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An efficient linear programming solver for optimal filter synthesis
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SUMMARY

We consider the problem of l∞ optimal deconvolution arising in high data-rate communication between
integrated circuits. The optimal deconvolver can be found by solving a linear program for which we use
Mehrotra’s interior-point approach. The critical step is solving the linear system for the normal equations
in each iteration. We show that this linear system has a special block structure that can be exploited to
obtain a fast solution technique whose overall computational cost depends mostly on the number of design
variables, and only linearly on the number of constraints. Numerical experiments validate our findings
and illustrate the merits of our approach. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Integrated circuits (‘chips’) have improved dramatically in both speed and density for several
decades. The printed circuit board technology that provides connections between different chips,
on the other hand, has achieved only modest improvements. To provide adequate inter-chip com-
munication performance, designers rely on a variety of circuit design techniques to compensate
for the limitations of the off-chip interconnect. One of the most important of these techniques is
equalization.
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Figure 1. Block diagram of an equalized transmission channel (from [1, p. 364]).

The basic idea behind equalization is simple: the process by which off-chip interconnect degrades
digital signal integrity is essentially a linear convolution; an equalization filter is designed to have
a response that approximates the inverse of the response of the interconnect. Figure 1 shows a
typical application of equalization for high-speed, digital interconnect.

We refer to the collection of wires, connectors, etc. that convey signals from the transmitter
to the receiver as the medium. Often this collection will have more than one wire to provide
enough total bandwidth. We refer to each wire as a line. These lines are coupled through electric
and magnetic fields. This coupling creates crosstalk where signals sent on one line interfere with
signals sent on other lines. The velocity at which signals propagate along the lines depends on their
frequencies. This creates dispersion where data sent at one time interferes with data sent at other
times. Furthermore, attenuation over a line depends strongly on frequency, and reflections occur
due to imperfect impedance matching at connectors, vias, and other discontinuities in the line.
These processes are linear—they can be expressed as two-dimensional convolutions: one dimension
is space, interference between different wires; and the other is time, interference between values
sent at different times. An equalization filter performs a deconvolution to enable transmission of
data at greater rates than would be possible on the bus by itself.

In current practice, the highest bit rates per wire are achieved by serial links using various forms
of equalization filters (e.g. [2]). These serial links require a significant amount of power and chip
area. Thus, designs requiring very large bandwidths such as high-performance microprocessors use
buses with 64–256 or more lines. Equalization has been used for buses (e.g. [3]), but in general
equalization for buses has been less aggressive than that for serial links. Our current work enables
the synthesis of optimal equalization filter for all of these designs. In addition to enabling higher
performance designs, our methods enable designers to determine the limits of various approaches
and to better understand the trade-offs involved.

We refer to the combination of the medium and the filters as a channel. If we could implement
a filter whose response is the exact inverse of that of the medium, then data could be conveyed
with perfect fidelity at arbitrarily high rates. However, limitations of power and switching rates of
the filter force the use of approximate filters. The equalizer synthesis problem is to determine the
optimal equalization filter under constraints of filter size, speed, and power consumption.

To solve the problem, one can seek to minimize the norm of the difference between the received
signal and a delayed version of the transmitted signal. Link designers have often used the l2 norm
for this because the problem is straightforward to formulate and solve. Moreover, adaptive schemes
such as sign–sign least mean squares (SS-LMS) are efficient and require minimal hardware support.
For these reasons, l2-based approaches are commonly used to design equalizers for telephone
subscriber systems [4], wireless communication [5, Chapter 8] and more recently for high-speed
serial links [6, 7].

High-speed digital communication requires extremely low bit error rates (typically less than
10−15). In this case, the worst-case error is more relevant than average-case error (see Section 2).
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Thus, the commonly used specifications for digital signal integrity such as eye masks and eye
diagrams are worst-case measures. This leads to an l∞-based optimization approach that directly
optimizes eye masks, and achieves better signal integrity than l2 methods. In [8], the advantages
of the l∞ approach over l2 are demonstrated for a wide range of filter configurations.

In this paper, we show that our l∞ formulation for equalization filter synthesis can be solved
by exploiting the special structure of the linear systems that arise during the iterations of an
interior-point linear programming solver. The associated matrices contain a large block that can be
expressed as the sum of a diagonal matrix and a low rank block diagonal matrix. This mathematical
structure allows for fast direct inversion. We express the matrix of the normal equations as a 2× 2
block matrix, and use the Sherman–Morrison–Woodbury formula to obtain a factorization-free
formula for the inverse of the (1,1) block. This is followed by forming the Schur complement in
an efficient manner, taking into account the block structure of the matrices involved. The number
of constraints in a linear programming formulation of l∞ optimal deconvolution is large; our
algorithm allows for their elimination with minimal computational overhead. Hence, the overall
cost of the linear system solver in most configurations is cubic in the number of design variables
(which is relatively small), and is merely linearly dependent on the number of constraints (which
can be quite large). For example, for a typical 32-bit wide bus with an equalizer filter length of
4, the number of design variables is only 128 while the number of constraints could be tens of
thousands depending on other design parameters.

