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Summary
Image registration is a central problem in a variety of areas involving imaging

techniques and is known to be challenging and ill-posed. Regularization func-

tionals based on hyperelasticity provide a powerful mechanism for limiting the

ill-posedness. A key feature of hyperelastic image registration approaches is their

ability to model large deformations while guaranteeing their invertibility, which is

crucial in many applications. To ensure that numerical solutions satisfy this require-

ment, we discretize the variational problem using piecewise linear finite elements,

and then solve the discrete optimization problem using the Gauss–Newton method.

In this work, we focus on computational challenges arising in approximately solv-

ing the Hessian system. We show that the Hessian is a discretization of a strongly

coupled system of partial differential equations whose coefficients can be severely

inhomogeneous. Motivated by a local Fourier analysis, we stabilize the system by

thresholding the coefficients. We propose a Galerkin-multigrid scheme with a col-

lective pointwise smoother. We demonstrate the accuracy and effectiveness of the

proposed scheme, first on a two-dimensional problem of a moderate size and then

on a large-scale real-world application with almost 9 million degrees of freedom.
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1 INTRODUCTION

Image registration is a central task in a variety of areas involving imaging techniques, such as astronomy, geophysics, and medical

imaging; see reviews1–7 and references therein. Its goal is to automatically establish geometrical correspondences between two

or more image data sets. This primarily entails finding a plausible transformation that aligns the given data sets. Registration is

required whenever images taken at different times, from different devices, with different modalities, or of different subjects need

to be compared or combined. A particular application of image registration that is relevant to this paper is medical imaging.

Image registration can be formulated as a variational problem. To this end, a distance measure is used to quantify the alignment

of the data sets. Common choices for distance measures include the sum-of-squared-differences (SSD), normalized gradient

fields, and mutual information; see Modersitzki6 for an overview. In general, the distance functional depends nonconvexly

on the transformation, and thus, the registration problem is known to be ill-posed.2,8 Tikhonov regularization can be used to

ensure existence of solutions, increase robustness against noise, and quantify the plausibility of the transformation. Probably,

the most widely used regularization functional is the elastic regularization functional, which can be dated back to Fischler and

Elschlager9 and Broit.10 It is based on the assumption that images deform like elastic material. Typically the strain tensor is

linearized to yield computationally efficient schemes.11 However, due to the linearization, elastic schemes are limited to small

deformations by design. If this assumption is violated, the model may yield estimates of the deformation that are not invertible,

which is implausible for elastic materials and not meaningful in many applications. Assuming regularity, local invertibility of a

deformation is equivalent to its Jacobian determinant being positive; see Evans12 [Section C.5]. Thus, invertible solutions can

be ensured for linear elastic schemes by imposing constraints on the compression and expansion of tissue.13
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To accurately compute elastic energies for large deformations, an extension to nonlinear elastic regularizers inspired by the

theory of hyperelastic materials was first described by Droske and Rumpf14 and is also used in other recent works.15–17 Hyper-

elastic extensions consider Ogden materials for which the Jacobian determinant directly enters the regularization functional.

Thus, expansion is penalized and compression is bounded, which ensures invertibility of the deformation without utilizing

additional constraints.14,18,19

Ensuring that numerical solutions computed on a finite grid fulfill this requirement, however, is not trivial. Previously, we

proposed a discretization that controls volume changes on a tetrahedral subdivision of a rectangular grid.15 A series of discrete

optimization problems are solved using a Gauss–Newton optimization scheme.20 While this approach has already been used for

solving a real-life registration problem in cardiac imaging in the work of Gigengack et al.,21 a severe computational overhead so

far limits broader applications to large-scale registration problems. A large fraction of computational time is spent on approxi-

mately solving the Hessian system to obtain a search direction. For practically relevant problem sizes, iterative solvers, such as

preconditioned conjugate gradient (PCG) methods, are commonly used; see, Hestenes and Stiefel22 for the original work on CG

and Saad’s book23, for an introduction to preconditioning. In contrast to linear elastic schemes in hyperelastic approaches, the

linear system couples all partial derivatives of the transformation. Furthermore, as we will see later, the operator and, in partic-

ular, the coupling pattern can change drastically in the course of optimization, and it imposes challenges on designing effective

preconditioners.

In this paper, we employ a multigrid scheme for preconditioning the Gauss–Newton system. We motivate the derivation of the

method by showing, using a local Fourier analysis (LFA), and by numerical experiments that a standard approach on the basis of

a collective pointwise smoother and a Galerkin coarsening strategy may fail in practice; specifically, we show that h-ellipticity

factors approach zero when the transformation between the image data requires large compression or expansion of volume. We

then develop a stabilization procedure by locally thresholding the coefficients associated with the volume regularization. As we

demonstrate, our scheme yields a drastic improvement of scalability for large-scale hyperelastic registration problems.

