysis (valid in two and
three dimensions) and present several large-scale numerical experiments to test the
viability of our approaches.

An outline of the rest of the paper follows. In section 2, we introduce the finite
element discretization, consider decoupling schemes for the nonlinear iterations, and
discuss the resulting matrix systems. In section 3 we review relevant preconditioners
for the Navier–Stokes and Maxwell subproblems. Our new preconditioning approach
for the fully coupled MHD discretization is introduced and analyzed in section 4. We
also give details of a scalable implementation of the proposed preconditioners in this
section. In section 5 we show a series of numerical results in two and three dimensions.
Finally, we offer some concluding remarks in section 6.
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Table 1.1
Notation for block systems.

Notation Meaning
K coefficient matrix
M preconditioner

Table 1.2
Notation for superscripts.

Superscript Meaning Used for
NS Navier–Stokes K, M
S Stokes K, M

MX Maxwell K, M
MHD Magnetohydrodynamics K, M

Table 1.3
Notation for subscripts.

Subscript Meaning Used for
I ideal M
P practical M
S Schur complement based M

Notation. In this paper we will follow the notation rules given in Tables 1.1 to
1.3. We will denote closely related matrices (either permutations of the original or an
extra off-diagonal block) with a tilde.

2. Discretization. In this section we specify the mixed finite element discretiza-
tion for the incompressible MHD model (1.1)–(1.2), the nonlinear Picard iteration,
decoupling approaches for the nonlinear problem, and the resulting linear systems
arising in each iteration step.

2.1. Mixed finite element approximation. Our mixed finite element ap-
proximation is based on the variational formulation for (1.1)–(1.2) introduced and
analyzed in [19]. It consists in finding a weak solution (u, p, b, r) in the standard
Sobolev spaces

u ∈ V =
{
v ∈ H1(Ω)d : v = 0 on ∂Ω

}
,

p ∈ Q = { q ∈ L2(Ω) : (q, 1)Ω = 0},

b ∈ C =
{
c ∈ L2(Ω)d : ∇× c ∈ L2(Ω)d̄, n× c = 0 on ∂Ω

}
,

s ∈ S = {r ∈ H1(Ω) : r = 0 on ∂Ω}.

(2.1)

Here and in the following, we write (·, ·)Ω for all L2-inner products, and use d̄ = 2d− 3
to define the curls simultaneously for two- and three-dimensional vector fields [7].

Now let the domain Ω be divided into regular meshes Th = {K} consisting of
triangles (d = 2) or tetrahedra (d = 3) with mesh size h. We consider Taylor–Hood
elements for (u, p) and the lowest order Nédélec pair for (b, r). The corresponding
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finite element spaces are

Vh = {u ∈ V : u|K ∈ P2(K)d, K ∈ Th },

Qh = { p ∈ Q ∩H1(Ω) : p|K ∈ P1(K), K ∈ Th },

Ch = { b ∈ C : b|K ∈ R1(K), K ∈ Th },

Sh = { r ∈ S : r|K ∈ P1(K), K ∈ Th }.

(2.2)

Here Pk(K) denotes the space of polynomials of total degree at most k on K, and
R1(K) = {a + b × x : a ∈ Rd, b ∈ Rd} denotes the linear edge element space on K
in terms of the position vector x on K.

With the finite element spaces in place, our mixed finite element approximation
to problem (1.1)–(1.2) reads as follows: find (uh, ph, bh, rh) ∈ Vh×Qh×Ch×Sh such
that

A(uh,v) +O(uh;uh,v) + C(bh;v, bh) +B(v, ph) = (f ,v)Ω,

B(uh, q) = 0,
M(bh, c)− C(bh;uh, c) +D(c, rh) = (g, c)Ω,

D(bh, s) = 0

(2.3)

for all (v, q, c, s) ∈ Vh ×Qh ×Ch × Sh. Here, we denote by (·, ·)Ω the inner product
in L2(Ω)d. The bilinear forms A, B, M, and D are given by

A(u,v) = ν(∇u,∇v)Ω, B(u, q) = −(∇ · u, q)Ω,

M(b, c) = κνm(∇× b,∇× c)Ω, D(b, s) = (b,∇s)Ω.

Moreover, the trilinear forms O and C are defined as

O(w;u,v) =
(
(w · ∇)u,v

)
Ω +

1
2
(
(∇ ·w)u,v

)
Ω,

C(d;v, b) = κ
(
v × d,∇× b

)
Ω.

The forms A, B, and O are associated with the variational formulation of the
incompressible Navier–Stokes subsystem, M and D are associated with that of the
Maxwell subsystem in mixed form, and C is the coupling form which combines the two
subproblems into the full MHD system. We note that the convection form O appears
in a standard skew-symmetric fashion. As a consequence, the discretization (2.3) is
energy-stable without violating consistency.

The discrete problem (2.3) falls into the class of conforming mixed discretization
studied in [19]. Hence, it is stable and has a unique solution for small data (i.e., for
sufficiently large ν, νm, κ and forcing terms f and g with sufficiently small L2-norms).
Moreover, we have optimal-order error estimates in natural norms, both for smooth
and nonsmooth solutions. In particular, the strongest singularities of the curl-curl
operator in nonconvex domains are correctly captured and resolved.

Remark 2.1. The pairs Vh×Qh and Ch×Sh form standard and optimally conver-
gent mixed discretizations for the fluid and magnetic equations in isolation. However,
the approximation properties of these pairs are not properly matched for the fully cou-
pled system (2.3). Specifically, the optimal order O(h2) of the Taylor–Hood spaces
Vh × Qh (for the H1-norm velocity errors and the L2-norm pressure errors) are po-
tentially reduced due to the coupling with the lower-order magnetic spaces Ch × Sh
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in (2.2). Nonetheless, we have chosen to work with the spaces in (2.2) due to com-
putational considerations and availability of fast solvers. In particular, we avoid the
need for stabilized or enriched fluid elements and are able to use the well-established
auxiliary space preconditioner [10] for the lowest-order Nédélec pair.