Methods that exploit the sparsity structure of the matrix in the context of interior-point methods
have been proposed for a variety of applications [9–11] and have shown to be very effective.
The approach we are proposing shows that substantial savings can be made for an application in
the field of high-speed digital interconnect, by taking full advantage of the special structure of
the underlying matrices. Our solution procedure is fast, memory efficient, and stable. Because the
structure that we exploit is rooted in the l∞ formulation, our approach is likely to be applicable
to l∞ deconvolution problems arising in other applications as well.

The remainder of this paper is structured as follows. In Section 2, we describe the equalization
filter synthesis problem and formulate it as a linear program. In Section 3, we present our linear
system solver, discuss the computational work involved, and show that the decomposition that the
solver is based upon does not significantly affect the conditioning of the problem. We give a short
example in Section 4 and draw some conclusions in Section 5.

2. EQUALIZATION AND THE LINEAR PROGRAM

For digital communication, ‘eye diagrams’ (so named because of their shape) are commonly used
to capture signal integrity requirements. As shown in Figure 2, an eye diagram is obtained by
overlaying the received signal over multiple symbol periods for a large number of different input
patterns. Ideally, all possible input patterns would be considered. The eye is defined by the highest
and lowest levels received at each time point over the bit period. The intuition is that if a channel
conveys discrete values, then the transmitted data will be received without error if each received
value is close enough to its target value. From the linearity of the channel, it is sufficient to
consider only the response to the highest and lowest possible values on each line of the medium.
The gap between the highest allowed low signal and the lowest allowed high signal is referred to
as the ‘eye height’. Likewise, the time interval in which high and low values are distinct is referred
to as the eye width. Simplistically, increasing eye height or eye width corresponds to improving
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Figure 2. An eye diagram.
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Figure 3. A parameterized eye mask.

overall signal integrity. We can also include constraints to set the maximum value of a logically
high signal or the minimum value of a logically low signal. Such constraints allow our approach
to be generalized to interconnects that use multi-level signalling, i.e. three or more signal levels
per symbol transmitted. Overshoot constraints can also be used to prevent operating conditions
that would damage or degrade the hardware. In all these cases, the signal integrity is determined
by the extremal signals. Thus, eye masks are an l∞ measure of signal integrity.

Eye masks can be parameterized, for example, by making the height required at each sample time
a linear function of a parameter, � as shown in Figure 3. In this example, minimizing � optimizes
signal integrity. In this paper, we assume that overshoot and undershoot constraints are symmetrical
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about zero. This simplifies the presentation; however, the more general formulation with asymmetric
constraints can be solved with the same efficiency and robustness as the symmetric case.

As noted above, the response of inter-chip interconnect is linear in the inputs; it can be expressed
as a convolution of the inputs applied to the interconnect with the impulse response of the medium.
Thus, equalization filter synthesis is a deconvolution problem constrained by the size, speed, and
power limitations of the filter. The objective function is based on extremal responses; thus, this is
a constrained, l∞, deconvolution problem.

Equalization filters can be used at the input of the medium, the output of the medium, or in
combination. For simplicity, we only consider equalizers that are at the input of the medium in this
paper. Such equalizers are called pre-equalizers. Filter synthesis for more general configurations
are considered in [12, 13]. For high-speed digital interconnect, these filters must operate at very
high data rates; thus, they must be simple. In practice, this means that equalization filters are FIR
(finite impulse response [14]): the output of the filter is a weighted sum of the inputs.

We make two more observations about typical, high-speed links before we formulate the op-
timization problem. First, we assume that the medium is linear and time invariant. Thus, the
response to an arbitrary input on a particular line can be derived from the response to a pulse
on that line. Second, we recognize that the response of the medium can be distinct for each line
due to variations in design, manufacturing, geometrical constraints, etc. Thus, we do not assume a
response that is invariant under spatial shifts. We revisit these assumptions of time-shift invariance
and space-shift non-invariance in Section 5.

Suppose an l2 formulation is sought. In the absence of additive noise, if all symbols are equally
likely, then minimizing the mean square error of the received signal is the same as minimizing the
dispersion and crosstalk components of the channel’s impulse response. This is called zero-forcing
[5, Chapter 9]:

fZF = argmin
f

{‖H f − e�‖2} (1)

where f ranges over all possible vectors of filter coefficients, � is the delay of the channel and e�
denotes column � of the identity matrix.

Alternatively, we can achieve l∞ optimality and formulate optimal filter synthesis as a linear
programming problem [12]. The output of the medium is the convolution of the impulse response
of the medium with the input signal. We can write this as a

out = H in (2)

where in is a vector of input values with an element for each line of the medium and each input
time; out is a vector of medium output values, and H is the pulse response of the medium. Ideally,
the response of the channel would be a delayed version of the input, outideal = D in, where D is a
delay matrix (a matrix with ones along the off-diagonal corresponding to the desired delay, and
zeros everywhere else). Let F be the matrix for convolving the input to the channel with the
pre-equalizing filter. The l∞ optimal filter synthesis problem is

Fopt = argmin
F

max
in

‖Din − HF in‖∞ (3)

We note that the response is linear in the filter coefficients, and Equation (3) can be rewritten
[13, Chapter 3.4.1] as

fopt = argmin
f

max
IN

‖Din − H IN f ‖∞ (4)
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where f is a vector whose elements are the coefficients of the filter, and IN is a matrix for
convolving the filter with the input values, in. In general, solving linear programs is computationally
challenging and an efficient solution method should exploit the specific properties of the matrices
involved.