This paper is closely related to two of our previous works.15,24 A hyperelastic registration problem was formulated in Burger

et al.,15 where a finite volume discretization based on a tetrahedral subdivision was implemented and the linear systems

were solved with a simple Jacobi preconditioned CG scheme. We use the same theoretical formulation as in15, but propose

a new discretization which is based on a Galerkin finite element approach with piecewise linear basis functions. An advan-

tage of our new approach is that the numerical solution inherits the invertibility properties from the continuous problem

since the gradient of the transformation is piecewise constant, and thus, the Jacobian determinant is controlled exactly. In

addition, we tie the Galerkin finite element framework in a seamless way into the multigrid solver by using a piecewise lin-

ear interpolation to obtain coarse grid operators. Haber et al.24 derived and successfully applied a colored Vanka smoother

for a volume constrained registration problem, which is a special case of hyperelastic image registration.25 In this work,

we apply a computationally economical collective pointwise smoother. While this smoother is less effective than the Vanka

smoother, our numerical experiments indicate that the collective pointwise smoother yields a robust and efficient multigrid

preconditioning scheme.

The remainder of the paper is organized as follows: In Section 2, we briefly introduce the hyperelastic image registration

problem, derive a discretization using a Galerkin finite element method, and describe the numerical optimization framework

used to solve the discrete minimization problems. In Section 3, we present a Galerkin multigrid method and the proposed

stabilization. Section 4 provides numerical experiments. We demonstrate the accuracy and robustness of the proposed method

on a 2D problem involving large, nonlinear transformations, as well as on a real-life 3D registration problem involving almost

9 million degrees of freedom.

2 MATHEMATICAL FORMULATION AND DISCRETIZATION

In this section, we briefly introduce the hyperelastic image registration problem and introduce a Galerkin finite element

discretization.

2.1 Hyperelastic image registration

We are given two images T,R ∶ Ω ⊂ Rd → R, continuously differentiable and compactly supported on the domain Ω. We

restrict the following presentation to d = 3, which today is the most relevant case in medical imaging. Commonly, T is referred

to as the template image and R is called the reference image. The goal is to find a transformation y ∶ Ω → R3 such that ideally

T(y(x)) ≈ R(x) for all x ∈ Ω and y is plausible in the given application, which is quantified by a regularization energy. For

many medical applications, nonsmooth or noninvertible transformations are implausible.

To ensure invertibility of y even for large and nonlinear transformations, we resort to hyperelastic regularization and consider

the variational problem
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J ∶ A → R
+, min

y

{
J [y] = D [T,R; y] + Shyper [y]

}
, (1)

whose ingredients are discussed subsequently. As the distance functional D, quantifying the alignment of the images, is not the

focus of this paper, we restrict the presentation to the SSD

D[T,R; y] = 1

2 ∫ (T (y(x)) −R(x))2dx. (2)

For this distance measure to be effective, intensity values should approximately agree at corresponding points in the reference

and template image. This assumption is often satisfied when comparing images of the same modality, and hence, SSD is a

prototype of uni-modal distance functionals. For a more general overview of distance measures see the work of Modersitzki.6

The hyperelastic registration functional as motivated and presented in our previous work15 is given by

S hyper[y] = S length[y] + S area[y] + S vol[y]

= 𝛼1

2
‖∇(y − yref)‖2 + 𝛼2 ∫ 𝜙(cof∇y)dx + 𝛼3 ∫ 𝜓(det∇y)dx,

where the penalty functions 𝜙 ∶ R3×3 → R and 𝜓 ∶ R → R are convex and 𝛼1, 𝛼2, 𝛼3 > 0 are regularization parameters.

Choosing optimal regularization parameters for nonlinear inverse problems is a question of active research26–28 and beyond the

scope of this work. The impact of the regularization parameter in hyperelastic image registration is not trivial and extensively

discussed in our previous work.15 In the following we assume that adequate parameters are supplied by the user. A reference

transformation yref , typically the identity of the result of a rigid preregistration, can be used to favor preferred solutions. For a

geometrical interpretation of S hyper, we note that at a point x the columns of ∇y(x) ∈ R3×3 are tangents of the coordinate lines

in the deformed coordinate system passing through x; see, e.g., Ciarlet19 (p. 30). Thus, the first term in S hyper approximates

changes in lengths. Similarly, the norm of each column of the cofactor matrix cof∇y approximates the area of a surface element

spanned by two lines of the deformed coordinate system, and the determinant of the Jacobian det∇y approximates volume

changes induced by the transformation. Clearly, the actual choice of 𝜙 and 𝜓 offers degrees of freedom. Here, we follow our

previous work15 and use

𝜙(C) =
3∑

j=1

max

{
3∑

i=1

C2
ij − 1, 0

}
and 𝜓(x) = (x2 − 1)4∕x2. (3)

The area penalty function 𝜙 only penalizes area growth and is blind to shrinkage as it otherwise would not be convex.15 The

definition of S hyper is valid for transformations in a subset of the Sobolev space W1,2(Ω,R3)

A =
{

y ∈ W1,2(Ω,R3) ∶ cof∇y ∈ L4(Ω,R3×3), det∇y ∈ L2(Ω,R),

det∇y > 0 a.e., | ∫ y(x)dx| < CΩ
}
.

The measurability requirements on cof∇y and det∇y are motivated by the choices of the penalty functions 𝜙 and 𝜓 and require-

ments of a compensated compactness argument.15,18,19 The volume inequality det∇y > 0 implies that the transformation will

be locally invertible and the boundedness of the transformation follows from the compact support of T and R; see our previous

work15 for extended discussion and a proof of existence of minimizers y ∈ A.

2.2 Finite element discretization

We discretize the variational problem (1) using globally continuous and piecewise linear finite elements on a tetrahedral mesh.