2.2. Picard iteration. A common choice for dealing with the nonlinearity
within the incompressible Navier–Stokes equations in isolation is to perform Picard or
Oseen iterations [4]. We adapt this approach for the fully coupled MHD system and
linearize around the current velocity and magnetic fields. Hence, given a current it-
erate (uh, ph, bh, rh), we solve for updates (δuh, δph, δbh, δrh) and introduce the next
iterate by setting

uh → uh + δuh, ph → ph + δph,

bh → bh + δbh, rh → rh + δrh.

The updates (δuh, δph, δbh, δrh) ∈ Vh×Qh×Ch×Sh are found by solving the Picard
system

A(δuh,v) +O(uh; δuh,v) + C(bh;v, δbh) +B(v, δph) = Ru(uh, bh, ph;v),
B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh)− C(bh; δuh, c) = Rb(uh, bh, rh; c),
D(δbh, s) = Rr(bh; s)

(2.4)

for all (v, q, c, s) ∈ Vh × Qh × Ch × Sh. Note that this system is linearized around
(uh, bh). The right-hand side linear forms correspond to the residual at the current
iteration (uh, ph, bh, rh) and are defined by

(2.5)

Ru(uh, bh, ph;v) = (f ,v)Ω −A(uh,v)−O(uh;uh,v)
− C(bh;v, bh)−B(v, ph),

Rp(uh; q) = −B(uh, q),
Rb(uh, bh, rh; c) = (g, c)Ω −M(bh, c) + C(bh;uh, c)−D(c, rh),

Rr(bh; s) = −D(bh, s)

for all (v, q, c, s) ∈ Vh ×Qh ×Ch × Sh. For small data, the iteration (2.4) converges
for any initial guess [19].

2.3. Decoupling. Let us consider two important cases where simplifications to
the Picard iteration (2.4) can be used. We introduce the following variants, referred
to as magnetic decoupling and complete decoupling.

As mentioned in the introduction, [1] discusses the notion of strong coupling,
according to the value of κ: cases where κ < 100 are considered to have weak coupling.
Otherwise, the problem is treated as one with strong coupling. We have found this
to be useful from a computational point of view, too. For κ < 100 we may converge
to a solution by taking the coupling terms explicitly; i.e., we omit them in (2.4).
Therefore, for a given solution (uh, ph, bh, rh), neglecting the coupling terms in (2.4)
results in solving for the updates (δuh, δph, δbh, δrh) ∈ Vh ×Qh ×Ch × Sh such that

A(δuh,v) +O(u; δuh,v) +B(v, δph) = Ru(uh, bh, ph;v),

B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh) = Rb(uh, bh, rh; c),

D(δbh, s) = Rr(bh; s),

(2.6)
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where Ru, Rp, Rb, and Rr are as defined in (2.5). We call this magnetic decou-
pling (MD).

When we have both weak coupling and small convection terms in the system (2.4),
the simplest strategy is to take all the nonlinear terms explicitly. This is the simplest
technique, as it removes all nonlinear terms. For a given solution (uh, ph, bh, rh),
removing the coupling and convection terms in (2.4) results in solving for the updates
(δuh, δph, δbh, δrh) ∈ Vh ×Qh ×Ch × Sh such that

Ah(δuh,v) +B(v, δph) = Ru(uh, bh.ph;v),

B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh) = Rb(uh, bh, rh; c),

D(δbh, s) = Rr(bh; s),

(2.7)

where again Ru, Rp, Rb, and Rr are given in (2.5). We call this complete decou-
pling (CD).

2.4. The linear systems. For the matrix representation of (2.4)–(2.5), we in-
troduce the basis function for the finite element spaces in (2.2):

Vh = span〈ψj〉nu
j=1, Qh = span〈αi〉mu

i=1,

Ch = span〈φj〉nb
j=1, Sh = span〈βi〉mb

i=1.

The aim is to find the coefficient vectors u = (u1, . . . , unu
) ∈ Rnu , p = (p1, . . . , pmu

) ∈
Rmu , b = (b1, . . . , bnb

) ∈ Rnb , and r = (r1, . . . , rmb
) ∈ Rmb of the finite element

functions (uh, ph, bh, rh) in terms of the chosen bases. To this end, we define the
following stiffness matrices and load vectors:

Ai,j = A(ψj ,ψi), 1 ≤ i, j ≤ nu,
Bi,j = B(ψj , αi), 1 ≤ i ≤ mu, 1 ≤ j ≤ nu,
Mi,j = M(φj ,φi), 1 ≤ i, j ≤ nb,
Di,j = D(φj , βi), 1 ≤ i ≤ mb, 1 ≤ j ≤ nb,
fi = (f ,ψi)Ω, 1 ≤ i ≤ nu,
gi = (g,φi)Ω, 1 ≤ i ≤ nb.

We define the stiffness matrices for the two nonlinear forms, O and C, with respect
to the current finite element iterates uh ∈ Vh and bh ∈ Ch and their associated
coefficient vectors u and b as

O(u)i,j = O(uh;ψj ,ψi), 1 ≤ i, j ≤ nu,
C(b)i,j = C(bh;ψj ,φi), 1 ≤ i ≤ nb, 1 ≤ j ≤ nu.

We denote by (u, p, b, r) and (δu, δp, δb, δr) the coefficient vectors associated with
(uh, ph, bh, rh) and (δuh, δph, δbh, δrh), respectively. Then it can be readily seen that
the Picard iteration (2.4) amounts to solving the matrix system

(2.8)


A+O(u) BT C(b)T 0

B 0 0 0
−C(b) 0 M DT

0 0 D 0




δu
δp
δb
δr

 =


ru
rp
rb
rr

 ,
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with

ru = f −Au−O(u)u− C(b)T b−BT p,
rp = −Bu,
rb = g −Mu+ C(b)b−DT r,

rr = −Db.

