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MSTAB: STABILIZED INDUCED DIMENSION REDUCTION
FOR KRYLOV SUBSPACE RECYCLING∗

MARTIN P. NEUENHOFEN† AND CHEN GREIF‡

Abstract. We introduce Mstab, a Krylov subspace recycling method for the iterative solution
of sequences of linear systems, where the system matrix is fixed and is large, sparse, and nonsymmet-
ric, and the right-hand-side vectors are available in sequence. Mstab utilizes the short-recurrence
principle of induced dimension reduction-type methods, adapted to solve sequences of linear systems.
Using IDRstab for solving the linear system with the first right-hand side, the proposed method then
recycles the Petrov space constructed throughout the solution of that system, generating a larger ini-
tial space for subsequent linear systems. The richer space potentially produces a rapidly convergent
scheme. Numerical experiments demonstrate that Mstab often enters the superlinear convergence
regime faster than other Krylov-type recycling methods.
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1. Introduction. We consider iterative methods for the solution of sequences
of large sparse nonsymmetric linear systems

Ax(ι) = b(ι), ι = 1, . . . , nSystems,(1.1)

with fixed nonsingular A ∈ CN×N , where the right-hand sides b(ι) ∈ CN are pro-
vided in sequence. Such situations occur, for example, when applying an implicit time
stepping scheme to numerically solve a transient partial differential equation (PDE).
Relevant applications are, e.g., topology optimization [9], model reduction [6], struc-
tural dynamics [18], quantum chromodynamics [7], electrical circuit analysis [29], fluid
dynamics [15], and optical tomography [13]. In all the aforementioned references a
technique called Krylov subspace recycling (KSSR) is used.

It is useful to start our discussion by establishing the notation and a few basic
principles for solving a single linear system, Ax = b. Suppose x0 is an initial guess
of the solution, and let r0 = b−Ax0 be the initial residual. We define, as usual, the
Krylov subspace of degree k ∈ N associated with A and r0 as

Kk(A; r0) := span{r0,Ar0, . . . ,A
k−1r0}.

Standard Krylov subspace methods solve a single linear system by searching in the
kth iteration an approximate solution xk ∈ x0 + Kk(A; r0) such that the residual rk

∗Submitted to the journal’s Computational Methods in Science and Engineering section
September 6, 2016; accepted for publication (in revised form) January 16, 2018; published elec-
tronically April 12, 2018.

http://www.siam.org/journals/sisc/40-2/M109246.html
Funding: The second author’s work was supported in part by a Discovery Grant from the

Natural Sciences and Engineering Research Council of Canada (NSERC).
†MartinNeuenhofen@googlemail.com, www.MartinNeuenhofen.de.
‡Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

(greif@cs.ubc.ca).

B554

http://www.siam.org/journals/sisc/40-2/M109246.html
mailto:MartinNeuenhofen@googlemail.com
www.MartinNeuenhofen.de
mailto:greif@cs.ubc.ca


MSTAB B555

is perpendicular to a Petrov space Ck of a growing dimension. For example, Galerkin
methods use the actual Krylov subspace, namely, Ck = Kk(A; r0). Typical optimality
criteria for constructing the iterates imply that it is desirable to enrich the Petrov
space throughout the iteration.

In general, Krylov subspace methods can simultaneously achieve optimality (such
as residual norm minimization) and use short recurrences only if the matrix is Her-
mitian or symmetric; the most well-known example here is the conjugate gradient
method for symmetric positive definite matrices, which minimizes the A-norm of
the error using three-term recurrence relations. When nonsymmetric linear systems
are considered, we typically need to give up either optimality or short recurrences.
GMRES [19], for example, is based on seeking residual norm minimization at the cost
of using long-term recurrence relations. In contrast, the family of BiCG methods is
based on bi-Lanczos tridiagonalization, maintaining the short recurrences while giving
up optimality. The BiCG method accomplishes this by constructing Krylov subspaces
associated with A and with AH. Several methods have been developed, which im-
prove upon BiCG by more efficiently using AH-information. For example, BiCGStab
[25] combines the polynomials underlying BiCG with a minimal residual step.

The induced dimension reduction (IDR) method [28, 23, 11] is strongly related to
BiCG-type methods and can be interpreted in a similar way in terms of the polynomials
that are generated throughout the iteration. But it is based on a different point of
view for constructing the search space. Methods of this class compute a sequence of
numerical solutions whose residuals reside in a sequence of shrinking spaces. After
finitely many iterations these spaces vanish, resulting in termination with the exact
solution (in the absence of roundoff errors).