Let V1,V2, … ,VnV ∈ R3 denote vertices and T1,T2, … ,TnT tetrahedra, where we assume vol(Ti) > 0 for all i = 1, 2, … , nT.

We search for a minimizer in the space

Ah =
{

y ∈ C(Ω,R3) ∶ y||Ti
∈ Π1(Ti,R

3) for i = 1, 2, … , nT

}
⊂ A,

where Π1 denotes the space of first order vector-valued polynomials. We use standard nodal Lagrange hat functions

b1, b2, … , bnV ∶ Ω → R to construct a basis of Ah. The coefficients y of yh ∈ Ah with respect to that basis are stored

component-wise in a column vector of size 3nV. We thus have
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yh(x) =
nV∑
j=1

⎛⎜⎜⎝
y1

j
y2

j
y3

j

⎞⎟⎟⎠ bj(x),

where yi
j = yh,i(Vj) and in the same way we obtain y ref with (yref)ij = yi

ref
(Vj). In the following, Ik ∈ Rk×k is an identity

matrix, 1k ∈ Rk is a vector of all ones, and the operators ⊗ and ⊙ are the Kronecker- and Hadamard-products, respectively.

The entries of the Jacobian matrix ∇yh are piecewise constant inside each triangle. We store the nine components in a column

vector (By) ∈ R9nT , where B is the discrete vector gradient operator

B = I3 ⊗ ∇h, ∇h =
⎛⎜⎜⎝
𝜕h

1

𝜕h
2

𝜕h
3

⎞⎟⎟⎠ , 𝜕h
k ∈ R

nT×nV , and
(
𝜕h

k
)

i,j = 𝜕kbi(Vj).

Interpolation from nodes to barycenters of the tetrahedra is done by the averaging matrix

A = I3 ⊗ A ∈ R
3nT×3nV with Ai,j =

{
1∕4, if Vj is node of Ti

0, otherwise
.

We denote the volume of the tetrahedra by

v ∈ R
nT ,with vi = vol(Ti) and V = diag(v).

We approximate the SSD distance functional by using a midpoint quadrature rule

D(y) = 1

2
res(y)TV res(y), where res(y) = T (Ay) −R(xc),

where R(xc) ∈ RnT evaluates the reference image at the barycenters of the undeformed tetrahedral mesh. Similarly, T(Ay)
computes the image intensities on the barycenters of the deformed mesh. Interpolation is used to build continuous images

models for the reference and template image from discrete image date; see also the work of Modersitzki.6 Because the Jacobian

matrix of yh ∈ Ah is piecewise constant, the hyperelastic regularization functional is evaluated exactly by

Shyper(yh) = 𝛼1

2
(y − yref)TBT (I9 ⊗ V)B(y − yref) + 𝛼2vT𝜙(cofBy) + 𝛼3vT𝜓(detBy).

In line with the organization of the gradient, the entries of the cofactor matrix are stored in a column-vector of length 9nT. The

first derivative of the discretized objective function is

dJ(y) = dD(y) + dSlength(y) + dSarea(y) + dSvol(y),

where we use chain rule to obtain

dD(y) = res(y)TV∇T (Ay)A,

dSlength(y) = 𝛼1(y − yref)TBT (I9 ⊗ V)B,
dSarea(y) = 𝛼2((l9 ⊗ v)⊙ 𝜙′(cofBy))TdcofBy,
dSvol(y) = 𝛼3vT𝜓 ′(detBy) ddetBy.

Using the abbreviation Dj
i = diag(𝜕iy j) ∈ RnT×nT , we have
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Using the abbreviation C j
i = diag

(
(cofBy)i,j

)
∈ RnT×nT , we have

ddetBy =
(

C1
1
, C2

1
, C3

1
, C1

2
, C2

2
, C3

2
, C1

3
, C2

3
, C3

3

)
B ∈ R

nT×3nV .

Following the concepts of the image registration framework,6 we approximate the Hessian of the objective functional to ensure

positive semidefiniteness and avoid computations of second derivatives of the (generally noisy) template image as follows:

H(y) ≈ d2D(y) + d2Slength + d2Sarea(y) + d2Svol(y), (4)

with the summands

d2D(y) = AT (∇T (Ay))TV∇T (Ay)A, (5)

d2Slength = 𝛼1BT (I9 ⊗ V)B, (6)

d2Sarea(y) = 𝛼2(dcofBy)T (diag(I9 ⊗ v) 𝜙′′(cofBy)) dcofBy, (7)

d2Svol(y) = 𝛼3(ddet By)T diag(v ⊙ 𝜓 ′′(det By)) ddet By. (8)

Note that in (4), the dependency of the first term on y is only of low order, and the second term is constant with respect to y. In

contrast, the Hessian of the area and volume regularization functionals strongly depend on y, which is a significant source of

complications for iterative solvers for the full system. Note in particular that 𝜓 ′′(detBy) → ∞ as detBy → 0+ or detBy → ∞.

Thus, ill-conditioning is to be expected for large volume changes.

2.3 Mesh generation

A typical solution strategy in image registration is to approximately solve the variational problem (1) on a coarse-to-fine hierar-

chy of discretizations often referred to as multilevel strategy, see the work of Modersitzki,6 or cascadic multigrid described by

Bornemann and Deuflhard.29 The key motivation is to reduce the risk of being trapped in a local minimum and to obtain good

starting guesses for the correction steps on finer discretization levels. While the above description of our method requires no

assumptions on the mesh, we now describe structured meshes for the purpose of providing a clear description of multilevel and

multigrid method. In imaging, the domain is typically rectangular and the data is provided on a regular grid of pixels or voxels.