(2.9)

At each nonlinear iteration, the right-hand side vectors and matrices O(u) and C(b)
in (2.8), (2.9) must be assembled with the solution coefficient vectors (u, p, b, r) of
the current iterate. Here, the matrix A is symmetric positive definite, O(u) is non-
symmetric, and −C(b), C(b)T appear in a skew-symmetric fashion. We also note that
M is symmetric positive semidefinite, with nullity mb corresponding to the dimension
of the scalar space of the discrete gradients; see [15]. In what follows, we shall often
omit the dependence of O(u) and C(b) on u and b, respectively, and write O and C.

The linear system associated with the magnetic decoupling scheme in (2.6) then
is

(2.10)


A+O BT 0 0
B 0 0 0
0 0 M DT

0 0 D 0




δu
δb
δp
δr

 =


ru
rb
rp
rr

 ,

with the right-hand side quantities as defined in (2.9). While still nonsymmetric,
the system decouples into a Navier–Stokes block and a Maxwell block, thus allowing
the problems to be solved with well-known specifically designed preconditioners, and
possibly in parallel.

The linear system connected with the complete decoupling scheme in (2.7) is

(2.11)


A BT 0 0
B 0 0 0
0 0 M DT

0 0 D 0




δu
δb
δp
δr

 =


ru
rb
rp
rr

 ,

again with the right-hand side quantities as defined in (2.9). The system is now
symmetric and decouples into a linear Stokes problem and a Maxwell problem. Then
we may apply MINRES to both of the subsystems.

3. Review of preconditioning techniques for the subproblems. The lin-
ear systems in section 2.4 are associated with a few important subproblems, as dis-
cussed. These are the Navier–Stokes, Stokes, and Maxwell problems. In this section
we review preconditioners for each of these subproblems.

3.1. Fluid flow preconditioner. For the magnetic decoupling scheme (2.10),
the governing equations for the fluid flow are the Navier–Stokes equations. Their
associated discretized and linearized operator is given by

(3.1) KNS =
(
F BT

B 0

)
,

with F = A + O. One of the principal preconditioning approaches in the literature
is based on approximations to the Schur complement. Using [4, 16], we look at
preconditioners of the form

(3.2) MNS
I =

(
F BT

0 −S

)
,
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where S = BF−1BT . In practice, the leading block, F , and the Schur complement,
S, are approximated by linear operators that are easier to invert. Two common
choices for an approximation to the Schur complement, S, are the least squares com-
mutator and pressure-convection diffusion. We use the pressure-convection diffusion
approximation developed in [4], which has proven to be robust with respect to vis-
cosity, different choices of mixed finite elements, and type of mesh triangulation (i.e.,
squares or triangles in 2D). The approximation is based on

(3.3) S = BF−1BT ≈ Ap F−1
p Qp,

where the matrix Ap is the pressure Laplacian, Fp is the pressure convection-diffusion
operator, and Qp is the pressure mass matrix:

(Ap)i,j = (∇αj ,∇αi)Ω, 1 ≤ i, j ≤ mu,

(Fp)i,j = ν(Ap)i,j + (uh · ∇αj , αi)Ω, 1 ≤ i, j ≤ mu,

(Qp)i,j = (αj , αi)Ω, 1 ≤ i, j ≤ mu,

where uh ∈ Vh is the given velocity field in the current iteration step. Note that Ap
and Fp are well-defined since we work with continuous pressure elements. An effective
implementation of this preconditioning approach is discussed in section 4.3.

For the complete decoupling scheme (2.11), the governing equations for the fluid
flow are the Stokes equations. Their discrete form is given by the matrix

(3.4) KS =
(
A BT

B 0

)
.

Here we opt to use a standard block diagonal (i.e., with BT zero in (3.2)) and sym-
metric positive definite preconditioner of the form

MS
P =

(
A 0
0 Ŝ

)
.

A natural choice for Ŝ is Ŝ = 1
νQp, where Qp is the pressure mass matrix in (3.3).

It is important here to note that the system is completely decoupled; hence, using
a symmetric positive definite preconditioner allows use of MINRES and therefore
short recurrences within the Krylov solver. This preconditioner allows one to obtain
mesh-independent convergence rates; see [4].

3.2. Maxwell preconditioner. A key part of each decoupling scheme is an
efficient preconditioner for the discrete Maxwell subsystem, whose associated matrix
is given by

(3.5) KMX =
(
M DT

D 0

)
.

In [8], it was shown that an ideal block diagonal positive definite preconditioner is

(3.6) MMX
I =

(
M +DTL−1D 0

0 L

)
.

Here L is the scalar Laplacian on Sh defined as

(3.7) Li,j = (∇βj ,∇βi)Ω, 1 ≤ i, j ≤ mb.
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Using this preconditioner yields precisely two distinct eigenvalues, 1 and −1; hence
a symmetric preconditioned Krylov solver such as MINRES will converge within two
iterations in the absence of roundoff errors.

Remark 3.1. Given that the MHD problem is nonsymmetric, and hence we would
have to use a nonsymmetric solver anyway, one may be tempted to ask whether it
would make sense to incorporate the (1,2) block of the coefficient matrix (3.5) into
the preconditioner, namely, replace (3.6) by

M̃MX
I =

(
M +DTL−1D DT

0 L

)
.

Interestingly, it turns out that there is no advantage in doing so in terms of eigenvalue
distribution and, consequently, the convergence of the iterative solver. The precon-
ditioned eigenvalues of (M̃MX

I )−1KMX are 1 and 1±
√

5
2 ; that is, there are three of

them, whereas the block diagonal preconditioner (3.6) gives rise to two eigenvalues.
Therefore, the additional computational cost entailed in a matrix-vector product with
DT does not translate into a benefit in terms of iteration counts.