When it comes to solving systems with multiple right-hand sides, as in (1.1), the
above mentioned methods serve as the basis for developing new techniques. For the
purpose of illustration, suppose that we need to solve two linear systems, where the
right-hand-side vectors are given in sequence:

Ax(1) = b(1), Ax(2) = b(2).(1.2)

A straightforward (but not necessarily optimal) approach is to solve both systems
subsequently with a conventional Krylov subspace method, applied successively to the
linear systems in hand. That is, the first system Ax(1) = b(1) is solved for x(1) with
a Krylov subspace method in m iterations. When solving the first system, the Krylov

subspace method iteratively builds a Petrov space C(1)m , starting from C(1)0 = {0}.
Subsequently, the second system is solved for x(2) by applying a conventional Krylov
subspace method to Ax(2) = b(2). Since no information from the first system is

reused, this means the initial Petrov space for the second system is C(2)0 = {0}.
This seems like a waste, because C(1)m may hold useful information on powers of A
(and hence its spectrum). It is thus desirable to develop methods that give rise

to a better exploitation of the subspace C(1)m while solving the second system. This
principle easily generalizes to situations where more than two linear systems need to be
solved.

The KSSR approach [6, 18, 29] aims to take advantage of the information that

has been accumulated during the iterative solution of the first system: Ax(1) = b(1)

is solved for x(1) with a Krylov subspace method in m iterations, as before, and at
that point a compressed basis matrix comprising a few search directions is stored
in memory. Subsequently, the second system is solved for x(2) by applying any
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Krylov subspace method to a modified linear system whose coefficient matrix is a
projected matrix associated with A and the aforementioned compressed basis matrix.
At their core, KSSR methods are based on periodically truncating a basis of defla-
tion vectors against which the updated residual is orthogonalized in a long-recursive
way. This is true even when the original Krylov subspace method is based on short
recurrences.

Our proposed new method is based on applying IDRstab as a starting point. The
approach we take is similar to deflation in the sense that the residual is maintained
in a smaller-dimensional space, but in contrast to KSSR methods, the computations
required to maintain the residual in the smaller space are based on the short recur-
rences of the IDR method itself. This, in turn, introduces a potential computational
advantage, as long as the construction of the subsequent space is sufficiently effective.
Our approach is inspired by the work of Miltenberger [14], who performed numerical
experiments with recycled auxiliary vectors in IDR(s).

An outline of the remainder of this paper follows. In section 2 we review KSSR
methods. In section 3 we present our new KSSR method M(s)stab(`) and discuss
its convergence properties in comparison to IDR(s)stab(`). Mstab is a parameter-
dependent method; section 4 provides examples of how the performance of Mstab
changes with the parameter and lays out an algorithmic way of finding good choices
for it. In section 5 we present numerical experiments based on discretized elliptic and
parabolic PDEs, where Mstab outperforms GMRES, BiCGStab, IDRstab, RBiCGStab,
and GCRO-DR. Finally, in section 6 we offer some brief concluding remarks.

2. Krylov subspace recycling methods. As mentioned in the introduction,
KSSR methods aim to take advantage of the information that has been accumulated
during the iterative solution of a previous system. Going back to (1.2), below we

further illustrate this in more detail. The first system Ax(1) = b(1) is solved for x(1)

with a Krylov subspace method in m iterations, and during the process a compressed
basis matrix Uc ∈ CN×c, c � m, of a few search directions is stored in memory.
Afterward, the second system is solved for x(2) by applying any Krylov subspace
method to the system(

I−AUc(AUc)
†)A︸ ︷︷ ︸

=:Ã

x̃(2) =
(
I−AUc(AUc)

†)b(2)︸ ︷︷ ︸
=:b̃

(2)

(2.1)

to solve for x̃(2). The original solution is

x(2) = x̃(2) + Uc(AUc)
†(b(2) −Ax̃(2)).

The matrix
(
I−AUc(AUc)

†) is a projector onto N (AUc). Applying it accomplishes
a deflation effect: small eigenvalues are removed from the spectrum in (2.1), which
in turn may accelerate convergence. For more on deflated Krylov subspace methods,
see, for example, [10, 12].

