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Abstract. We explore a preconditioning technique applied to the problem of solving linear
systems arising from primal-dual interior point algorithms in linear and quadratic programming.
The preconditioner has the attractive property of improved eigenvalue clustering with increased ill-
conditioning of the (1,1) block of the saddle point matrix. It fits well into the optimization framework
since the interior point iterates yield increasingly ill-conditioned linear systems as the solution is
approached. We analyze the spectral characteristics of the preconditioner, utilizing projections onto
the null space of the constraint matrix, and demonstrate performance on problems from the NETLIB
and CUTEr test suites. The numerical experiments include results based on inexact inner iterations.
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1. Introduction. Interior point methods for solving linear and quadratic pro-
gramming problems have been gaining popularity in the last two decades. These
methods have forged connections between previously disjoint fields and allowed for
a fairly general algebraic framework to be used; see, for example, [11] for a compre-
hensive survey. The size of many problems of interest is very large and the matrices
involved are frequently sparse and often have a special structure. As a result, there is
an increasing interest in iterative solution methods for the saddle point linear systems
that arise throughout the iterations.

The general optimization framework is as follows. Consider the quadratic pro-
gramming (QP) problem

min
x

1
2
xT Hx + cT x

subject to :
Ax = b, Cx ≥ d.

Here x, c ∈ Rn and H is an n × n Hessian, often symmetric positive semidefinite;
the constraint matrix A is m1 × n with m1 < n, and we assume it has rank m1.
Inequality constraints are expressed in the m2×n matrix C. Often simple bounds on
the variables are given, so C could be an identity matrix or its concatenation with a
negative identity matrix.

When H is symmetric positive semidefinite and the constraints are linear, satis-
faction of the first-order KKT conditions is sufficient to guarantee global optimality
of a solution [23, Chap. 16]. If Lagrange multipliers y, z and slack variables s are
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introduced, the KKT conditions for this problem are

Hx−AT y − CT z = −c,
Ax = b,

Cx− s = d,
s ≥ 0, z ≥ 0, sT z = 0.

Typical interior point methods [23, 29] for QPs define a function whose roots
coincide with the KKT conditions and take Newton steps to progressively approach an
optimal solution. One possible way of solving the problem is by performing predictor
and corrector solves at each step to ensure sufficient progress towards the optimal
point. After elimination of some of the unknowns we obtain the step equations, a
saddle point system of the form(

H + CT S−1ZC AT

A 0

) (
∆x
−∆y

)
=

(
u1

u2

)
, (1.1)

where S and Z are diagonal and keep changing throughout the QP iteration. The
right hand side vector is related to residual measures of the KKT conditions and
depends on whether a predictor or corrector step is being carried out [23, 29].

While we will focus primarily on QPs, it is worth also considering the linear
programming (LP) problem, which is formulated as

min
x∈Rn

cT x

subject to :
Ax = b, x ≥ d.

LPs share similarities with QPs; in fact they can be classified as simple subprob-
lems, with a zero Hessian and further simplifications. It is convenient to present the
corresponding linear system in the 2× 2 block form(

S−1Z AT

A 0

) (
∆x
∆λ

)
=

(
v1

v2

)
, (1.2)

where S−1Z is diagonal and changes throughout the LP iteration, and the right hand
side vector is constructed in a similar manner to (1.1).

For both LPs and QPs the saddle point matrix becomes highly ill-conditioned as
the solution is approached, due to increased ill-conditioning of the (1, 1) block. In the
typical case when inequality constraints are simple bounds on the primal variables,
H + CT S−1ZC is a diagonal perturbation of H. The complementarity of S and Z
gives rise to the simultaneous presence of extremely small and extremely large values
in S−1Z. For both LPs and QPs the matrices S−1Z and H + CT S−1ZC will never
be exactly singular, but will approximate singularity as the solution is approached.
This is a key property that must be taken into account.

Detailed description of the theory involved in interior point methods for linear
and quadratic programming can be found, for example, in [23, 29]. The methodology
of using a predictor and corrector step calculation at each iteration of the solve was
presented in [21]. These references point out the importance of efficiently solving
the step equations, and identify the difficulties involved. Many software packages
such as IPOPT [28], LIPSOL [30], and OOQP [13] use direct solvers to solve the
step equations. While this is a sound approach for many problems, it may suffer the
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combined ailments of poor scaling with problem size and deterioration in conditioning
and numerical stability as the QP or LP solution is approached. In particular, special
care must be taken in matrix factorizations to deal with the presence of large and small
pivots [22]. These factors motivate the study of iterative methods in the context of
optimization. Modern solution techniques like Krylov subspace methods rely on the
ease of sparse matrix-vector products, and converge in a rate dependent on the number
of distinct eigenvalues of the preconditioned matrix [7, 26].