Inverting the (1,1) block of the preconditioner,

(3.8) ML = M +DTL−1D,

is typically computationally prohibitive. Let X be the scalar mass matrix on Ch,
defined as

(3.9) Xi,j = (φj ,φi)Ω, 1 ≤ i, j ≤ nb.

Then it has been shown in [8, Theorem 3.3] that ML and M + X are spectrally
equivalent. Hence, we may use the preconditioner

(3.10) MMX
P =

(
MX 0

0 L

)
, where MX = M +X.

The preconditionerMMX
P still has rather attractive spectral properties; in particular,

the preconditioned operator (MMX
P )−1KMX has the two eigenvalues 1 and −1 with

algebraic multiplicity mb each, and the rest of the eigenvalues are bounded by a con-
stant independent of the mesh size; cf. [8]. We thus will useMMX

P as a preconditioner
for the Maxwell subproblem. As discussed in section 4.3, we shall use certain approx-
imations to MX and L to achieve maximal scalability with respect to computing time
and problem size.

4. Preconditioners for the MHD system. In this section, we propose a pre-
conditioning approach for the discrete MHD system (2.8), which is based on keeping
the coupling matrix C in the preconditioner, and on applying the preconditioners dis-
cussed in sections 3.1 and 3.2 to the Navier–Stokes and Maxwell subsystems. Leaving
the coupling terms in and applying these known preconditioners to each of the sub-
problems in the MHD system yields the ideal preconditioner:

MMHD
I =


F BT CT 0
0 −S 0 0
−C 0 ML 0
0 0 0 L

 ,

where ML and S are defined as the Schur complement approximations in (3.8) and
(3.3), respectively.
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4.1. Reordering. We note that by reordering the blocks in MMHD
I , such that

the solution vector is of the form (u, b, p, r), we obtain a 2 × 2 block triangular pre-
conditioner of the form

(4.1) M̃MHD
I =


F CT BT 0
−C ML 0 0
0 0 −S 0
0 0 0 L

 .

If we are to use this preconditioner, then we must reorder the linear system accord-
ingly:

(4.2)


F CT BT 0
−C M 0 DT

B 0 0 0
0 D 0 0




δu
δb
δp
δr

 =


ru
rb
rp
rr

 ,

with the right-hand side quantities as defined in (2.9). Let us denote by KMHD the
coefficient matrix defined in (4.2). From this point on, we consider the reordered
system.

The computational bottleneck is solving systems associated with the matrix

(4.3)
(

F CT

−C ML

)
in the (1, 1) block matrix of (4.1). To invert the matrix in (4.3), we apply a block
triangular preconditioner based on the Schur complement given by(

F +MC CT

0 ML

)
, where MC = CTM−1

L C.

Using the above approximation in M̃MHD
I yields

(4.4) MMHD
S =


F +MC CT BT 0

0 ML 0 0
0 0 −S 0
0 0 0 L

 .

To analyze the spectral properties of MMHD
S , we refer to vectors b ∈ null(M)

as discrete gradients. With the discrete Helmholtz decomposition, it follows that for
each b ∈ null(M) there is a unique r ∈ Rmb such that b = Gr for a discrete gradient
matrix G ∈ Rnb×mb ; cf. [8, section 2]. Hence, dim(null(M)) = mb. The following
result holds true.

Theorem 4.1. The matrix (MMHD
S )−1KMHD has an eigenvalue λ = 1 with al-

gebraic multiplicity of at least nb + nc, where nc is the dimension of the nullspace of
C = C(b) and an eigenvalue λ = −1 with algebraic multiplicity of at least mb. The
dimension of the nullspace of C is nc = nu−nb +mb. The corresponding eigenvalue-
eigenvector (λ,x) pairs are

λ = 1, xT = (uTc , b
T , (−S−1Buc)T , (L−1Db)T ),

with uc ∈ null(C) and b ∈ Rnb arbitrary, and

λ = −1, xT = (0, bTg , 0, (−L−1Dbg)T ),

with bg = Gr a discrete gradient for r ∈ Rmb .
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Proof. The corresponding eigenvalue problem is
F CT BT 0
−C M 0 DT

B 0 0 0
0 D 0 0




u
b
p
r

 = λ


F +MC CT BT 0

0 ML 0 0
0 0 −S 0
0 0 0 L




u
b
p
r

 .

The four block rows of the generalized eigenvalue problem can be written as

(1− λ)(Fu+BT p+ CT b)− λCT (M +DTL−1D)−1Cu = 0,(4.5)

−Cu+ (1− λ)Mb− λDTL−1Db+DT r = 0,(4.6)
Bu = −λS p,(4.7)
Db = λLr.(4.8)

If λ = 1, (4.5) is satisfied if

CT (M +DTL−1D)−1Cu = 0.

This only happens when u ∈ Null(C). Using uc to denote a nullspace vector of C, we
can then simplify (4.7) to

p = −S−1Buc.

Equation (4.8) leads to r = L−1Db. If this holds, (4.6) is readily satisfied. Therefore,
(uTc , b

T , (−S−1Buc)T , (L−1Db)T ) is an eigenvector corresponding to λ = 1. There
exist nc linearly independent such vectors u and nb linearly independent such vectors
b. Hence, it follows that λ = 1 is an eigenvalue with algebraic multiplicity of at least
nu +mb.

If λ = −1, (4.8) leads to r = −L−1Db. Substituting it into (4.6), we obtain
Cu = Mb. If b = bg is a discrete gradient, then Mb = 0 and CT b = 0. If we take
u = 0, then Cu = 0 and the requirement Cu = Mb is satisfied. If u = 0 and b = bG
is a discrete gradient, (4.5) becomes BT p = 0. Since B has full row rank, this implies
p = 0. Therefore, if b = bg is a discrete gradient, then (0, bTg , 0, (−L−1Dbg)T ) is an
eigenvector corresponding to λ = −1. There are mb discrete gradients. Therefore
λ = −1 is an eigenvalue with algebraic multiplicity at least mb.