The key observation for formulating our deconvolution problem as a linear program is that the
worst-case error occurs when each input takes on an extremal value from its domain. Because
the system is linear, we can assume that these extremal values are +1 and −1. Furthermore, we
can compute the response of the filter and medium to individual inputs of +1 on each line. The
worst-case response for any line and output time is then obtained by computing the sum of the
absolute values of the errors when +1 inputs are applied. Thus, our formulation for deconvolution
consists of three parts:

1. Compute the responses to +1 inputs as a function of the filter coefficients.
2. Compute the absolute values of the error terms.
3. Compute the sum of the absolute values of the error terms for each output line and each

output time.

These steps are described in more detail in [12, 13].
The computations listed above can be expressed conveniently as a linear program for l∞ optimal

deconvolution. Let wbus be the number of lines in the bus, nbus be the length of the impulse response
of the medium (in bit times), and nfir be the length of the impulse response of the filter (in bit
times). Let kfir be the number of filter coefficients.

As noted above, an eye mask may have several sample points for each bit period. Let kmask be
the number of sample points in the eye mask. To determine the response at each sample point, we
convolve the input, filter impulse response, and medium impulse response for each sample point.
Thus, an input pulse with a width of one bit time on one line contributes to the outputs each of the
wbus lines at (nbus + nfir + 1)kmask − 1 different sample times. For convenience, we round it up to
be (nbus + nfir + 1)kmask. We construct G, a wbuskmask(nbus + nfir + 1) × kfir matrix such that G f
gives the output on each line at each sample time of the response to a separate, single-bit pulse
on each line. Matrix G is related to the H matrix from Equation (4) by

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H IN1

H IN2

...

H INwbus

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where IN1 is an input with a pulse at time 0 on line 1 and zeros for all other lines and all other
times, and likewise for the other IN j ’s. Due to the linearity of the bus, these responses provide
a basis from which we can determine the response to any input pattern. In particular, we can
determine the worst-case input pattern and the responses that it generates.

We partition the rows of G to form two matrices, Gu and Gd . Matrix Gu computes the
‘undisturbed’ response of the channel, the output of the medium at the desired delay in response to
a single-bit pulse on the corresponding line of the input. Likewise, Gd computes the disturbances,
the output of the medium on all other lines and for the same line at all other times. With this
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partitioning, our linear program for l∞ optimal filter synthesis is

min
f,d,�

�

s.t.

⎡⎢⎢⎢⎢⎣
−I Gd 0

−I −Gd 0

W Gu −a

W −Gu −a

⎤⎥⎥⎥⎥⎦
⎡⎢⎣
d

f

�

⎤⎥⎦�

⎡⎢⎢⎢⎢⎣
0

0

1

−1

⎤⎥⎥⎥⎥⎦
(6)

In the first two rows of constraints Gd f computes the disturbances, the coupling between lines
and responses at times other than the desired delay. Requiring d to be greater than both these
responses and their negation sets the components of d (at optimality) to the absolute value of
these disturbance terms. The next two rows compute the overshoot and undershoot, respectively.
In particular, Gu f computes the desired (i.e. undisturbed) responses of the channel, and matrix W
computes the sum of the disturbance terms that affect the output to determine the worst-case
disturbance. We describe the detailed structure of W later in this section (see Equation (9)). Note
that the last row, Wd − Gu f � − 1+ a�, computes the worst-case undershoot by determining the
highest possible value at each sample time for a logical low signal. By the linearity of the filter
and channel and our assumption that logical low and high values are −1 and +1, respectively, this
is equivalent to computing the lowest possible value for a logically high signal. The vector a sets
the relative threshold values at each sample point as depicted in Figure 3.

In practice, we also include constraints to limit the maximum output of the filter. These constraints
have the same form as those shown here, but, in practice, there are far fewer of them. Thus, we
focus on the simple form for the linear program from Equation (6). The approach that we present
here applies to the more general version [12], and these generalizations do not affect the overall
complexity or stability of our algorithm.

The sizes of the vectors and matrices in this problem depend on wbus, nbus, nfir, kfir and kmask
as defined above. Matrix Gu computes one output for each line, the output at the desired bit time
in response to a pulse on the corresponding input. Thus, Gu has wbuskmask rows. Likewise, Gu has
kfir columns, one for each coefficient of the filter. Matrix Gd also has kfir columns, and one row for
each disturbance term. Each line may have distinct electrical properties; any line can couple to any
other line; and the coupling coefficients are not necessarily symmetric. Thus, Gd computes distinct
coupling terms for each pair of lines. With these assumptions, the number of disturbances is

kdisturb = w2
buskmasknchannel (7)

where

nchannel = (nbus + nfir)kmask − 1≈ (nbus + nfir)kmask (8)

is the length of the impulse response of the channel in eye-mask sample times. For simplicity, we
use the approximation nchannel ≈ (nbus + nfir)kmask in the remainder of this presentation.