Matrix-vector products with Ã are more computationally costly than matrix-
vector products with A but are not prohibitive: matrix-vector products with (AUc)

†

can be facilitated by applying once and for all a stable orthogonalization scheme
(such as modified or iterated Gram–Schmidt, Givens, or Householder) for (AUc).

The advantage of this approach is that the initial Petrov space for (2.1) is now C(2)0 =
range(AUc), which is c-dimensional upon the start of the iteration. Depending on
the space spanned by the columns of Uc, this may yield faster convergence.
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Let us briefly review a selection of various KSSR methods from the literature.
In the GCRO framework [6, 29], a matrix Cc with orthonormal columns is explicitly
formed: Cc = AUc, where Uc is a basis of search directions. Here Uc,Cc ∈ CN×c
have a small size of c, e.g., c = 20 columns. All the methods start with empty or recy-
cled matrices for Uc and Cc and during the solution process they apply periodically a
heuristic to update the columns of these matrices. New columns are overwritten, aim-
ing to accelerate convergence over the conventional Krylov method applied to (2.1).
All the methods discussed below differ almost only in the heuristic that they use to
update the columns of Uc and Cc.

GMRES-DR [16] applies a restarted GMRES variant on (2.1), where in each restart
the matrices Uc,Cc are updated by estimated Ritz vectors. This strategy can be
applied for a single system, as well as for a sequence of systems. For the case of
Hermitian systems the nested GMRES procedure is replaced by MINRES, yielding the
recycling method R-MINRES [9]. Although R-MINRES is a short-recurrence method,
the columns for Cc are still periodically updated. Thus, regardless of the short-
recursion nature of the applied Krylov method, the recycled Petrov space is still
truncated.

In GCRO-DR [18] the recycled basis matrix Uc is chosen as a basis of approximate
Ritz vectors. GCRO-OT [8] chooses Uc by another heuristic that is called optimal
truncation. There also exist recycling variants of BiCG and BiCGStab [5, 2, 1] that
effectively solve (2.1) with the respective short-recurrence method, optionally under
restarts combined with updates of Cc.

The above described KSSR methods have been shown to be very effective for many
applications; see, for example, [16, 9, 6, 5, 2, 1, 13, 24]. They can all be described

as methods for constructing and solving the system (2.1), where a full basis of C(2)0

must be stored. However, a potential disadvantage of these methods is that they
require additional storage resources and entail a nontrivial computational cost, since
fundamentally, they orthogonalize the residuals against the deflation space by using
(long) recurrences of length c.

3. Mstab: An IDR method for Krylov subspace recycling. M(s)stab(`)
is a new IDR KSSR method. It employs data that is computed by IDR(s)stab(`).

As mentioned in the introduction, the IDR framework [11] is related to BiCG-
type methods but it is based on a different point of view. Methods based on the
IDR concept compute a sequence of numerical solutions xj with residuals rj , where
rj ∈ Gj , j = 0, 1, 2, . . .. The spaces Gj are iteratively shrinking, G0 ⊃ G1 ⊃ G2 ⊃ . . .,
such that there exists j ∈ N where dim(Gj) = 0. IDR methods terminate after finitely
many iterations with the exact solution [28, 23, 11], since rj ∈ Gj = {0} ⇒ rj = 0.

At its core, an IDR method has two components:
• Initialization. An initial guess x0 with r0 = b−Ax0 is constructed such that

x0, r0 ∈ CN , U0 ∈ CN×s, V0 = AU0, where r0 ∈ G0 and range(V0) ⊂ G0.
• Iterative scheme. Given input xj , rj ∈ CN , Uj ,Vj ∈ CN×s, Vj = AUj ,

where rj ∈ Gj , range(Vj) ⊂ Gj , the iterative scheme returns data xj+`, rj+` =
b − Axj+` ∈ CN , Uj+`,Vj+` = AUj+` ∈ CN×s, such that rj+` ∈ Gj+`,
range(Vj+`) ⊂ Gj+`. The scheme uses short recurrences and stores O(N s `)
values.

The algorithm consists of performing the initialization, followed by repeatedly calling
the iterative scheme until xj , rj satisfy a termination criterion. The iterates xj are
constructed such that their associated residuals reside in successively shrinking spaces.
A concrete method can now be constructed if we can generate
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• a sequence of spaces {Gj} that satisfy a (yet undiscussed) recursive property;
• an initial guess whose residual resides in G0 and s additional vectors that also

live in G0.