Remark 4.2. In the spirit of Remark 3.1, looking at (4.4) one may ask whether
incorporating DT into the preconditioner, such that

M̃MHD
S =


F +MC CT BT 0

0 ML 0 DT

0 0 −S 0
0 0 0 L

 ,

may generate a slightly better eigenvalue distribution for the preconditioned system.
Consistently with Remark 3.1, it turns out that doing so does not practically gen-
erate an improvement of the eigenvalue distribution. From Table 4.1, we see that
both preconditioned systems yield exactly the same number of eigenvalues. However,
(MMHD

S )−1KMHD only has 2 distinct eigenvalues, whereas (M̃MHD
S )−1KMHD has 3

distinct eigenvalues. Thus, the insertion of DT does not theoretically decrease the
number of iterations for a Krylov subspace method to converge; this has been con-
firmed by numerical experiments. Since incorporating DT into the preconditioner
slightly increases the cost of a single iteration, we opt to use MMHD

S rather than
M̃MHD

S .
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Table 4.1
Algebraic multiplicity of eigenvalues for preconditioned matrices associated with MMHD

S and
M̃MHD

S . Note that nc = nu − nb +mb.

(MMHD
S )−1KMHD (M̃MHD

S )−1KMHD

1 nb + nc nu

−1 mb 0
1+
√

5
2 0 mb

1−
√

5
2 0 mb

Total nu + 2mb nu + 2mb

Table 4.2
Orders of matrix entries for relevant discrete operators.

Discrete Orderoperator

G O(h−1)
L O(h−2)
D O(h−1)

4.2. From an ideal to a practical preconditioner. We now consider further
simplifications of MMHD

S in (4.4) to make the preconditioner computationally feasi-
ble. Effective sparse approximations are required for the relevant Schur complements
that arise. We use the approximations in sections 3.1 and 3.2 for S and ML. For
approximating MC , we follow a similar approach to that taken in [17, section 3.1].
For a given magnetic field b, let Cb be the continuous differential operator analogue
of MC = CTM−1

L C:

Cbu = κ
(
∇×

(
(κνm∇×∇×+∇∆−1∇ ·)−1κ∇× (u× b)

))
× b

= κ2∇×
(
κνm∇×∇×+∇∆−1∇ ·

)−1∇× (u× b)× b.
(4.9)

The discretization of (4.9) is

(4.10) Cbu = κ2G
(
κνmG

TG+DTL−1D
)−1

GT (u× b)× b,

where G is a discrete curl matrix and u and b are vectors of velocity and magnetic
coefficients, respectively.

In Table 4.2 we state the order of the discrete differential operators that are
involved in (4.10). We observe that the discrete curl-curl matrix, GTG, contains
entries of magnitude O(h−2), and DTL−1D is order O(1). Thus for small h and
moderate values of κ and νm the curl-curl matrix will be the dominant term. Therefore
we consider

Cbu ≈ κν−1
m G

(
GTG

)−1
GT (u× b)× b.

Furthermore, G
(
GTG

)−1
GT is an orthogonal projector onto the range space of GT ;

hence, it acts as an identity operator within that space. We therefore use the approx-
imation

(4.11) Cbu ≈ κνm−1b× (u× b).

From (4.11), Cb can be approximated by a scaled mass matrix determined by the
coefficients of the magnetic field b. We thus approximate MC by a scaled mass matrix,
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Table 4.3
Orders of matrix entries for relevant discrete operators.

Matrix Implementation method
Qp diagonal of αQp, where α = 0.75
Ap single AMG V-cycle

F +Qs single AMG V-cycle
M +X AMG method developed in [10]
L single AMG V-cycle

which we denote by QS , and whose elements are

(4.12) (QS)i,j = κν−1
m (bh ×ψj , bh ×ψi)Ω, 1 ≤ i, j ≤ nu.

Combining the sparse Schur complement approximations in (3.3), (3.10), and
(4.12) in the MHD preconditioner (4.4) gives the approximate preconditioner

(4.13) MMHD
P =


F +QS CT BT 0

0 M +X 0 0
0 0 −Ap F−1

p Qp 0
0 0 0 L

 .

In the transition from the ideal preconditioner (4.1) to the practical preconditioner
(4.13), some spectral clustering is inevitably lost. But, as we show, the spectral
structure of the preconditioned matrix associated withMMHD

P is still very appealing.
We illustrate this in section 5.

4.3. Implementation. So far we have introduced the matrix systems with pos-
sible preconditioners, but have not discussed practical implementation considerations.
One of our main goals is to provide a fully scalable solution method. To this end,
we will consider mesh-independent solvers for the separate block matrices within the
preconditioners. Table 4.3 outlines the methods we use to solve the systems associ-
ated with Qp, Ap, F +Qs, M +X, and L, which are the block diagonal matrices in
(4.13). Let us provide a few additional comments:

1. For solving systems involving Qp, we have experimentally observed that scal-
ing by a multiplicative scalar α smaller than 1 results in a slight decrease of
iteration counts, especially in the 3D case. In our numerical experiments we
provide results that correspond to using α = 0.75.

2. For solving systems involving M + X, the method developed in [10] aims
to overcome issues with standard algebraic multigrid (AMG) methods for
the discrete curl-curl operator by using an auxiliary space approach [22] for
H(curl) finite element discretizations of elliptic problems. The construction
of the auxiliary space multigrid preconditioner relies on three additional ma-
trices: the discrete Nédélec interpolation operator P ∈ Rnb×dmb (where d is
the spatial dimension), the discrete gradient operator G ∈ Rnb×mb , and mass
matrix defined on the scalar space Sh as Q; see [11, 13].