In this paper we study a preconditioner that has the property that the more
ill-conditioned the (1,1) block of the saddle point matrix is, the faster a minimum
residual solver such as MINRES converges (in terms of outer iterations). Therefore,
the corresponding solver is particularly effective in the last few iterations of the LP
or QP solver. Our approach is based on augmentation of the (1,1) block using a
weight matrix. Augmentation has been used in several areas of applications and in
many flavors (see for example [3] and references therein). Our particular methodology
extends recent work done by Greif and Schötzau [17, 18] into new directions and
introduces a technique that well fits the algebraic framework of interior point methods
for optimization problems.

Our preconditioner is part of a growing set of preconditioned iterative approaches
for solving optimization problems. A preconditioning technique that has emerged re-
cently as a popular choice is the class of constraint preconditioners (see Luks̆an and
Vlc̆ek [20] or Keller, Gould and Wathen [19] and references therein), which rely on
leaving the constraints intact, and seeking to replace the (1, 1) block by a matrix that
is much easier to invert. Recent work by Dollar and Wathen [9] introduces implicit
factorizations that further facilitate the use of constraint preconditioners. Similar fac-
torizations are applied to regularized saddle point systems by Dollar, Gould, Schilders
and Wathen in [8]. Forsgren, Gill and Griffin [10] extend constraint-based precondi-
tioners to deal with regularized saddle point systems using an approximation of the
(1, 1) block coupled with an augmenting term (related to a product with the constraint
matrix and regularized (2, 2) block). The technique is intended for interior point meth-
ods for general constrained optimization problems. In [5] Bergamaschi, Gondzio, and
Zilli employ constraint preconditioners with diagonal (1, 1) blocks, which allow for
factoring the preconditioner or its reduced normal equation form. Approximate con-
straint preconditioners are further explored in [4].

Other block structured preconditioning approaches are also available. For exam-
ple, Oliveira and Sorensen [24] consider linear programming and make use of block
triangular preconditioners that have the constraint matrix in their (1, 2) block and
easy to invert matrices in the main diagonal. The preconditioned matrix has an eigen-
value λ = 1 with a high algebraic multiplicity, and since for linear programs the (1, 1)
block of the saddle point system is diagonal, the preconditioner can be factored and
solved with efficiently. The use of iterative methods in constrained optimization also
relies on the notion of inexact interior point methods. These have been investigated
in [1, 2, 12] and other papers. The findings justify the use of approximate solutions
at each step of the method, and we explore this experimentally.

The remainder of this paper is organized as follows. In Section 2 the precondi-
tioner and its general form are presented, and algebraic properties are derived. In
Section 3 the choice of the weight matrix W and inner solves are discussed. This is
followed by two schemes for reducing fill-in in the preconditioner when dense rows are
present. In Section 4 we present numerical results demonstrating performance of the
preconditioner. In Section 5 we draw some conclusions.



4 T. REES AND C. GREIF

2. The Preconditioning Approach. We will adopt the general notation

A =
(

G AT

A 0

)
(2.1)

to represent the saddle point matrices of equations (1.1) and (1.2). We assume that
G is symmetric and positive semidefinite with nullity p, and that A is of size n ×m
and has full row rank. Note that the assumption that A is nonsingular implies that
null(A) ∩ null(G) = {0}, which we use in our analysis below.

2.1. A Block Triangular Preconditioner. Consider the preconditioner

M =
(

G + AT W−1A kAT

0 W

)
,

where k is a scalar, and W is an m ×m symmetric positive definite weight matrix.
The eigenvalues of the preconditioned matrixM−1A satisfy the generalized eigenvalue
problem (

G AT

A 0

) (
x
y

)
= λ

(
G + AT W−1A kAT

0 W

) (
x
y

)
. (2.2)

The second block row gives y = 1
λW−1Ax, and substituting it into the first block

equation gives

λ(λ− 1)Gx + (λ2 + kλ− 1)AT W−1Ax = 0.

Regardless of the choice of k, we see that λ = 1 with algebraic multiplicity n−m.
From the nullity of G it follows that there are p linearly independent null vectors of
G. For each such null vector we can find two λ values satisfying λ2 + kλ − 1 = 0.
Thus we have

λ± =
−k ±

√
k2 + 4

2
,

each with algebraic multiplicity p. The remaining 2(m− p) eigenvalues satisfy

− λ2 − λ

λ2 + kλ− 1
Gx = AT W−1Ax. (2.3)

Since G is positive semidefinite and AT W−1A is positive definite, we must have

− λ2 − λ

λ2 + kλ− 1
> 0,

thus we can write λ2−λ
λ2+kλ−1 = −µ2 for some µ ∈ R, µ > 0. We can rearrange this to

(1 + µ2)λ2 + (kµ2 − 1)λ− µ2 = 0,

giving

λ± =
−(kµ2 − 1)±

√
(kµ2 − 1)2 + 4µ2(1 + µ2)
2(1 + µ2)

. (2.4)
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This expression gives an explicit formula in terms of the generalized eigenvalues of
(2.3) and can be used to identify the intervals in which the eigenvalues lie. To illustrate
this, we examine the case k = −1, which corresponds to setting the (1, 2) block of the
preconditioner to be −AT . We have λ = 1 with multiplicity n−m, and λ± = 1±

√
5

2 ,
each with multiplicity p. By (2.4) we have

λ± =
1±

√
1 + 4µ2

1+µ2

2
.