As in our previous work,15 we use a nodal grid as a base mesh and divide each cell symmetrically into four triangles (2D) or 24

tetrahedra (3D) by introducing additional points in the cell centers and on the faces; see Figure 1. Unlike subdivisions into only

two triangles (2D) or five or six tetrahedra (3D), these partitions avoid a bias with respect to a discretization direction, which

may lead to implausible solutions; see Ruthotto25 (Figure 4.5) for a numerical example.

FIGURE 1 Subdivision used for generating nested families of structured meshes.15 Left: triangulation of a m = [2, 2] grid. Right: tetrahedral subdivision of

a voxel
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2.4 Numerical optimization

The variational problem (1) is solved on a family of nested finite dimensional space Ahc ⊂ … ⊂ Ahf ⊂ A using a standard

Gauss–Newton method.20 Thus, a large fraction of the computation time is spent on the solution of the linear system

H(yk)𝛿yk = −dJ(yk), (9)

where dJ is the gradient and H the approximated Hessian of the objective function J at the kth iterate yk and 𝛿yk denotes the

search direction. For efficient solution of large-scale registration problems, fast iterative solvers are crucial. As outlined above,

a particular challenge arises from the dependency of the Hessian on the current transformation.

3 A STABILIZED MULTIGRID SOLVER

This section presents and analyzes a multigrid method and novel stabilization scheme for effectively computing the search

direction 𝛿y in Equation 9.

Multigrid methods are widely used to approximate solutions to linear systems, especially systems that arising from discretiza-

tions of elliptic partial differential equations such as the system in (Equation 9); see, for example, the monographs.30–32 The

primary observation underlying multigrid for elliptic problems is that high-frequency components in the error are smoothed

out quickly by basic iterative solvers such as Gauss–Seidel, whereas the error in the relatively smooth components remains

large. Multigrid is thus comprised of the following two components: first, a small number of iterations of a basic iterative

scheme (called henceforth a smoother) is applied on the original grid, which generates a smooth error. The second component

is a coarse-grid correction: the error is projected onto a coarser mesh, where some of the previously smooth modes are rep-

resented by higher frequencies, relative to the (coarser) mesh size. There are several variants of multigrid. One of them, the

V-cycle approach applied in this paper, is carried out iteratively, until a sufficiently coarse mesh is reached and the problem can

be solved directly. At this point, a procedure of prolongation and postsmoothing is carried out, until the original mesh size is

reached. What gives multigrid its power and popularity is the fact that for a large class of elliptic problems, the scheme converges

independently of the mesh size, yielding linear complexity.

We first describe a collective pointwise smoother. We then describe our Galerkin based prolongation and restriction operators

and comment on the coarse-grid solver. We provide an LFA for a simplified two-dimensional discretization by following the

presentation in Trottenberg et al.32 Motivated by the observation that effectiveness of the multigrid scheme depends primarily

on the volume change introduced by the transformation, we derive a stabilized scheme in Section 3.4. We demonstrate the

effectiveness of the stabilization scheme by experimentally determining smoothing factors and two-grid convergence factors

for a 2D test problem that requires large deformations with severe volume changes in Section 4.

3.1 Smoother

In hyperelastic image registration, a strong coupling between the components of 𝛿yk in Equation 9 is introduced by the area and

volume regularization; see also Equation 4. This difficulty becomes all the more pronounced as the Gauss–Newton iteration

evolves and the iterates typically introduce larger compression and expansion of volume. This is indeed a known problem in

volume-constrained image registration approaches.24 Consequently, decoupled pointwise smoothers like Jacobi-schemes that

are used for generic elliptic problems are expected to yield poor smoothing factors.32 This is also confirmed by our experiments.

Thus, it is necessary to consider more elaborate smoothing strategies.

We therefore consider a collective smoother.32 The idea is to include the coupling between the d components of the vector

field y ∶ Ω → Rd, but to ignore the coupling between different nodes. To this end, at each node, a d×d system is solved directly

(in parallel) to update the coefficients of the vector field. Thus, the arithmetic costs of this smoother grow linearly with respect

to the number of nodes in the mesh. Furthermore, because in our applications the spatial dimension, d, is either two or three,

the computational costs of applying the collective smoother are comparable to a Jacobi iteration.

3.2 Prolongation and restriction

We use a standard Galerkin coarsening strategy as described in Trottenberg et al.,32 which is compatible with our finite element

discretization. Specifically, because the quantities in Equation 9 relate to piecewise linear functions, prolongation is equivalent

to their evaluation on a finer mesh. This linear operation is summarized in a prolongation matrix and the restriction operator is

its transpose.
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3.3 Local fourier analysis and h-ellipticity

We now study the h-ellipticity of our finite element discretization of Equation 9 in two dimensions. The MATLAB script that

is used to carry out the numerical computations is available from the first author’s website.

For simplicity of presentation, we assume a rectangular domain Ω = (0, 1)2 and a uniform grid, with grid size h = h1 =
h2 = 1∕m. Examining Equation 4, we observe that the Hessian of the regularizer, namely, d2S length + d2S area (y) + d2S vol (y), is

symmetric positive semidefinite, with a null space comprised of constant translations in the coordinate directions. The operator

d2D(y) is data-dependent and positive semidefinite, but in general, it does not have constant translations in its null space.