5. Numerical results. This section examines the efficiency of our precondition-
ing approaches to the MHD model (1.1)–(1.2). In all experiments, unless otherwise
stated, we use a 2-norm absolute tolerance of 1e-4 for the nonlinear solver and relative
error of 1e-5 for both the Krylov subspace solver and the auxiliary space multigrid [10].

All numerical experiments have been carried out using the finite element software
FEniCS [14] in conjunction with the PETSc4PY package (Python interface for PETSc
[2, 3]) and the multigrid package HYPRE [5].
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We test our methods on problems with inhomogeneous Dirichlet boundary con-
ditions in the hydrodynamic variables, even though the analysis has been carried out
solely for the homogeneous Dirichlet case. Other boundary conditions may be handled
by our finite element framework, and our preconditioning approaches can be extended
accordingly.

In the subsequent tables we use the following notation: timesolve is the average
linear system solve time, timeNL is the total nonlinear solve time, itNL is the number
of nonlinear iterations, itI

av is the average number of FGMRES iterations (applying
iterative solution of the preconditioned linear systems), and itD

av is the average number
of FGMRES iterations when direct methods are used to solve the preconditioned linear
systems.

Mesh sequences. In our tests, we consider sequences of uniformly refined simplicial
grids (i.e., triangles in 2D and tetrahedra in 3D). We define ` to be the mesh level,
such that there are 2` edges along each boundary. In our tables, we usually show the
grid level ` in the first column. We also note that DoF (in the second column) refers
to the total number of degrees of freedom of the linear system.

Stopping criteria. Throughout, we enforce the following nonlinear stopping crite-
ria for the updates:

‖δu‖2 + ‖δp‖2 + ‖δb‖2 + ‖δr‖2 < tolNL,

where ‖ · ‖2 is the absolute error in the 2-norm of a vector and tolNL = 1e-4.
Initial guess tolerance. For all numerical experiments, we formulate the initial

guess by iteratively solving a Stokes problem and mixed Maxwell problem in isola-
tion. We choose a tight Krylov 2-norm relative tolerance as 1e-10 to ensure that the
approximations of the inhomogeneous boundary conditions are sufficiently accurate;
see [20, section 2.5]. This is to ensure the accuracy of the initial solution on the
boundaries since subsequent Picard iterations are solved for homogeneous boundary
conditions, and hence any errors in the initial guess will be carried throughout the
Picard iterations.

5.1. 2D smooth solution. The first example considered is a simple domain
with a structured mesh. We use a unit square domain, Ω = [0, 1]2. We take ν =
κ = 1, νm = 10; then the source terms f , g and inhomogeneous Dirichlet boundary
conditions on ∂Ω are defined from the following analytical solution:

u(x, y) =
(
xy exp(x+ y) + x exp(x+ y)
−xy exp(x+ y)− y exp(x+ y)

)
,

p(x, y) = exp(y) sin(x),

b(x, y) =
(

exp(x+ y) cos(x)
exp(x+ y) sin(x)− exp(x+ y) cos(x)

)
,

r(x, y) = x sin(2πx) sin(2πy).

To illustrate the eigenvalue distribution, we compute the eigenvalues of the pre-
conditioned matrix

(
M̃MHD

I

)−1KMHD in Figure 5.1(a) and (MMHD
P )−1KMHD in Fig-

ure 5.1(b). We note that there are no imaginary parts of the eigenvalues for Fig-
ure 5.1(a). From Figure 5.1(b) we see that we still observe strong clustering of eigen-
values around 1 and −1 with only a few complex conjugate pairs. Thus, the spectral
structure is still rather appealing in terms of eigenvalue clustering. Therefore, the
preconditioner MMHD

P seems a viable approximation to M̃MHD
I .
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(a) Eigenvalues of the preconditioned ma-
trix

(
M̃MHD

I
)−1KMH

P associated with the
ideal preconditioner.

(b) Eigenvalues of the preconditioned ma-
trix (MMHD

P )−1KMH
P associated with the

practical preconditioner. The eigenvalues in
this case are complex; the blue curves rep-
resent their real parts, and the red curves
represent their imaginary parts.

Fig. 5.1. Eigenvalues of preconditioned matrices for the smooth solution given in this section.
The number of degrees of freedom for these matrices is 724.

Table 5.1
2D smooth: Number of nonlinear iterations and number of iterations to solve the MHD system

with tolNL = 1e-4, κ = 1, ν = 1, and νm = 10.

` DoF timesolve timeNL itNL itIav itD
av

4 3,556 0.33 2.7 7 24.4 20.1
5 13,764 1.11 9.2 7 25.9 20.4
6 54,148 4.48 37.2 7 27.1 20.9
7 214,788 20.32 166.4 7 28.4 21.4
8 855,556 94.29 762.0 7 31.3 21.8
9 3,415,044 486.53 3835.0 7 34.3 -
10 13,645,828 2231.71 17944.6 7 34.0 -

To test the scalability of our method, we considered a uniformly refined sequence
of meshes. The results are presented in Table 5.1. The iterations appear to remain
fairly constant with the increasing mesh level for both itDav and itI

av.

5.2. 2D smooth solution parameter tests. We next test the performance
of the three nonlinear iteration schemes Picard (P), magnetic decoupling (MD), and
complete decoupling (CD) introduced in section 2. The convergence of the nonlinear
iterations is likely to be affected by the parameter setup of the problem, i.e., by the
values of the fluid viscosity (ν), the magnetic viscosity (νm), and the coupling number
(κ). By varying κ and ν, we examine the robustness of the three schemes with respect
to these parameters. Nonlinear iterations that do not converge are denoted by “-” in
the tables.