To describe the structure ofGu andGd , we return to matrixG. Row iwbusnchannelkmask+ jwbus+q
of G computes the output of the medium on line i at sample-time j in response to an input to the
filter on line q at bit-time 0. Note that a filter coefficient maps a filter input at one time to a filter
output (i.e. input of the medium) at another time. Thus, on average only a fraction of 1/wbus of
the filter coefficients compute responses from inputs on any particular line (e.g. line q). It follows
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then that roughly a fraction of 1/wbus of the coefficients of each row are non-zero. This reasoning
applies to all rows of G; therefore, matrices Gu and Gd are relatively sparse: a fraction of ∼1/wbus
of their elements are non-zero.

Matrix W computes the sum of the disturbances. It is wbuskmask × kdisturb and has the following
structure:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1 0

1 · · · 1
1 · · · 1

. . .

0 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

More formally,

wi, j =
{
1 if (i − 1)kblock< j�ikblock

0 otherwise
(10)

where kblock = kdisturb/(wbuskmask) is the length of each non-overlapping stripe of 1’s in W . As
shown in the next section, it is this structure that allows for an efficient linear system solver for
this l∞ optimization problem.

The complete linear program has kfir+kdisturb+1 variables, and 2(wbuskmask+kdisturb) constraints.
As a typical example, consider synthesizing an equalizer for a bus with 32 wires (wbus = 32), a
bus impulse response that is 10 bits long (nbus = 10). Assume that the filter for each wire considers
the value on that wire and its two nearest neighbors in each direction, and that the filter has an
impulse response that is three bit periods long (nfir = 3). Assume that there are eight sample points
in the eye mask (kmask = 8). For this example, the number for filter coefficients, kfir, (i.e. the
number of design variables) is 462, and the number of disturbance terms, kdisturb is 106 496. The
linear program has 106 959 variables and 213 504 constraints. The size of the linear program is
dominated by the calculations of the disturbance terms; the actual number of filter coefficients is
relatively insignificant. This property of the linear programming approach makes a direct solution
of the linear program much less efficient than approximating the solution with least-squares
optimization. Fortunately, the structure of the constraint matrix can be exploited to obtain a linear
program solver that is competitive with least-squares techniques while retaining the advantages of
solving the actual, l∞ optimization problem. The next section presents this approach in detail. For
notational convenience, in the sequel the sizes of the matrices involved will be defined by the five
parameters:

n ≡ kdisturb: the number of ‘disturbances’ to be mitigated by the deconvolution.
m ≡ wbuskmask: the number of points at which the deconvolution quality is specified.
k ≡ kfir: the number of FIR coefficients in the deconvolver.
�≡ kblock: the length of the strips of W ; in other words, the number of disturbances accumulated
per specification point. Note that �= n/m.

�≡ 1/wbus: the relative density of Gu and Gd , i.e. the ratio of their non-zero elements to the
total number of elements.

For the example above, n = 106 496, m = 256, �= 416, and � = 1
32 .
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3. AN EFFICIENT LINEAR SYSTEM SOLVER

Let us denote the constraint matrix in Equation (6) by A:

A=

⎡⎢⎢⎢⎢⎣
−I Gd 0

−I −Gd 0

W Gu −a

W −Gu −a

⎤⎥⎥⎥⎥⎦ (11)

Here, the identity matrix I is n × n, W is m × n, and Gu and Gd are m × k and n × k, respectively.
The two zero vectors are of length n, and a is of length m. Matrix A is thus of size (2n +
2m) × (n + k + 1).

For solving the problem, we will use an interior-point method. A nonlinear function is defined,
whose roots coincide with the first-order optimality conditions (also known as KKT conditions).
Newton steps are then taken to find the roots of this function, where necessary non-negativity
constraints are imposed. A detailed description of the theory of interior-point methods for linear
and quadratic programming can be found, for example, in [15–17].

In practice, applying the Newton method in its basic form does not always yield convergence. A
possible way to overcome this is by performing predictor and corrector solves at each step to ensure
sufficient progress toward the optimal point. After a Newton step is computed, another system
with a different right-hand side is set up. The adjustment corresponds to correcting the iterates so
that they progress along what is known as the central path. Let x = [d, f, �] (in transposed form).
Then, in each Newton step of Mehrotra’a algorithm, we solve a linear system corresponding to
the normal equations:

AT�Ax = y (12)

where � is a positive diagonal matrix whose elements are updated in each LP iteration. Note that
this formulation is based on forming the normal equations for the dual problem; see (6).

This methodology was introduced in [18] and has gained much popularity among practitioners,
mainly due to the rapid convergence that has been observed in various implementations of the
algorithm [19, 20]. As is noted in [19], Mehrotra’s algorithm almost always improves the per-
formance of the primal–dual algorithm, possibly in a dramatic manner when the problem size is
large.