Therefore, the fact that there is no intersection generates the effect that when combined together to form the full Hessian, H(y),
the eigenvalues are typically shifted further away from zero, compared to the Hessian of the regularizer. In the sequel, we will

therefore consider the worst case scenario corresponding to d2D(y) = 0.

We begin by deriving discrete operators and stencils. To perform smoothing analysis, we assume that all operators are defined

on an infinite grid and consider the case of constant coefficients; see Trottenberg et al.32,Chapter 4 To that end, we consider linear

transformations y(x) = Ax for A ∈ R2×2, which leads to ∇y(x) = A⊤.

Let us write the Hessian in a symmetric 2 × 2 block matrix fashion, that is,

H =
(

H11 H12

H12 H22

)
,

and introduce the shortcuts w = 𝜓 ′′(det A⊤) and c = [a22,−a12,−a21, a11] for the entries of the cofactor matrix. We then have

H11 =
(
𝛼1 + 𝛼3wc2

1

)
𝜕T

1
𝜕1 + 2𝛼3wc1c2 𝜕T

1
𝜕2 +

(
𝛼1 + 𝛼3wc2

2

)
𝜕T

2
𝜕2, (10)

H12 = 𝛼3w
(
c1c3 𝜕T

1
𝜕1 + (c2c3 + c1c4) 𝜕T

2
𝜕1 + c2c4𝜕

T
2
𝜕2

)
, (11)

H22 =
(
𝛼1 + 𝛼3wc2

3

)
𝜕T

1
𝜕1 + 2𝛼3wc3c4 𝜕T

1
𝜕2 +

(
𝛼1 + 𝛼3wc2

4

)
𝜕T

2
𝜕2. (12)

The stencils of the blocks in H can thus be derived as linear combinations of the stencils of the discrete analogues of 𝜕T
1
𝜕1,

𝜕T
2
𝜕1 = 𝜕T

1
𝜕2 and 𝜕T

2
𝜕2. Because the stencil at nodal grid points differs from the stencil at cell-centered grid points for the sym-

metric triangulation, we divide the discretized transformation into four parts, that is, y =
(
yn

1
, yc

1
, yn

2
, yc

2

)⊤
. Here, the superscripts

n and c are used to denote the nodal and cell-centered part, respectively. At nodal grid points, we then obtain the stencils

𝜕T
1
𝜕1 ∼ Dn,n

1,1
+ Dn,c

1,1
= 1

2h2

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
0 0 0 0 0
−1 0 4 0 −1
0 0 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎦
+ 1

2h2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 −1 0 −1 0
0 0 0 0 0
0 −1 0 −1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
,

𝜕T
2
𝜕2 ∼ (Dn,n

1,1
+ Dn,c

1,1
)⊤, 𝜕T

1
𝜕2 ∼ Dn,n

1,2
+ Dn,c

1,2
= 0 + 1

2h2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
.

In our discretization, each cell-centered point is connected to the four surrounding nodal points. Thus, the cell-centered stencils

can be written as 3 × 3 matrices

𝜕T
1
𝜕1 ∼ Dc,c

1,1
+ Dc,n

1,1
= 1

2h2

[
0 0 0
0 4 0
0 0 0

]
+ 1

2h2

[−1 0 −1
0 0 0
−1 0 −1

]
,

𝜕T
2
𝜕2 ∼ (Dc,c

1,1
+ Dc,n

1,1
)⊤, 𝜕T

1
𝜕2 ∼ Dc,c

1,2
+ Dc,n

1,2
= 0 + 1

2h2

[−1 0 1
0 0 0
1 0 −1

]
.

Having established notation and the various discrete operators and stencils, we are now ready to perform LFA. The fundamental

quantities in LFA are complex grid functions
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𝜑(𝜃, x) = eı𝜃x∕h, (13)

where ı denotes the imaginary unit, x a spatial position, 𝜃 ∈ Σ a frequency with Σ = [−𝜋∕2, 3𝜋∕2)2 denoting the continuous

frequency domain that is partitioned into low and high frequencies

Σlow = [−𝜋∕2, 𝜋∕2)2 and Σhigh = Σ∖Σlow.

Applying the discretized differential operators to the grid function 𝜑 yields the Fourier symbols

Ln,n[𝜕T
1
𝜕1](𝜃) = 2 − cos(𝜃1) + cos(𝜃2),

Ln,c[𝜕T
1
𝜕1](𝜃) = −2 cos(𝜃1∕2) cos(𝜃2∕2) = Lc,n[𝜕T

1
𝜕1](𝜃)

Lc,c[𝜕T
1
𝜕1](𝜃) = 2,

Ln,n[𝜕T
2
𝜕2](𝜃) = 2 + cos(𝜃1) − cos(𝜃2),

Ln,c[𝜕T
2
𝜕2](𝜃) = −2 cos(𝜃1∕2) cos(𝜃2∕2) = Lc,n[𝜕T

2
𝜕2](𝜃)

Lc,c[𝜕T
2
𝜕2](𝜃) = 2,

Ln,n[𝜕T
2
𝜕1](𝜃) = 0 = Lc,c[𝜕T

2
𝜕1](𝜃),

Ln,c[𝜕T
2
𝜕1](𝜃) = 2 sin(𝜃1∕2) sin(𝜃2∕2) = Ln,c[𝜕T

2
𝜕1](𝜃).