Since λ+ is a strictly increasing function of µ on (0,∞) (and λ− are strictly de-
creasing), the intervals containing the remaining eigenvalues can be found using
limµ→0,∞ λ±(µ). From this one finds that the remaining eigenvalues lie in the inter-
vals (1−

√
5

2 , 0)∪ (1, 1+
√

5
2 ). It is worth noting that since G is typically highly singular,

many of the generalized eigenvalues are large, in which case the corresponding eigen-
values λ± are bounded away from zero. For example, many of the negative ones will
tend to 1−

√
5

2 . Since the 2p eigenvalues (k ±
√

k2 + 4)/2 are unbounded as k goes to
∞, we conclude that k should be of moderate size.

2.2. A Block Diagonal Preconditioner. The choice k = 0 yields a block
diagonal symmetric positive definite preconditioner of the form

M =
(

G + AT W−1A 0
0 W

)
. (2.5)

It is suitable for use with minimal residual methods based on short recurrences such
as MINRES. This preconditioner and its spectral properties in a general algebraic
context have been recently studied in [17] and applied (in a slightly different form) to
the Maxwell equations in [18]. In the context of optimization, it is useful to examine
the behavior on the reduced space generated by projections onto the null space of
A. We offer such results below, and prove them using orthogonal transformations, by
taking similar steps to those taken in [19].

As before, we assume that G is positive semidefinite with nullity p. Suppose
further that A has full rank, and choose W to be symmetric positive definite. It
is straightforward to show that if A is non-singular, then G + AT W−1A must be
symmetric positive definite. As is shown in [17], the eigenvalues of the preconditioned
matrix M−1A and their multiplicities can be found directly through the generalized
eigenvalue problem(

G AT

A 0

) (
x̄
ȳ

)
= λ

(
G + AT W−1A 0

0 W

) (
x̄
ȳ

)
. (2.6)

Let QR = AT be an “economy size” QR factorization of AT , where Q is n ×m and
R is m ×m. Define Z to be a n × (n −m) orthogonal basis for the null space of A.
Since Z ∪ Q forms an orthogonal basis for Rn, any vector x ∈ Rn can be written as
x = Zxz + Qxq.

Following the spirit of the proof of [19, Thm. 2.1], we define the (n+m)×(n+m)
matrix

P =
(

Z Q 0
0 0 I

)
, (2.7)
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and perform a similarity transformation as follows. We express x̄ = Zx̄z + Qx̄q, and
let v = (xz, xq, y)T where Pv = (x̄z, x̄q, ȳ)T . The generalized eigenvalue problem can
then be written as PTAPv = λPTMPv. This yields:ZT GZ ZT GQ 0

QT GZ QT GQ R
0 RT 0

 xz

xq

y

 = λ

ZT GZ ZT GQ 0
QT GZ QT GQ + RW−1RT 0

0 0 W

 xz

xq

y

 .

(2.8)
By inspection, we observe that by setting λ = 1 the system reduces to0 0 0

0 −RW−1RT R
0 RT −W

 xz

xq

y

 =

0
0
0

 .

Let ei denote the ith column of the identity matrix. Evidently there are n − m
corresponding eigenvectors that can be written in the form

(xz, xq, y) = (ei, 0, 0). (2.9)

In addition, m linearly independent eigenvectors can be written in the form:

(xz, xq, y) = (0, ei,W
−1RT ei). (2.10)

Now consider λ = −1. Equation (2.8) reduces to2ZT GZ 2ZT GQ 0
2QT GZ 2QT GQ + RW−1RT R

0 RT W

 xz

xq

y

 =

0
0
0

 .

Any vector x∗ = Zx∗z + Qx∗q in the null space of G satisfies G(Zx∗z + Qx∗q) = 0.
There are p such vectors, so p linearly independent eigenvectors of the form

(xz, xq, y) = (x∗z, x
∗
q ,−W−1RT x∗q) (2.11)

will satisfy (2.8) with λ = −1.
By [17, Theorem 2.2] the remaining eigenvalues, λ 6= ±1, lie in the interval (−1, 0).

To derive an expression for the corresponding eigenvectors we reduce equation (2.8)
to an eigenvalue problem in xq. From the block row in (2.8), y = 1

λW−1RT xq. The
first line of the equation can be reduced to

xz = −(ZT GZ)−1ZT GQxq.