The number of variables in the normal equations grows quadratically with the width of the
medium. For large problems, a general-purpose solver that does not take advantage of the structure
of the matrix may be computationally costly and impractical. We present below a direct solution
method that exploits the special structure of the linear system and proves to be extremely efficient.

Based on the sizes of the matrices, we split the diagonal matrix � as follows:

� =

⎡⎢⎢⎢⎢⎣
�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

⎤⎥⎥⎥⎥⎦ (13)

where �1 and �2 are n × n and �3 and �4 are m ×m.
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Figure 4. Sparsity pattern of the constraint matrix A.

Given that the last column of A is really just a vector, and that some of its blocks are similar
in structure to one another, it is convenient to represent the matrix in a more compact form. To
this end, define

Ĝd =[Gd 0], Ĝu,−a = [Gu − a], Ĝu,a =[Gu + a] (14)

Matrix A can now be written as

A=

⎡⎢⎢⎢⎢⎢⎣
−I Ĝd

−I −Ĝd

W Ĝu,−a

W −Ĝu,a

⎤⎥⎥⎥⎥⎥⎦ (15)

Figure 4 illustrates of the sparsity structure of this matrix.
The matrix of the normal equations can now be written as

AT�A=
[
M1 M2

MT
2 M3

]
(16)

where

M1 = �1 + �2 + WT(�3 + �4)W

M2 = (�2 − �1)Ĝd + WT(�3Ĝu,−a − �4Ĝu,a)

M3 = Ĝ T
d (�1 + �2)Ĝd + Ĝ T

u,−a�3Ĝu,−a + Ĝ T
u,a�4Ĝu,a

(17)

By construction, M1 is n × n, M2 is n × (k + 1), and M3 is (k + 1) × (k + 1). Figure 5 illustrates
the sparsity pattern of AT�A.

3.1. Factorization-free construction of M−1
1

The block structure of AT�A lends itself naturally to a block elimination procedure. In particular,
since M1 is block diagonal, it makes sense to solve the system by forming the Schur complement
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Figure 5. Sparsity pattern of AT�A.

and then solving for the remaining unknowns:

Sx2 = y2 − MT
2 M

−1
1 y1

M1x1 = y1 − M2x2
(18)

where

S = M3 − MT
2 M

−1
1 M2 (19)

and x = [x1, x2], y =[y1, y2], with x1, y1 vectors of length n and x2, y2 vectors of length k + 1.
The Schur complement S is (k + 1) × (k + 1), i.e. much smaller than the matrix of the normal

equations. Recalling that in the application we are discussing k ≡ kfir is the number of filter
coefficients, the size of the Schur complement corresponds to the size of the original design
problem. The computational cost is determined primarily by the effort required to invert M1,
form S, and solve for S. Fortunately, the special structure of W allows us to derive expressions
for the entries of M−1

1 which can be computed directly (i.e. without factoring the matrix) and
efficiently. We have the following two useful results.

Proposition 3.1
Given a diagonal matrix D of size m ×m and matrix W defined in Equation (9), the n × n matrix
WTDW is block diagonal with m blocks, each of size � × �. The i th block of this matrix is a
rank-1 matrix all of whose entries are equal to di , the i th diagonal entry of D.

Proposition 3.2
Given a diagonal matrix E of size n × n with diagonal entries ei , the m ×m matrix C =WEWT

is diagonal, and its diagonal entries, ci , are

ci =
�∑

j=1
e(i−1)�+ j

The proofs of Propositions 3.1 and 3.2 are straightforward and rely on the special structure
of W , namely that it is a matrix of horizontal, non-overlapping stripes, each of size �, and we
have m such stripes. Indeed, the structure of W is to an extent reminiscent of that of Galerkin-type
prolongation and restriction operators applied in multigrid-type applications [21].

Let

�12 = �1 + �2

�34 = �3 + �4
(20)
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and define

V = (�34)
1/2W

In the sequel, when necessary we will denote the i th diagonal entry of �12 by (�12)i , and similarly
for �34. We can write

M1 = �12 + V TV

and by Proposition 3.1 we have that V TV ≡WT�34W is block diagonal with m blocks of size �,
and all the elements in the i th sub-block have the value (�34)i . Thus, each block of M1 is a
rank-1 update of a diagonal matrix. This allows us to apply the Sherman–Morrison–Woodbury
formula [22] to obtain a closed-form formula for M−1

1 that involves only diagonal matrix inversion
and low-rank updates. Define

B = I + V�−1
12 V

T (21)

Then, we have

M−1
1 = �−1

12 − �−1
12 V

T(I + V�−1
12 V

T)−1V�−1
12

= �−1
12 − �−1

12 V
TB−1V�−1

12 (22)

Proposition 3.3
The m ×m matrix B is diagonal and its diagonal entries are given by

bi = 1 + (�34)i
�∑

i=1
(�12)

−1
(i−1)�+ j

Proof
Write V�−1

12 V
T as �1/2

34 W�−1
12 W

T�1/2
34 and apply Proposition 3.2 to W�−1

12 W
T. �

3.2. Construction of the Schur complement and computational work

Using the formula for M−1
1 from (22) we obtain

S = M3 − MT
2 M

−1
1 M2

= M3 − [MT
2 �−1

12 M2 − (V�−1
12 M2)

TB−1(V�−1
12 M2)] (23)