These intermediate quantities are used to compute the h-ellipticity of the Hessian, H, which provides a quantitative criterion

for the existence of pointwise smoothers for a given discrete operator; see Trottenberg et al.32 for details. We obtain the Fourier

symbol of the Hessian by combining the above symbols and Equations 10–12 to

The h-ellipticity of the operator H then is a qualitative measure for the sensitivity of H to high frequencies32 and is given by,

E(H) = min{| det L[H](𝜃)| ∶ 𝜃 ∈ Σhigh}
max{| det L[H](𝜃)| ∶ 𝜃 ∈ Σ}

∈ [0, 1].

A small value of E(H) indicates that there are high-frequency components in the null space of the discretized operator, in which

case any multigrid scheme is expected to be ineffective. Thus, it is in general desirable to have E(H) uniformly bounded away

from 0 from below.

By design of our hyperelastic regularizer, the volume term grows to infinity as det∇y → 0, namely, when the transformation

introduces large compressions. This is realized by the choice of the penalty function𝜓 in (3), which is also singular at the origin.

Because 𝜓 ′′ contributes a weighting to d2S vol in the Hessian as per Equation 8, and is also singular at the origin, we expect

numerical difficulties for large volume compressions. To verify this, we compute the h-ellipticity for a family of compressions

yc(x) = cx where we vary c ∈ (0, 1] for 10 equidistantly spaced points. Keeping the regularization parameter 𝛼3 fixed, we vary

the weighting of the diffusion term 𝛼1 ∈ [10−1, 105] for 41 logarithmically spaced points. The frequency space is partitioned

equidistantly into [128, 128] cells. Figure 2 visualizes the h-ellipticity E(H(yc), 𝛼1) in dependence of the compression factor

c and regularization parameter 𝛼1. As expected, two trends are clearly visible: first, for large compressions, that is, c ≪ 1,

h-ellipticity rapidly approaches 0. Second, h-ellipticity is larger for larger weights 𝛼1. This indicates the existence of potentially

effective smoothing schemes when the compression rate is limited and thus the effective weight on the volume term, 𝛼3 · 𝜓 ′′,

is not considerably larger than the weight on the length term, 𝛼1.

3.4 Stabilizing the Hessian

The experiment described in Section 3.3 suggests that the finite element discretization is h-elliptic if the contribution of the

volume regularization is not too dominant. In our experience the weighting of the volume term can vary dramatically from

tetrahedron to tetrahedron depending on the volume changes. While in most applications volume changes can be limited to a

reasonable range, there may be a small number of outliers with extreme volume change affecting the scaling of the Hessian. To

improve the robustness of the multigrid scheme in these cases, we limit the effective weight by locally thresholding the second



RUTHOTTO ET AL. 9 of 14

FIGURE 2 Results of our local Fourier analysis. Predictions of h-ellipticity are computed for mappings yc(x) = cx where c ⩽ 1 and regularization

parameters for the diffusion term between 0.1 and 106. As expected, for given 𝛼1 and increasing compression (decreasing the value of c) the measure of

h-ellipticity converges to zero. Thus, the effectiveness of multigrid schemes for our discretization relies on a proper parameter choice

derivative of the volume penalty function in Equation 8

𝜓 ′′(x) = min{𝜓 ′′(x), s · 𝛼1∕𝛼3}, (14)

where s is a positive scalar strictly smaller than one. We denote the stabilized Hessian by H stab .

In principle, the thresholding degrades the quality of the approximation of the Hessian in our Gauss–Newton scheme, which

may result in a larger number of outer iterations. However, each such outer iteration is considerably cheaper in most cases, as

the multigrid solver is more effective. Furthermore, it is important to stress that only the Hessian of the volume penalty function

is altered, but not its value or gradient. Thus, transformations computed using our numerical scheme will have the features

guaranteed by the theory and, most importantly, will be invertible.

4 NUMERICAL RESULTS

In this section, we illustrate the effectiveness of the proposed multigrid scheme based on 2D and 3D problems. The 2D problem is

the well-known one of transforming a disc to a C-shaped object, proposed by Christensen33 and requires a large deformation with

large range of compression and expansion. As a large-scale 3D problem, we consider the registration of computer tomography

(CT) images of a human knee in straight and bent pose; image courtesy of T. Netsch, Philips Research Hamburg, Germany.

The numerical experiments are performed using the publicly available image registration toolbox flexible algorithms for

image registration.6 In particular, we use the implementation of the Gauss–Newton optimization, which stops if the change in

the objective function, the norm of the update, and the norm of the gradient are all sufficiently small at the current iteration.

The tolerances for these three conditions are constant in all experiments.