Substituting this into the second line of (2.8) and simplifying yields

RW−1RT xq = λ
[
CT (ZT GZ)−1C −QT GQxq −RW−1RT

]
x, (2.12)

where C = ZT GQ. We have actually proved the following theorem.
Theorem 2.1. The preconditioned matrix M−1A has eigenvalues λ = 1 with

multiplicity n with eigenvectors (2.9) and (2.10), and λ = −1 with multiplicity p,
with corresponding eigenvectors given in (2.11). The remaining eigenvalues lie in the
interval (−1, 0) and satisfy the generalized eigenvalue problem (2.12).

Theorem 2.1 illustrates the strong spectral clustering when the (1, 1) block of
A is singular. A well-known difficulty associated with interior point methods is the
increased ill-conditioning of the (1, 1) block as the solution is approached. Our claim
is that the preconditioner performs robustly even as the problem becomes more ill-
conditioned; in fact the outer iteration count decreases. On the other hand, solving
for the augmented (1,1) block may be more computationally difficult and requires an
effective approach, for example inexact solves.
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3. Practical Considerations and Computational Cost. In this section we
discuss the choice of the weight matrix W and ways of reducing the cost of inner
iterations. We also describe procedures for dealing with a dense row.

3.1. The Inner Iteration and Choices of the Weight Matrix. There are
two critical issues to consider in the application of the preconditioner. First, the
weight matrix W must be chosen. Then, given a weight matrix, an efficient method of
factoring or iteratively solving systems with the preconditioner must be sought. These
considerations are motivated by the fact that each iteration of a preconditioned Krylov
subspace method requires solutions to linear systems of the form Mx = b; based on
the block structure of M, this requires solving systems with G + AT W−1A and W .

The simplest choice of a weight matrix is diagonal, and it clearly makes inverting
W trivial. A simple, one-parameter choice is a scaled identity. Letting W = γI,
γ could be chosen so that the augmenting term 1

γ AT A is of norm comparable to G.
See, for example, [14] for a general algebraic discussion. Note that since G changes
at each step, γ must also be updated.

For LPs the matrix G is diagonal and choosing 1/γ related to an ordered statistic
such as the mean, median or maximum of the diagonal entries in G, has proven
to be effective in our experiments in reducing the number of MINRES iterations
required at each step. This is illustrated in Figure 3.1 for the Netlib problem “tuff”,
where the MINRES residual norms (in the predictor step) are plotted against each
step of the LP solve. An arbitrary fixed choice of 1/γ leads to a “hump” with a
large number of intermediate outer iteration counts. As predicted by our theoretical
results, close to the solution the near-singularity of the (1,1) block results in fast
convergence regardless of the choice of γ. But as is illustrated in the figure, it is the
dynamic choice of γ−1 as the maximal entry in G that yields rapid convergence of
MINRES throughout the LP iteration, and in fact the “hump” is flattened in this case.
The choice 1/γ = max(G) results in a set of values monotonically increasing from
approximately 1 to approximately 1010, and the iteration significantly outperforms
other choices in terms of number of MINRES iterations, while the cost of each inner
solve does not change.

For QPs, similar approaches are possible. With W = γI, a choice of γ such as
‖A‖2/‖G‖ (or an approximation thereof) ensures the norm of the augmenting term is
not too small in comparison with G. (See [14] for an analysis of the effect of scaling
of this sort on the condition number of the matrix.) For solving Mx = b, iterative
and direct methods are possible. In an iterative scheme the inner iteration can be
solved using the preconditioned conjugate gradient (PCG) method. If a direct solver
is preferred, the symmetric positive definiteness of the preconditioner allows for use
of a sparse Cholesky factorization.

3.2. Dealing with a Dense Row in A. The presence of even a single dense
row in A can lead to a fully dense augmenting matrix AT W−1A. We present two
possible approaches for dealing with dense rows in the situation that it is desirable to
explicitly form the (1, 1) block of the preconditioner.

First, we present an asymmetric preconditioner, motivated by the analysis of
Section 2.1. With ai denoting the dense column i of AT , and ei being the ith column
of an m×m identity, we define a preconditioner

M̂ =
(

G + AT W̄A −aie
T
i

0 W

)
. (3.1)
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Fig. 3.1. MINRES iteration counts with various W = γI. Problem “tuff” has m = 292,
n = 617 after LIPSOL preprocessing. MINRES iteration counts are plotted at each LP step for the
various choices of γ. MINRES error tolerance was set to 10−8. In final iterations, max(G) > 108.

Suppose W = γI for some γ > 0, and let W̄ = 1
γ I − 1

γ eie
T
i . Assuming M̂ is

non-singular, the eigenvalues of the preconditioned matrix are given by the following
theorem.

Theorem 3.1. The preconditioned matrix M̂−1A has λ = 1 with multiplicity
n − 1 and λ = −1 with multiplicity p. Corresponding eigenvectors can be explicitly
found in terms of the null space and column space of A.