We expand M2 and M3 according to their definitions in Equation (17) to obtain

M3 − MT
2 �−1

12 M2 = S1 − (S2 + ST2 ) (24)

where

S1 = Ĝ T
d (�12 − (�2 − �1)

2�−1
12 )Ĝd

+ Ĝ T
u,−a�3Ĝu,−a + Ĝ T

u,a�4Ĝu,a

+ (Ĝ T
u,−a�3 − Ĝ T

u,a�4)W�−1
12 W

T(�3Ĝu,−a − �4Ĝu,a)

S2 = −(Ĝ T
u,−a�3 − Ĝ T

u,a�4)W�−1
12 (�2 − �1)Ĝd

(25)
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Forming S1 and S2 is computationally advantageous, as it saves redundant floating point op-
erations as well as storage. Indeed, we wish to avoid forming M2 explicitly because it is dense.
Furthermore, by forming S1 we can group Ĝ T

d �Ĝd x operations, and forming S2 avoids a repeated
computation of matrix–vector products with Ĝd .

By Proposition 3.2, W�−1
12 W

T is diagonal of size m ×m; it takes � operations to compute each
element, and hence �m = n operations suffice to compute W�−1

12 W
T. Ĝd is much larger than Ĝu,−a

or Ĝu,a . Thus, the most computationally intensive component of this step is the computation of
Ĝ T

d (�12 − (�2 − �1)
2�−1

12 )Ĝd . The �’s are diagonal, so calculating �12 − (�2 − �1)
2�−1

12 only
takes O(n) operations. Each column of Ĝd only has a fraction of � of its elements non-zero.
Moreover, each column only has overlapping non-zeros with approximately k� columns. Hence,
for each row of Ĝ T

d (�12 − (�2 − �1)
2�−1

12 )Ĝd , there are only k� non-zeros and each non-zero
entry takes n� operations to compute. Thus, this step takes O(k2n�2) operations.

Next, we look at the computation of (V�−1
12 M2)

TB−1(V�−1
12 M2). We substitute for M2 using

Equation (17) and obtain

V�−1
12 M2 = (V�−1

12 (�2 − �1))Ĝd + (V�−1
12 W

T)(�3Ĝu,−a − �4Ĝu,a) (26)

Because Ĝd is much larger than either Ĝu,−a or Ĝu,a , the computational time for this step is
dominated by the time it takes to compute (V T�−1

12 (�2 − �1))Ĝd . Obviously, V has the same
structure of W , and hence has exactly n non-zero elements. Multiplication of V by a diagonal
matrix only takes n operations. Similarly, each column of Ĝd has roughly n� non-zero elements.

Thus, multiplying V by any column of Ĝd takes roughly O(n�) operations. Matrix Ĝd has k + 1
columns, thus, the multiplication of V�−1

12 (�2 − �1) by Ĝd takes O(nk�) operations. Therefore,
computing V�−1

12 M2 takes O(nk�) operations as well.
Because V�−1

12 M2 ism×(k+1) and B is diagonal, (V�−1
12 M2)

TB−1(V�−1
12 M2) can be computed

within O(k2m) operations after the computation of V�−1
12 M2 is completed as described above.

Thus, the total effort for computing (V�−1
12 M2)

TB−1(V�−1
12 M2) is O(nk� + k2m). In summary,

we have:

1. Calculating B: this can be done with O(ml) = O(n) operations.
2. Calculating M3 − MT

2 �−1
12 M2: this requires O(nk2�2) operations.

3. Calculating (V�−1
12 M2)

TB−1(V�−1
12 M2): this can be done with O(nk�+ k2m) operations.

Thus, the total time to form the Schur complement is O(nk + nk2�2 + k2m).
Once the Schur complement has been formed, the resulting system can be solved in O(k3)

operations using the Cholesky decomposition. This gives a total time of O(nk+nk2�2+k2m+k3).
Depending on the design parameters, any of these terms can be the dominant one; in other words,
either the Schur or Cholesky step can be the critical step.

In the steps presented above, we carefully avoid producing large dense intermediate matrices.
For example, M2 is large and dense. In step 3, instead of forming M2, we compute V�−1

12 M2
directly from the sub-matrices of the constraint matrix A. The largest matrix with the great-
est number of non-zeros in the algorithm is Ĝd , which has approximately 2nk� non-zeros.
Thus, using the Cholesky decomposition of S, the amount of memory required by this algorithm
is O(nk�).
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For the sake of comparison, consider computing the Cholesky decomposition of the original
normal equations. This would require first computing the normal equation matrix, AT�A. This
is equivalent to computing matrices M1, M2, and M3 from Equation (17). Matrix M1 has n�

non-zero elements with n + n/� distinct values. These values can be computed in O(n) time
using Proposition 3.1. Matrix M2 can be computed directly from its definition in Equation (17).
Noting that W has exactly one non-zero element per column, M2 is relatively sparse with roughly
2nk� non-zero elements; it can be computed in O(nk�) time. The matrix M3 is dense and can be
computed in O(nk2�) operations. It is straightforward to confirm that computing the right-hand
side does not add to the overall complexity. Computing M3 is the dominant step; thus, the normal
equations can be formed in O(nk2�) time.