Example 1. To illustrate the challenging effect of large compressions and expansions, we first consider the 2D-test problem

of transforming a disc to a C-shaped object as proposed by Christensen33; see Figure 3. We use the SSD distance measure

(Equation 2) and perform a multilevel registration using four levels with base meshes of size 162, 322, 622, and 1282. We use

both a direct solver and the proposed multigrid PCG scheme with one presmoothing and one postsmoothing step and a stabilized

Hessian (s = 100 in Equation 14). Using the direct method, we compute a transformation y dir by performing 42, 5, 4, and 9

iterations on the respective levels, which reduces the distance measure from 100% to 0.31%. A comparable number of iterations

is required for the proposed multigrid method with stabilized Hessian (40, 8, 5, and 5) yielding a transformation ystab that reduces

the image distance to 0.37%. Both transformations are almost identical as indicated by an relative error of

RE(ydir, ystab) = ‖ydir − ystab‖∕‖ydir‖ = 0.0057.

Figure 3 shows visualizations of the initial template and reference image, and the computed transformation, which is—as

guaranteed by our model—invertible (minx det∇ydir(x) = 0.41).

We test the effects of the stabilization proposed in Section 3.4 on the performance of the collective smoother and a two-grid

scheme on the coarsest level as follows. At each Gauss–Newton iteration and for each mode in the discretized Fourier domain,

we construct a grid function as described in Section 3 (see, for example, Equation 13), assign it as the right-hand side, perform

one relaxation sweep as well as a two-grid cycle with one presmoothing and one postsmoothing step and a damping factor of
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FIGURE 3 Impact of stabilization scheme exemplified for a 2D-test problem of transforming a disc to a C-shaped object as proposed by Christensen.33 The

Hessian of the registration function is considered for a transformation that introduces large volume changes, det∇y ∈ [0.05, 3.20]; see left column. The second

column shows the values of the volume penalty function on a logarithmic intensity scale at each triangle. The first row shows the original values that vary

initially between more than 9 orders of magnitude whereas the second column shows the thresholded and therefore stabilized coefficients. The same color

axis is used in both plots to enable comparison. The third and fourth column show estimated smoothing factors and two-grid convergence factors, respectively

2∕3. Finally, we compute the relative reductions of the norm of the residuals. In the first row of Figure 3, we show the estimated

smoothing factors for the 21st Gauss–Newton iteration, where the compression is extremely large (minx det∇y(x) = 0.14). When

using the original Hessian in Equation 4, the estimated smoothing factor is 1.03, which means that the collective smoother does

not reduce the residual for all high frequencies. Using the proposed stabilization of the Hessian the smoothing factor is reduced

to 0.79. As expected the stabilization scheme also improves the two-grid convergence as illustrated for the same outer iteration

in the bottom row of Figure 3. Performing a two grid cycle using the original Hessian the largest residual norm for a high

frequency right-hand side is 1.26 whereas using the stabilized Hessian the residual norm is below 0.42 for all high frequencies.

Example 2. As an example of a large-scale 3D registration problem, we consider the registration of CT images of a human knee

in straight and bent position. The image data is given on a 128 × 64 × 128 grid and a smooth representation is obtained using

the cubic B-spline interpolation described by Modersitzki.6 For motion estimation, we use a three-step multilevel strategy. The

transformations are discretized on tetrahedral meshes obtained from base meshes with 24×16×24, 48×32×48, and 96×64×96

cells as described in Section 2.3. On the coarsest level, a rigid registration is performed to correct for translations and rotations.

To estimate the bend, we then perform hyperelastic image registration and compare the proposed multigrid preconditioner

TABLE 1 Convergence history for 3D bending knee example. For three discretization levels, we show the reduction of the objective function J in
Equation 1, the number of PCG iterations and the relative residuals for Jacobi-PCG, and multigrid-PCG with the original and stabilized Hessian

Jacobi-PCG Multigrid-PCG Multigrid MG-PCG
GNiter J #iter relres J #iter relres J #iter relres

level 4 -1 8.7e7 8.7e7 8.7e7

0 1.3e7 1.3e7 1.3e7

1 6.0e6 43 9.63e-3 6.0e6 3 9.99e-3 6.0e6 3 9.99e-3

2 5.4e6 77 9.67e-3 5.4e6 4 5.54e-3 5.4e6 4 4.67e-3

3 5.2e6 69 1.00e-2 5.2e6 4 3.98e-3 5.2e6 4 3.00e-3

4 5.2e6 66 9.72e-3 5.2e6 4 2.59e-3 5.2e6 4 2.62e-3

level 5 -1 1.2e8 1.2e8 1.2e8

0 1.0e7 1.0e7 1.0e7

1 8.0e6 35 9.46e-3 8.0e6 3 7.32e-3 8.0e6 3 7.32e-3

2 7.2e6 48 9.99e-3 7.2e6 3 8.13e-3 7.2e6 3 8.14e-3

3 6.6e6 62 9.64e-3 6.6e6 5 8.11e-3 6.6e6 4 3.92e-3

4 6.5e6 92 9.84e-3 6.5e6 9 5.61e-3 6.5e6 4 4.88e-3

5 6.4e6 85 9.50e-3 6.4e6 9 8.23e-3 6.4e6 4 3.94e-3

level 6 -1 1.5e8 1.5e8 1.5e8

0 9.4e6 9.4e6 9.4e6

1 8.2e6 43 9.64e-3 8.2e6 3 8.07e-3 8.2e6 3 8.01e-3

2 8.1e6 98 9.35e-3 8.0e6 8 7.03e-3 8.0e6 4 6.36e-3
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using three presmoothing and two postsmoothing steps and a damping factor of 2∕3 with original and stabilized Hessian to

a Jacobi-PCG. The number of coarsening steps in the multigrid schemes are three, four, and five on the respective levels and

the coarsest mesh consists of [3, 2, 3] cells. The thresholding factor in Equation 14 was set to s = 50. The same regularization

parameters 𝛼1 = 100, 𝛼2 = 1, 𝛼3 = 10 are used in all experiments. The parameters are determined manually by a rough search

of the parameter space. To this end, we fix their ratios, vary only the order of magnitude of the overall regularization, and solve

the problem approximately using only the first two levels to speed up computations. We then select a parameter that is small

enough to yield an adequate reduction of the distance term while keeping the transformation smooth, that is, keeping the value

of the regularization term and the range of the Jacobian determinant small.