3.1. IDRstab. With a recipe in hand that requires defining a sequence of spaces
and an initialization procedure, we now discuss one particular instance of an IDR-type
method: IDR(s)stab(`). It uses the following spaces.

Definition 1 (IDR spaces). Given A ∈ CN×N , r0 ∈ CN , P ∈ CN×s, {ωj}j∈N ∈
C \ {0}, where s < N and s,N ∈ N, rank(P) = s, define recursively

(3.1)
G0 := KN (A; r0),

Gj+1 := (I− ωj+1 ·A) ·
(
Gj ∩ range(P)⊥

)
∀j ∈ N0 .

The vector space Gj is called IDR space of degree j.

Theorem 1 (induced dimension reduction). For the above IDR spaces, under
the mild assumption that range(P) and KN (A; r0) do not share a nontrivial invariant
subspace of A, the following holds:

(a) Gj ⊂ Gj−1 ∀j ∈ N,
(b) dim(Gj) ≤ max{0, dim(Gj−1)− s} ∀j ∈ N.

Proof. See [26, 11] and [23, p. 1037].

Next, an initialization has to be designed to construct x0, r0,U0,V0. Since G0
is the full Krylov subspace of r0, choosing U0 as a basis for the Krylov subspace
Ks(A; r0) serves an initialization.

IDRstab [22] combines the recurrence (3.1) with the stabilization approach of
BiCGStab(`). The scalars ωj+1, . . . , ωj+` are computed so that ‖rj+`‖2 is minimized.
That is, IDRstab is a clever method that performs a higher-dimensional minimization
that defines ωj+1, . . . , ωj+` values after the next vector in the space has been com-
puted. The scheme is described in detail in [22, section 5]; see also [17, Chapter 4].

At this point the method IDR(s)stab(`) has been fully defined. Efficient imple-
mentations can be found in [3, 4, 17]. From the property rj ∈ Gj and Theorem 1 we
can determine the dimension of the Petrov spaces of IDR(s)stab(`). As is common
for conventional Krylov methods, the Petrov spaces Cj are the spaces against which
the residuals rj are iteratively orthogonalized. This definition holds also for IDR-type
methods [20]. The restriction rj ∈ Gj is equivalent to rj ⊥ Cj when defining Cj := G⊥j .

Since rj ∈ Gj ∩ KN (A; r0) holds by construction, we remove
(
KN (A; r0)

)⊥
from Cj .

In what follows we use the term associated Petrov space of Gj to refer to the Petrov
space against which a residual is orthogonal when it lives in Gj .

In the lemma that follows, the symbol \ denotes the set-minus operator.

Lemma 1 (Petrov spaces of IDR spaces). Consider the associated Petrov spaces
{Cj}j∈N0

⊂ CN to the IDR spaces {Gj}:

Cj := G⊥j \
(
KN (A; r0)

)⊥
.

Let the requirement of Theorem 1 hold. Then

dim(Cj) ≥ j s .

Proof. Since Cj is the subtraction of two orthogonal complements of vector spaces,
it is a vector space. The proof follows by induction over j ∈ N0, using dim(C0) = 0
and dim(Gj)− dim(Gj+1) ≥ s.
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After j (s + 1) matrix-vector products IDR(s)stab(`) has generated the residual
rj ∈ Gj , i.e., rj ⊥ Cj , where Cj is of about the dimension of the number of matrix-
vector products, i.e., the dimension of the search space.

3.2. M(s)stab(`). During the computational work of solving the linear system,
IDRstab repeatedly applies an iterative scheme in which data xj , rj ,Uj ,Vj is replaced
by xj+`, rj+`,Uj+`,Vj+`. Therefore, for a user-supplied value p ∈ N · ` we could
modify IDRstab such that it returns a matrix

Û := Up .(3.2)

Mstab adapts IDRstab in a way that allows for efficiently utilizing data that has been
accumulated throughout the solution process. Figure 3.1 shows how the method is
applied. The first linear system is solved using IDRstab. An additional input number
p ∈ N specifies an IDR space Gp of which data Û ∈ CN×s with range(AÛ) ∈ Gp is
returned together with P when IDR(s)stab(`) terminates. Then, M(s)stab(`) is fed

with the inputs A,b(2),x
(2)
0 ,P, Û; see Algorithm 1.

Proposition 1. Consider p ∈ N, where G(1)p 6= {0} is the IDR space of degree p
of IDRstab when solving the first linear system. Under mild assumptions, the Petrov
spaces of M(s)stab(`) for the second linear system have the dimension

dim(C(2)j ) = j s+ p (s− 1),

Algorithm 1. M(s)stab(`).