We now consider the Cholesky decomposition of the normal equations. As the decomposition
progresses, it creates a band of non-zeros of width � centered on the principle diagonal, and another
band of width 2(k + 1) along the MT

2 matrix—this portion of the matrix fills quite quickly when
using the Cholesky algorithm. Therefore, each step of the Cholesky algorithm has O((k + �)2)

operations, and there are n+k such steps total. Likewise, the memory requirement is O(n(k+�)).
We will assume that �<k<n which holds in typical applications and underestimates the cost of
the Cholesky approach otherwise. We now have that applying the Cholesky decomposition to the
original normal equations requires O(nk2) time and O(nk) memory. Thus, the Cholesky step dom-
inates the time and memory requirements if Cholesky decomposition is applied to original normal
equations.

In contrast, our approach requires O(k2(n�2 + k) + nk) time and O(nk�) memory. By using
the Sherman–Morrison–Woodbury formula, our method exploits the sparsity of the G matrices,
avoiding the fill that occurs if the Cholesky decomposition (or similar algorithms) is applied to
the original normal equations. Thus, our method reduces the memory requirement by a factor of
� and the time requirement by a factor of min(�2, 1/k, k/n), depending on the specifics of the
design parameters.

3.3. Stability

In general, the Sherman–Morrison–Woodbury formula may be unstable [23]. Here, it is not a
concern since we use it primarily for analytical purposes, to derive a factorization-free formula.
By [24], factors that affect the stability are the condition number of the original (unperturbed)
matrix, the scaling of the low-rank perturbations and the inversion of the small matrix whose size
is equal to the rank of the perturbation.

Let M ( j)
1 denote the j th � × � block of M1. From Equation (17) and Propositions 3.1 and 3.2,

we have

M ( j)
1 = D( j) + E ( j)

D( j) = diag((�1)( j−1)�+1... j� + (�2)( j−1)�+1... j�)

E ( j) = ((�3) j + (�4) j )1�×�

Note that D is a positive-definite, diagonal matrix, and E is a positive, rank-1 matrix, where all
elements have the same value. Let {�( j)

i } denote the eigenvalues of this M ( j), and suppose �( j)
m

and �( j)
M are its minimal and maximal eigenvalues, respectively. Recalling that {(�12)i } denote the

diagonal values of �12, from the interlacing theorem [25, 26] it follows that �( j)
m �mini (�12)i�0.
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On the other hand, again using interlacing and by Proposition 3.2 it follows that �( j)
M �maxi (�12)i+

(�34) j . Combining all blocks, and taking maximum and minimum over all �( j)
M and �( j)

m , it
follows that

�2(M1)��2(�12) + �2(�34)��2(�)

As the linear program solver proceeds towards the solution, � becomes increasingly ill conditioned.
This is an inherent-property of the interior-point algorithm itself, and from the above it follows that
the (1, 1) block, which is used for forming the Schur complement, has a condition number bounded
in terms of that of �. The small matrix that needs to be inverted in the course of computing M−1

1
is B defined in (21). But by Proposition 3.3, B is diagonal, and hence it can be inverted exactly
without a concern of catastrophic amplification. The magnitude of the entries of B depend linearly
on �, hence any conditioning issues are inherent in the problem and are not enhanced by the
numerical algorithm.

4. NUMERICAL EXPERIMENTS

We implemented Mehrotra’s interior-point linear program solver [16, Chapter 14; 18] using our
linear system solver as described in the previous section. Our implementation is in MATLAB.
Table I(a) shows the size of the LPs, the number of iterations and time per iteration for buses of
various sizes. We used HSPICE [27] to derive bus models and their bit-response functions. All
filters have an impulse response of length 4 (i.e. nfir = 4), and the filter for each wire considers
the value sent on that wire and its four nearest neighbors in each direction.

Table I. Filter designs for buses of various sizes with nbus = 10 and kmask = 8.

Number of Number of Number of LP Time/iteration/
wbus variables constraints iterations Time/iteration (s) constraint (ms)

(a)
4 2393 4752 18 0.98 0.214
8 9529 18 976 20 1.74 0.092

16 38 009 75 840 24 7.20 0.095
32 141 801 303 232 17 30.41 0.100
64 606 713 1 212 672 13 137.84 0.114

wbus B M3 − MT
2 �−1

12 M2 (V�−1
12 M2)

TB−1(V�−1
12 M2) Cholesky

(b)
4 <0.01 0.04 0.01 <0.01
8 0.01 0.12 0.05 <0.01

16 0.07 0.55 0.34 0.02
32 0.29 2.49 2.40 0.08
64 1.21 9.28 14.11 0.56

Note: Panel a shows the performance of the interior-point solver. Panel b shows the time breakdown
for critical steps of the linear system solver for a single linear system solve. All numbers reported
are in seconds. These times are for a 900MHz, UltraSparc III Processor.
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When the width of the bus doubles, the number of variables and constraints in the LP both go
up by a factor of 4. Interestingly, for the larger problems, wbus = 32, 64, we observe a decrease in
the number of LP iterations. We contribute this to the stopping criterion we have used, whereby
the duality gap is normalized by the size of the problem.