Proof. Exactly as in the proof of Theorem 2.1 we define Q,R,Z and transform
the generalized eigenvalue problem using P as in (2.7). This yields
0
@

ZT GZ ZT GQ 0
QT GZ QT GQ R

0 RT 0

1
A
0
@

xz

xq

y

1
A = λ

0
@

ZT GZ ZT GQ 0
QT GZ QT GQ + 1

γ
RRT − 1

γ
rir

T
i −rie

T
i

0 0 γI

1
A
0
@

xz

xq

y

1
A ,

(3.2)

where ri denotes the ith column of R.
As before, by inspection we check λ = 1, which reduces the equation to0 0 0

0 − 1
γ RRT + 1

γ rir
T
i R + rie

T
i

0 RT −γI

 xz

xq

y

 = 0.

Immediately we see n−m corresponding eigenvectors of the form (xz, xq, y) = (u, 0, 0),
for (n−m) linearly independent vectors u. An additional m− 1 linearly independent
eigenvectors can be seen by finding consistent solutions in the free variables xq, y to
the equation (

− 1
γ RRT + 1

γ rir
T
i R + rie

T
i

RT −γI

) (
xq

y

)
= 0.

Substituting y = 1
γ RT xq, this requires 2 1

γ rir
T
i xq = 0. In general we can find exactly

m− 1 eigenvectors orthogonal to ri. That is, there are m− 1 eigenvectors of the form
(xz, xq, y) = (0, x∗q ,

1
γ x∗q), where x∗q is orthogonal to ri, corresponding to λ = 1.
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The p eigenvectors corresponding to λ = −1 are also evident by simple inspection.
Substituting λ = −1 requires finding a solution to:2ZT GZ 2ZT GQ 0

2QT GZ 2QT GQ + 1
γ RRT − 1

γ rir
T
i R− rie

T
i

0 RT γI

 xz

xq

y

 = 0

Vectors xz, xq, y can be found to solve this equation. Consider any x∗ = Zx∗z + Qx∗q
in the null space of G. Then GZx∗z +GQx∗q = 0, and we are left with finding a y such
that ( 1

γ RRT − 1
γ rir

T
i R− rie

T
i

RT γI

) (
x∗q
y

)
= 0

for the fixed x∗q . The choice y = − 1
γ RT x∗q correctly cancels the left hand side, and it

becomes apparent why the minus sign was chosen for the (1, 2) block of M̂; without
it, we could not explicitly find a suitable y value. Since the p vectors in the null
space of G are linearly independent, we have constructed a p-dimensional eigenbasis
for M̂−1A, corresponding to λ = −1.

Theorem 3.1 shows that M̂ is sparse and at the same time maintains strong
spectral clustering. The preconditioner is asymmetric, though, and it is desirable to
find a simpler form (that still retains the strong spectral properties).

To this end, consider replacing preconditioner M̂ from Equation (3.1) with

M̄ =
(

G + AT W̄A 0
0 W

)
where W̄ is again an approximation to W−1. Similarly to the asymmetric case,
consider the choice

W̄ = W−1 − 1
γ

eie
T
i .

The matrix W̄ is diagonal but singular, since each of its rows that corresponds to a
dense row of A is identically zero. As a result, the matrix AT W̄A no longer experiences
fill-in from the product aia

T
i .

This modification does not result in significant changes in the spectral clustering
of the preconditioned matrix. Since M̄ is a rank-1 perturbation of M by (2.5),
it follows that M̄−1A is just a rank-1 perturbation of M−1A and we can apply
interlacing results.

If we let µi denote the ith largest eigenvalue of M̄−1A, and λi be the ith largest
eigenvalue of M−1A, interlacing guarantees that λi−1 ≤ µi ≤ λi. Since the eigenval-
ues λi are known and have high algebraic multiplicities, so are the eigenvalues µi, and
for each multiple eigenvalue λi the multiplicity of the corresponding µi goes down by
at most 1, due to interlacing. Thus, if preconditioned MINRES is used, we have strong
spectral clustering without introducing any fill-in. We can summarize our findings as
follows.

Proposition 3.2. Assume M̄ is non-singular. Then the preconditioned matrix
M̄−1A has λ = 1 with multiplicity at least n − 1, and λ = −1 with multiplicity at
least p− 1.



10 T. REES AND C. GREIF

4. Numerical Experiments. Numerical experiments were done on problems
from the CUTEr test suite [16], using Matlab, on an Intel 2.5GHZ processor with
2GB of RAM. In our experiments we focused on QP test problems with a non-diagonal
and semidefinite (1, 1) block, for which our preconditioner is suitable. In this section
we illustrate how the number of iterations required by MINRES drops to its theoretical
limit and how inexact inner iterations reduce the overall computational work. (For
the latter we settle for experimental observations; see, for example, [15] or [27] for
general theory and analysis.) We also include results for the row removal scheme
discussed in Section 3.2.