Viscosity test. As a first test we consider varying the fluid viscosity, ν, for
tolNL = 1e-4, κ = 1, and νm = 10. The nonlinear iteration results are shown in
Table 5.2, and the average linear solve times are shown in Table 5.3.

As the fluid viscosity (ν) decreases, the fluid flow equations (1.1a) and (1.1b)
become more convection-dominated. Thus we see that the (CD) scheme breaks down
for small ν, since the convection term in this decoupling scheme is taken explicitly.
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Table 5.2
Number of nonlinear iterations for various values of ν with κ = 1 and νm = 10.

ν = 1 ν = 0.1 ν = 0.01
` DoF (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 5 5 9 7 7 - 11 11 -
5 13,764 5 5 9 15 7 - 11 11 -
6 54,148 5 5 9 7 7 - 13 11 -
7 214,788 5 5 9 7 7 - 11 11 -
8 855,556 5 5 9 7 7 - 11 11 -

Table 5.3
Average linear solver time for various values of ν with κ = 1 and νm = 10.

ν = 1 ν = 0.1 ν = 0.01
` DoF (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 0.04 0.04 0.03 0.08 0.04 - 0.04 0.04 -
5 13,764 0.18 0.17 0.14 0.97 0.18 - 0.19 0.18 -
6 54,148 0.90 0.91 0.67 0.95 0.92 - 2.05 0.93 -
7 214,788 4.48 4.48 3.49 4.68 4.57 - 5.02 4.48 -
8 855,556 25.52 22.81 16.67 25.63 23.03 - 25.01 22.61 -

Table 5.4
Number of nonlinear iterations for various values of κ with tolNL = 1e-5, ν = 1, and νm = 10.

κ = 1 κ = 10 κ = 100
` DoF (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 5 5 9 7 10 17 8 - -
5 13,764 5 5 9 7 10 18 8 - -
6 54,148 5 5 9 7 10 18 8 - -
7 214,788 5 5 9 7 10 18 8 - -
8 855,556 5 5 9 7 10 18 8 - -

Table 5.5
Average linear solver time for various values of κ with ν = 1 and νm = 10.

κ = 1 κ = 10 κ = 100
` DoF (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 0.06 0.06 0.04 0.06 0.06 0.03 0.06 - -
5 13,764 0.23 0.23 0.21 0.24 0.25 0.19 0.24 - -
6 54,148 1.12 1.08 0.80 1.01 1.05 0.79 0.98 - -
7 214,788 4.80 4.92 3.65 5.05 4.92 3.74 5.52 - -
8 855,556 25.21 25.93 18.03 25.49 26.03 18.49 26.75 - -

On the other hand, the Picard and (MD) schemes perform similarly. We note that for
smaller ν both (P) and (MD) have trouble converging without a sufficiently refined
mesh. From Table 5.3 we see that the direct solve for the Picard (P) system and
magnetic decoupling are very similar, but as expected the complete decoupling solve
time is shorter.

Coupling number test. The next parameter test examines the effects of the
coupling terms in the three nonlinear iteration schemes. We expect the Picard scheme
to outperform the other schemes for large values of κ. The results in Table 5.4 show
that this is indeed the case. Both the (MD) and (CD) schemes completely break down
for κ ≥ 100. This is the point at which the Picard iteration (P) becomes the most
viable option. Altogether, as expected, the full Picard iteration is more robust than
(CD) and (MD). The timing results in Table 5.5 show a trend similar to the timing
results for the viscosity in Table 5.3.
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Table 5.6
2D L-shaped domain: Number of nonlinear iterations and number of iterations to solve the

MHD system with tolNL = 1e-4, κ = 1, ν = 1, and νm = 10. The iteration was terminated before
completion for ` = 9 due to the computation reaching the prescribed time limit.

` DoF itNL itD
av

5 12,880 5 24.4
6 51,678 5 26.0
7 203,712 5 27.4
8 809,705 5 29.6
9 3,219,082 - -

5.3. 2D smooth solution on L-shaped domain. To further test the robust-
ness of our preconditioning technique, we will consider nonconvex domains. We first
consider a problem with a smooth solution in the L-shaped domain Ω = (−1,−1)2 \
([0, 0) × (1, 1]). We prescribe the same analytical solution as in section 5.1. The
results in Table 5.6 show very good scalability with respect to mesh refinement for
direct solves of the preconditioner. On the other hand, we report that when using
iterative inner solvers with a reasonably loose tolerance, the iterations dramatically
deteriorate and scalability is lost. We speculate that the AMG solver cannot handle
well the nonconvexity of the domain. In such cases it may be necessary to apply a
rather strict convergence tolerance.

5.4. 2D singular solution on L-shaped domain. We next consider the model
singular solution from [7] on the L-shaped domain Ω = (−1, 1)2\([0, 1)×(−1, 0]). That
is, taking ν = κ = 1 and νm = 10, we set the forcing terms and the boundary condi-
tions such that the analytic solution is given by the strongest corner singularities of
the underlying Stokes and Maxwell operators subject to the boundary conditions (1.2)
on the two inner sides meeting at the reentrant corner. In polar coordinates (ρ, φ) at
the origin, the fluid solution (u, p) is then of the form

(5.1) u(ρ, φ) = ρλΨu(φ), p(ρ, φ) = ρλ−1Ψp(φ),

with the singular exponent λ ≈ 0.54448373678246 and where (Ψu,Ψp) are smooth
functions in the angle φ. Similarly, the magnetic pair (b, r) (with ∇ · b = 0 and
∇× b = 0) is of the form

(5.2) b(ρ, φ) = ρ−1/3Ψb(φ), r ≡ 0.

Detailed expressions can be found in [7, section 5.2]. Using Nédélec elements allows us
to properly capture this singular solution, whereas applying standard nodal elements
for b fails to do so. As with the smooth solution on an L-shaped domain in section 5.3,
we only consider direct applications of the preconditioner. The results are shown in
Table 5.7. We draw similar conclusions with respect to mesh independence. Overall,
the iterations show good scalability.