The time per iteration also goes up by approximately a factor of 4, better than the factor of 8
predicted by the asymptotic analysis above. We note that the examples given in Table I are not
large in terms of wbus and may not fully reflect the asymptotic regime. We also observe that the
time per iterations per number of constraints scales very well with the size of the problem; see
last column of the table.

To further analyze the cost of the various components of the algorithm, we list the time breakdown
for the critical steps of the linear system solver in Table I(b). The asymptotic behavior of each
critical step validates the asymptotic analysis. For example, the time for calculating M3−MT

2 �−1
12 M2

grows quadratically with the width of the bus, as predicted by the analysis. The time for calculating
(V�−1

12 M2)
TB−1(V�−1

12 M2) grows by approximately a factor of 6, slightly better than the factor
of 8 predicted by the analysis.

In Figure 6, we show the conditioning of the Schur complement matrix, computed using our
algorithm. As is evident from the figure, the matrix has a condition number that deteriorates
throughout the iteration, as expected [15], and behaves similar to the condition number of the
unreduced normal equations matrix. It is analytically known that the condition number of the
Schur complement is bounded from above by that of the unreduced matrix, since the (1, 1) block
is symmetric positive definite, as is the unreduced matrix [28, Lemma 3.12].
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Figure 6. Condition numbers of the matrix of the normal equations and the Schur complement as computed
using our algorithm, throughout the LP iteration.
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5. CONCLUDING REMARKS

We have presented an efficient and robust approach to solving l∞ optimal deconvolution. While
this deconvolution has a natural linear programming formulation, the resulting linear programs
can be quite large. By using an interior-point method to solve these linear programs, the solution
of the normal equations at each iteration becomes the critical step for obtaining performance and
stability. We have shown that the structure of the matrices involved can be exploited in a way
that allows the Schur complement of the normal equations to be formed using a factorization-free
formula for the inverse of the (1, 1) block. Furthermore, our approach does not adversely affect
the conditioning of the system.

Our interest in l∞ optimization was motivated by problems that arise in synthesizing equalization
filters for high-speed digital signalling. Such problems are naturally formulated as two-dimensional
deconvolutions where the l∞ norm corresponds to the discrete quantization of digital systems. Our
linear system solver makes l∞ optimization a tractable alternative to least-squares methods.

Our solver exploits the special structure of the W matrix (see Equation (9)) that arises be-
cause of the duality between the l∞ and l1 norms. The l∞ formulation shown in Equation (6)
assumes that the system is time-invariant but not space invariant; in other words, different lines in
the system have different characteristics, while each line itself is time invariant. We also exploited
the sparsity of the G matrix that computes the channel responses to unit inputs as a function of the
filter coefficients. This sparsity arises from the assumption that the spatial dimension is not shift
invariant. As a consequence, the deconvolver has different coefficients for each line input to the
filter. Each row of G corresponds to one such line, and has zeros in the columns corresponding to
deconvolver coefficients for the other lines. Thus, this sparsity should be available when applying
our approach to other l∞ deconvolution problems.

If the system is also space invariant, i.e. lines are identical, the problem reduces to optimization
for a single line. In this case, the LP still has the same structure but with much smaller size:
kdisturb becomes linear in wbus. Furthermore, the convolution matrices become block Toeplitz or
circulant [29], and matrix multiplications can be performed efficiently using FFT methods. This
might allow further efficiency in the linear system solver. In contrast, when both dimensions are
not shift invariant, for example, in image processing applications, the same structure arises, but
with a much larger size: kdisturb becomes quadratic in both dimensions. The formulation that we
have presented in this paper still applies and should, in principle, lead to efficient solutions.

While equalization filter synthesis for high-speed buses is naturally expressed as a two-
dimensional deconvolution, higher dimensional, l∞ deconvolution problems give rise to the same
matrix structure. Our methods could be employed for those problems as well. Consider a d-
dimensional deconvolution problem where the channel to be deconvolved is shift invariant in
dimensions 1 . . . d̃ , and non-shift-invariant in dimensions d̃ + 1 . . . d . Let wi be the length of
the convolution kernel for the channel for dimension i , and let k denote the total number
of filter coefficients. Then, the linear program for synthesizing an l∞ optimal FIR filter for

deconvolution has roughly n = (
∏d̃

i=1 wi )(
∏d

i=d̃+1
w2
i ) variables (the disturbance terms) and twice

that many constraints (the absolute value computations). The matrix for the normal equations is
(n + k + 1) × (n + k + 1), and the upper-left n × n submatrix has the block diagonal structure that
is required for our construction. Thus, we can reduce this to a (k + 1) × (k + 1) dense system that
can be solved directly. As with the two-dimensional case, the higher-dimensional generalization
of our approach is likely to be computationally efficient and stable.
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