We used a variety of methods for solving the inner iteration Mx = b, but most of
our experiments made use of ILUPACK [6]. This package uses multilevel incomplete
LU factorizations as preconditioners for CG and GMRES, and was found to be efficient
and easy to use. While a range of values were tested, the results we present here were
collected with an ILUPACK backwards error setting of 1e-06.

Tables 4.1–4.4 demonstrate several measures of the work required in applying
our method. In these tables, n, m1,m2 denote the dimensions of the problem being
solved, as defined in the Introduction, and NQP denotes the total number of QP steps
required for convergence. The average number of Krylov solver iterations per QP
steps is given by NK . The average number of iterations of PCG used by ILUPACK
in the inner iteration, and the total number summed over all QP steps are given by
NI and Tot(NI) respectively. The time (in seconds) required to solve a problem is
given in the column Time(s).

Tables 4.1–4.2 show results for applying BiCG-STAB, once with a tight outer
tolerance of 10−6 and once with a loose outer tolerance of 10−2. Tables 4.3–4.4
show results using the same tolerances, with MINRES. The following observations
can be made. In general, loosening tolerance for the Krylov solver increases the
overall number of QP iterations only modestly, and at the same time substantially
reduces (in most tested examples) the overall number of solves. We mention here that
loosening the convergence tolerance of the inner-most iterations did not result in a
similar reduction of computational work. We therefore observe in our experiments
that inexactness is more effective on the level of the outer Krylov iterations rather
than on the level of the inner-most iterations.

Comparing the performance of BiCG-STAB to the performance of MINRES is
not within our stated goals, but having results using more than one Krylov solver
allows us to confirm the consistency of convergence behavior for most problems. The
two solvers do behave in a similar manner, and the modest running times indicate
that the proposed preconditioner seems to be efficient and robust.

Next, to demonstrate the application of the row removal scheme proposed in Sec-
tion 3.2 we consider the “blockqp” set of problems. These problems are characterized
by a Hessian with two non-zero diagonals, and a constraint matrix with a single non-
zero diagonal, a dense row, and a dense column. As a result, if the augmentation
preconditioner is fully formed, it will be dense. To avoid this, the symmetric row
removal scheme is used. This leads to a preconditioner with a nearly diagonal (1, 1)
block, which can be approximately factored with ILUPACK in an efficient manner.
Table 4.5 presents results confirming that the row removal scheme can lead to a con-
vergent solution while avoiding the intensive memory requirements of fully forming
the augmenting (1, 1) block of the preconditioner.

Theorem 2.1 guarantees increased spectral clustering of the preconditioned matrix
M−1A when the (1, 1) block of A is singular. The LP and QP saddle point matrices,
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Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 5 2.80 2.00 112 0.22
avgasb 12 10 18 5 2.75 2.00 110 0.21
blockqp1− 10 26 11 51 4 1.75 2.71 76 0.15
blockqp2− 10 26 11 51 4 1.81 3.07 89 0.14
blockqp3− 10 26 11 51 6 2.00 3.42 164 0.25
blockqp4− 10 26 11 51 5 2.50 3.44 172 0.22
blockqp5− 10 26 11 51 6 2.38 3.25 185 0.28
cvxqp1− 100 100 50 200 34 3.66 4.67 3840 3.75
cvxqp2− 100 100 25 200 13 3.06 3.57 567 0.81
cvxqp3− 100 100 75 200 13 4.06 3.47 732 1.10
dual1 85 1 170 7 1.75 4.26 362 0.99
dual2 96 1 192 5 1.50 3.37 101 0.57
dual3 111 1 222 5 1.50 3.07 92 0.71
dual4 75 1 150 5 1.45 3.55 103 0.37
gouldqp2 699 349 1398 10 1.82 2.08 152 1.00
gouldqp2− 30 59 29 118 7 1.64 2.59 119 0.25
gouldqp3 699 349 1398 11 1.52 3.03 203 1.07
gouldqp3− 30 59 29 118 5 1.55 2.71 84 0.17
steenbra 432 108 432 11 1.86 5.28 433 2.12

Table 4.1
Solver results using BiCG-STAB. Problems were solved to a tolerance of 1.0e-06. BiCG-STAB

tolerance was fixed at 1.0e-02.

Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 3 12.00 2.00 288 0.53
avgasb 12 10 18 4 10.56 2.00 338 0.48
blockqp1− 10 26 11 51 4 2.12 2.59 88 0.15
blockqp2− 10 26 11 51 4 2.31 3.08 114 0.16
blockqp3− 10 26 11 51 5 7.60 3.01 457 0.53
blockqp4− 10 26 11 51 5 5.60 3.96 444 0.39
blockqp5− 10 26 11 51 6 6.75 3.09 500 0.56
cvxqp1− 100 100 50 200 13 21.44 3.94 5002 4.74
cvxqp2− 100 100 25 200 12 10.27 4.01 2008 1.91
cvxqp3− 100 100 75 200 11 22.91 3.73 4107 4.30
dual1 85 1 170 7 2.07 5.42 716 1.38
dual2 96 1 192 5 1.50 3.37 101 0.56
dual3 111 1 222 5 1.50 3.07 92 0.73
dual4 75 1 150 5 3.50 4.40 308 0.64
gouldqp2 699 349 1398 9 4.28 2.05 315 1.59
gouldqp2− 30 59 29 118 5 5.00 2.00 200 0.35
gouldqp3 699 349 1398 10 3.45 2.69 371 1.64
gouldqp3− 30 59 29 118 5 3.55 2.70 192 0.29
steenbra 432 108 432 11 6.82 5.30 1591 5.31

Table 4.2
Solver results using BiCG-STAB. Problems were solved to a tolerance of 1.0e-06. BiCG-STAB

tolerance was fixed at 1.0e-06.
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Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 4 4.00 2.00 96 0.19
avgasb 12 10 18 5 3.70 2.00 114 0.23
blockqp1− 10 26 11 51 4 1.50 2.86 80 0.16
blockqp2− 10 26 11 51 4 1.38 3.07 86 0.15
blockqp3− 10 26 11 51 6 1.92 3.79 178 0.24
blockqp4− 10 26 11 51 5 2.00 3.70 148 0.20
blockqp5− 10 26 11 51 6 2.58 3.45 190 0.26
cvxqp1− 100 100 50 200 21 8.74 4.29 2000 2.40
cvxqp2− 100 100 25 200 13 3.31 3.59 496 0.77
cvxqp3− 100 100 75 200 16 5.94 3.68 946 1.47
dual1 85 1 170 7 1.57 5.91 384 0.88
dual2 96 1 192 5 1.00 3.27 98 0.58
dual3 111 1 222 5 1.00 3.07 92 0.74
dual4 75 1 150 5 2.80 5.02 266 0.57
gouldqp2 699 349 1398 10 1.65 2.14 156 1.09
gouldqp2− 30 59 29 118 6 1.50 2.33 98 0.21
gouldqp3 699 349 1398 13 1.35 3.14 273 1.48
gouldqp3− 30 59 29 118 6 1.58 2.86 123 0.24
steenbra 432 108 432 12 6.38 6.92 1390 4.14

Table 4.3
Solver results using MINRES. Problems were solved to a tolerance of 1.0e-06. MINRES toler-

ance was fixed at 1.0e-02.

Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 4 12.25 2.00 236 0.41
avgasb 12 10 18 4 11.25 2.00 220 0.38
blockqp1− 10 26 11 51 4 1.75 2.73 82 0.15
blockqp2− 10 26 11 51 4 1.75 3.07 92 0.16
blockqp3− 10 26 11 51 5 8.10 2.85 288 0.42
blockqp4− 10 26 11 51 5 7.20 3.96 404 0.42
blockqp5− 10 26 11 51 6 7.25 2.99 332 0.46
cvxqp1− 100 100 50 200 14 21.39 4.06 3072 3.69
cvxqp2− 100 100 25 200 12 14.71 3.99 1641 1.95
cvxqp3− 100 100 75 200 14 17.82 3.78 2779 3.66
dual1 85 1 170 7 2.64 6.66 586 1.08
dual2 96 1 192 5 1.00 3.27 98 0.58
dual3 111 1 222 5 1.00 3.07 92 0.72
dual4 75 1 150 5 4.60 5.65 418 0.72
gouldqp2 699 349 1398 9 6.22 2.03 300 2.00
gouldqp2− 30 59 29 118 5 7.10 2.00 182 0.39
gouldqp3 699 349 1398 10 4.50 2.67 347 1.94
gouldqp3− 30 59 29 118 5 4.80 2.68 182 0.32
steenbra 432 108 432 11 31.18 5.93 4524 13.12

Table 4.4
Solver results using MINRES. Problems were solved to a tolerance of 1.0e-06. MINRES toler-

ance was fixed at 1.0e-06.
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Problem NQP NK NI Time (s)
blockqp1 3 3.00 7.67 1.78
blockqp2 4 3.00 8.00 2.38
blockqp3 8 30.69 9.44 27.28
blockqp4 6 18.88 8.28 17.31
blockqp5 8 25.38 8.21 23.32

Table 4.5
Results obtained using the symmetric dense row removal scheme of Section 3.2. Problems were

solved using MINRES with error tolerance 1.0e-05. Problems solved to accuracy 1.0e-4. For each
“blockqp” problem, n = 2006, m1 = 1001, m2 = 4011.