The transformations computed with the multigrid schemes were visually and quantitatively almost identical to those computed

with the Jacobi preconditioner:

RE(yPCG, yMG(H)) = 6.3 · 10−4 and RE(yPCG, yMG(Hstab)) = 6.3 · 10−4.

Also the Jacobian determinant was in about the same range between 0.1 and 6.9. We visualize the registration results obtained

using the stabilized multigrid scheme in Figure 4.

The convergence history for the three schemes including the number of CG iterations performed in each Gauss–Newton

step is given in Table 1. It can be seen that all preconditioners led in our case to similar reductions of the objective functions

and (apart from the stabilized multigrid preconditioner on level 5) needed an identical number of outer iterations to converge.

FIGURE 4 Result of 3D hyperelastic registration of CT data of a straight and bent knee, image data from T. Netsch, Philips Research Hamburg, Germany.

The top row shows slice projections and the bottom row visualizes the initial and final absolute differences
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FIGURE 5 Convergence of preconditioned conjugate gradient solver with different preconditioners at the final outer iteration of the large-scale 3D

registration problem. MG-CG = multigrid preconditioned conjugate gradient; PCG = preconditioned conjugate gradient

While the performance of the Jacobi-preconditioner varies considerably, and the performance of the multigrid preconditioner

moderately, the stabilization scheme is highly effective. Most notably, the number of outer iterations is not increased severely

due to the thresholding and that the approximate solution leads to a comparable reduction in the distance measure (4.07%
versus 4.12%).

A comparison of the convergence of the three preconditioning schemes is provided in Figure 5. We perform 20 iterations of a

PCG scheme for the system in Equation 9 at the final outer iteration on the finest discretization level (about 9 million unknowns).

As mentioned above, this iterate introduced a large volume change. It can be seen in Figure 5 that the Jacobi-PCG scheme fails

to reduce the relative residual. Both multigrid preconditioned schemes are highly effective, but the stabilized scheme (which

entails approximately the same computational cost) is superior to the unstabilized one.

5 SUMMARY AND CONCLUDING REMARKS

Regularization functionals based on hyperelasticity are a powerful option for applications of image registration entailing large

nonlinear deformations. As demonstrated in this paper, they do, however, introduce several computational challenges. To reduce

the computational costs associated with determining a search direction, we apply a stabilized multigrid scheme as a precon-

ditioner for the large and sparse Hessian systems that arise throughout the Gauss–Newton iteration. Specifically, we have

developed a finite element discretization of the variational problem and applied a Galerkin-based multigrid approach using a

collective smoother that relaxes the components of the error individually at each node. We have provided an h-ellipticity analy-

sis, which reveals challenges related to the presence of large compression or expansion factors. On the basis of this observation,

we derived a stabilized scheme that limits the contribution of the volume regularizer to the Hessian and does not increase com-

putational costs. The stabilized Hessian can be applied effectively using the proposed multigrid scheme, and our experiments

show that the thresholding does not affect the solution to the hyperelastic registration problem.

To illustrate the effectiveness of our algorithm, we provide numerical results for two-dimensional and three-dimensional

problems. The 2D problem is highly ill-conditioned and introduces large volume changes; the 3D example is a registration

example of CT images of a human knee in straight and bent position with about 9 million degrees of freedom. As shown in our

numerical experiments, the novel scheme is highly accurate and effective.

From a linear algebra point of view, we have identified and addressed challenges arising for highly nonlinear transformations.

Our h-ellipticity analysis shows that the Hessian systems are expected to be increasingly ill-conditioned as the Gauss–Newton

iteration progresses and the current transformation introduces larger volume changes. This is due to the dominance of the Hessian

associated to the volume regularization, which has a high-dimensional null space. This challenge is addressed by thresholding

the coefficients. Our 2D example shows that this stabilization strategy effectively deals with the ill-conditioning; see Figure 3.

The coefficients in the Hessian can vary considerably in space and thus operator-induced multigrid schemes32,34 are expected

to be more effective. However, operator-induced multigrid schemes are in general considerably more expensive than the

Galerkin-coarsening approach presented here.
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As our findings suggest, the effectiveness of the smoother most importantly depends on the Jacobian determinant. In future

work, we will explore spatial adaptive smoothing strategies that account for this criterion. One idea is to perform Jacobi iterations

in regions with smaller and more involving smoothing steps in regions with large volume changes. Another issue that may

be addressed is the choice of presmoothing and postsmoothing steps. In our numerical experiments, choices are motivated by

practical experiments. Deriving guidelines further informed by analytical considerations would be very beneficial in practice.

Another item for future work is the full-scale parallel implementation of the multigrid scheme and comparisons to other subspace

correction methods for nonlinear PDEs.35
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