5.5. 2D Hartmann flow. As a final 2D numerical example, we consider the 2D
Hartmann flow problem, which involves a steady unidirectional flow in the channel
Ω = (0, 10)× (−1, 1) under the constant transverse magnetic field bD = (0, 1) on ∂Ω.
We impose the analytical solution given in [7, section 5.3] with Dirichlet boundary
conditions for u on the entire boundary ∂Ω. The MHD solution then takes the form

(5.3)
u(x, y) = (u(y), 0), p(x, y) = −Gx+ p0(y),

b(x, y) = (b(y), 1), r(x, y) ≡ 0.
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Table 5.7
2D singular solution on L-shaped domain: Number of nonlinear iterations and number of iter-

ations to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1, and νm = 10.

` DoF itNL itD
av

3 740 4 13.8
4 2,724 4 14.5
5 10,436 4 15.8
6 40,836 4 17.5
7 161,540 4 18.5
8 642,564 4 20.0
9 2,563,076 4 21.8

Table 5.8
2D Hartmann flow: Number of nonlinear iterations and number of iterations to solve the MHD

system with tolNL = 1e-4, κ = 1, ν = 1, and νm = 1000.

` DoF timesolve timeNL itNL itI
av itD

av

2 1,212 0.66 1.58 2 18.0 13.5
3 4,500 1.71 3.82 2 17.5 13.0
4 17,316 5.13 11.04 2 17.5 12.5
5 67,908 21.06 44.73 2 18.5 12.5
6 268,932 97.16 204.36 2 19.0 13.0
7 1,070,340 447.66 935.03 2 19.0 12.5
8 4,270,596 921.90 1001.37 1 8.0 7.0
9 17,060,868 1459.82 1778.95 1 3.0 -

The exact solution is given by (5.3) with

u(y) =
G

νHa tanh(Ha)

(
1− cosh(yHa)

cosh(Ha)

)
,

b(y) =
G

κ

(
sinh(yHa)
sinh(Ha)

− y
)
,

p0(y) = −G
2

2κ

(
sinh(yHa)
sinh(Ha)

− y
)2

,

where Ha =
√

κ
ννm

is the Hartmann number. We impose inhomogeneous Dirichlet
boundary conditions from the exact solutions.

The results are reported in Table 5.8. We observe that for the 2D Hartmann
flow example the solver appears to accomplish an excellent degree of scalability. For
the last two mesh levels the preconditioner approximation becomes better in terms
of lower iterations, itIav. More exploration of the conditioning of the problem and the
norm of the (preconditioned) residual is needed to fully understand the reason for
this; the large size of the problems presents a challenge in fully exploring this.

5.6. 3D smooth solution. We next consider a 3D example with a smooth
solution on Ω = [0, 1]3. Let ν = κ = 1, νm = 10 and let the analytical solution be
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Table 5.9
3D smooth solution: Number of nonlinear iterations and number of iterations to solve the MHD

system with tolNL = 1e-4, κ = 1, ν = 1, and νm = 10.

` DoF timesolve timeNL itNL itIav itD
av

1 527 0.03 0.9 4 18.8 18.0
2 3,041 0.22 3.5 3 26.7 22.3
3 20,381 1.77 26.6 3 37.0 24.7
4 148,661 22.11 237.0 3 40.7 26.0
5 1,134,437 206.43 2032.7 3 44.3 -
6 8,861,381 2274.28 19662.0 3 50.0 -

given by

u(x, y, z) =

−xy exp(x+ y + z) + xz exp(x+ y + z)
xy exp(x+ y + z)− yz exp(x+ y + z)
−xz exp(x+ y + z) + yz exp(x+ y + z)

 ,

p(x, y, z) = exp(x+ y + z) sin(y),

b(x, y, z) =

− exp(x+ y + z) sin(y) + exp(x+ y + z) sin(z)
xy exp(x+ y + z)− yz exp(x+ y + z)

− exp(x+ y + z) sin(x) + exp(x+ y + z) sin(y)

 ,

r(x, y, z) = sin(2πx) sin(2πy) sin(2πz).

Then the source terms f and g and inhomogeneous boundary conditions are de-
fined from the analytical solution. The corresponding results are shown in Table 5.9.
We observe good scalability when we consider direct solves for the preconditioner.
However, the average iterations degrade when using multigrid methods to solve the
preconditioner.

6. Conclusions. We have introduced a block-structured preconditioning tech-
nique for a linearized steady-state incompressible MHD model, discretized by Taylor–
Hood elements for the fluid variables and by the lowest-order Nédélec pair for the
magnetic unknowns. The aim was to develop a preconditioner that would yield a
scalable solution method. To this end, we have derived effective Schur complement
sparse approximations. Spectral analysis demonstrates good eigenvalue clustering
properties.

We have generated a large-scale code base, utilizing both the finite element soft-
ware package FEniCS [14] and the linear algebra software PETSc [3, 2] to test our
proposed preconditioner. Results have been presented for problems in the excess of
10 million degrees of freedom.

Our 2D results are scalable. For 3D problems we observe weak scalability in
some of the settings; that is, the number of iterations does not quite stay constant
as the mesh is refined. Resolving this may require resorting to other finite element
formulations, or turning to more robust inner solvers.

Further developments may include the derivation of other nonlinear solvers that
have faster convergence properties than the Picard iterations we considered in this
paper. One such solver is Newton’s method, which converges quadratically near the
solution [9, 17]. The implementation may be challenging due to the energy-stability
formulation of the convection term and the computational cost of computing the
Jacobian.

Finally, we note that it may be possible to reduce the overall computational time
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by loosening the linear solver’s tolerance and applying an inexact solution procedure.
This remains as an item for future work.
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