Fig. 4.1. Eigenvalues ofM−1A at different steps of the LP solution for “share2b”. Eigenvalues
are plotted in sorted order with values along the y axis. As governed by Theorem 2.1, all unclustered
eigenvalues lie in the interval (−1, 0).

however, only become approximately singular as a solution is approached. It is useful
to evaluate whether the strong clustering of the preconditioned eigenvalues will be
achieved under approximate conditions. To test this, we examined the eigenvalues of
the preconditioned matrix at various steps in the process of solving an LP. Figure 4.1
depicts the sorted eigenvalues at three different steps of the LP solve for the problem
“share2b”.

Preconditioned eigenvalues at the first, sixth, and tenth LP steps are shown from
top to bottom. (The problem took 13 steps to solve.) In confirmation of Theorem
2.1, we see that all eigenvalues lie between −1 and 1. Furthermore, right from the
first iteration λ = 1 has high multiplicity. It is interesting to note that already by the
sixth step (the middle subplot), only a handful of unclustered eigenvalues remain. In
the tenth LP step, all eigenvalues appear to be ±1. These observations all confirm
Theorem 2.1, and illustrate how tightly clustered the preconditioned eigenvalues can
be when the saddle point system is severely ill-conditioned. This also demonstrates
that even in early iterations the preconditioner can be effective.

Next, we present preliminary comparisons with constraint preconditioners. We
stress that we have only performed a limited set of tests with a specific simple choice
of a (1,1) block for constraint preconditioners; a comprehensive set of tests will be
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Fig. 4.2. MINRES iteration counts for “cvxqp1”, n = 1000, m1 = 250. Constraint precondi-
tioner iterations are represented by ‘o’, augmentation preconditioner iterations are represented by
’x’. The constraint preconditioner is consistently better. Note in the final few iterations, though,
iteration counts for the augmentation preconditioner significantly decrease. This is due to the in-
creased singularity of the (1, 1) block.

necessary to reach definite conclusions. Our results are mixed, as we illustrate below.
Figure 4.2 shows a basic comparison of MINRES iteration counts (of the predictor
computation). The plot shows the MINRES iteration counts for each QP step for
the problem “cvxqp1”. The constraint preconditioner used for this plot was chosen
to have a (1, 1) block equal to the diagonal of the saddle point system. For both
preconditioners, an exact inner solve was applied. For this problem the constraint
preconditioner outperformed the augmentation preconditioner in most steps of the
QP solve and in terms of overall computational work. In the final few steps, however,
where the saddle point matrix was highly ill-conditioned, MINRES iteration counts
for our preconditioner dropped significantly and convergence was almost immediate,
whereas convergence of the constraint preconditioner was still within approximately
20 iterations. This again confirms Theorem 2.1 and indicates that the proposed
preconditioner is most effective when the saddle point matrix is close to singular.
This in fact may suggest a hybrid approach in which it may be useful to switch to an
augmentation-based preconditioner when iterates approach the solution.

Figure 4.3 shows an example in which our preconditioner is superior the constraint
preconditioner throughout the iteration. For the QP problem “cvxqp2”, MINRES
iteration counts (of the predictor computation) are plotted against the QP step. This
is a large problem but throughout the solve no more than 30 iterations are needed per
step. In the final few QP steps, the MINRES iteration count approaches its theoretical
limit of two. Depicted in the same plot are the corresponding predictor iteration
counts for a constraint preconditioner, with (1, 1) block set to match the diagonal
of the saddle point system. The constraint preconditioner consistently requires more
MINRES iterations at each QP step.
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Fig. 4.3. MINRES iteration counts for “cvxqp2”, n = 10000, m1 = 2500. Constraint precon-
ditioner iterations are represented by ‘o’, augmentation preconditioner iterations are represented by
’x’. The augmentation preconditioner is consistently better and approaches theoretical convergence.
The final two iteration counts of MINRES are 3 and 2, respectively.

5. Conclusions. We have studied preconditioners for linear and quadratic pro-
gramming problems, and have demonstrated their merits. The preconditioners are
well suited for saddle point systems with a highly singular (1,1) block. For interior
point iterations, as convergence is approached and the (1, 1) block of the saddle point
matrix becomes more ill-conditioned, convergence is the fastest and can theoretically
occur within two outer iterations (in the absence of roundoff errors). We have also
provided spectral analysis on the null space of the constraint matrix.

The choice of the weight matrix W is crucial and we have tested with simple scaled
identity matrices that incorporate a dynamic choice of the parameter throughout the
iteration. A good choice may substantially reduce the iteration counts throughout, as
we demonstrate by the “flattened hump” for an LP problem in Figure 3.1. Further-
more, we have shown that applying an inexact version of the Krylov solver throughout
the iteration, with a convergence tolerance as low as 0.01, significantly reduces the
overall amount of computational work.

The excellent performance of the preconditioner in particular near the solution
may suggest that regardless of what preconditioner is used throughout the iteration,
it may be worthwhile to switch to a preconditioner of the form explored here as the
iterates approach the solution.
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