1: procedure Mstab(A,b,x0, `, tol,P, Û)
2: // 1) Initialization
3: x := x0, r := b−A x // r ∈Mp

4: U := Û, V := A U // range(V) ⊂Mp

5: // 2) Repetition
6: j := 0
7: while ‖r‖/‖b‖ > tol do
8: [x, r,U,V] :=IterativeScheme(A,P,b, `; x, r,U,V)
9: j := j + `

10: // r ∈Mp+j , range(V) ⊂Mp+j

11: end while
12: return x
13: end procedure

Fig. 3.1. Calling Mstab to solve a sequence of linear systems.
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whereas if we apply IDR(s)stab(`) to solve the second system, the dimension of its
Petrov space is only

dim(C(2)j ) = j s .

Both methods have the same computational cost per iteration.

We have discussed why a larger-dimensional Petrov space may increase the pros-
pects of faster convergence. Thus, the Petrov space associated with M(s)stab(`)
is larger than the corresponding one for IDRstab, which illustrates the potential of
M(s)stab(`). Let us characterize the sequence of nested spaces that Mstab utilizes.

Definition 2 (M-spaces). Given A ∈ CN×N , r
(1)
0 , r

(2)
0 ∈ CN , P ∈ CN×s,

{ωj}j∈N ∈ C \ {0}, p ∈ N, where s < N and s,N ∈ N, rank(P) = s, define
recursively

(3.3)

M0 := KN (A; r
(1)
0 ) +KN (A; r

(2)
0 ),

Mj+1 := (I− ωj+1 ·A) ·
(
Mj ∩ range(P)⊥

)
+ span{r(2)0 } ∀j = 0, . . . , p− 1,

Mj+1 := (I− ωj+1 ·A) ·
(
Mj ∩ range(P)⊥

)
∀j = p, p+ 1, p+ 2, . . . .

The vector space Mj is called the M-space of degree j.

One can show that M-spaces have similar properties to IDR spaces.

Theorem 2 (properties of M-spaces). Consider the IDR spaces G0,G1, . . . ,Gp
that arise from A, r

(1)
0 , P, {ωj} and the M-spaces that arise from A, r

(1)
0 , r

(2)
0 , P,

{ωj}, p. If range(P) and M0 do not share a nontrivial invariant subspace of A, then
(a) Mj ⊂Mj−1 ∀j ∈ N,
(b) dim(Mj) ≤ max{0, dim(Mj−1)− s} ∀j = p+ 1, p+ 2, . . .,

(c) Gp ⊂Mp , r
(2)
0 ∈Mp

Proof. A complete proof is given in the first author’s master’s thesis [17, Theorem
2, p. 97]. Let us provide a sketch of the proof, with the main details. Item (a) can
be shown by induction over j = 0, 1, 2, . . ..

Proving item (b) relies on making use of the following superspace:

Mj+d ⊂

(
d∏
k=1

(I− ωj+k ·A)

)
·
(
Mj ∩ K⊥d (AH; P)

)
+Kd(A; r

(2)
0 ).

The above relation is shown in [17, Lemma 4, p. 99]. It follows by induction over d =
0, 1, 2, . . . for every j ∈ N0, where [11, equation (3.11)] is used in the induction step.
Using the nontrivial invariant subspace requirement, a bound on the dimension of the
superspace is readily available. Mp does not share a nontrivial invariant subspace
with range(P) since M0 ⊃ Mp did not. Bounds for the dimension of Mj for j ≥ p
follow from the equivalence of (3.3) to (3.1).

Item (c) can be proved by induction, where Gj ⊂ Mj is shown for j = 0,
1, 2, . . . , p.

We note that the property (a) and (3.3) are identical to the properties of IDR
spaces. The reason for defining the M-spaces in this particular way is that with the
help of the data Û and by applying IDR(s)stab(`) for solving the first system, we can
design an initialization procedure forM(s)stab(`) that finds initial data x0, r0,U0,V0

which in fact lives in Mp. To achieve this, we set
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x0 := x
(2)
0 ,

r0 := r
(2)
0 ≡ b(2) −Ax

(2)
0 ,

U0 := Û,

V0 := AÛ .

Since range(AÛ) ⊂ Gp and Gp ⊂Mp it follows that r0 ∈ Mp and range(V0) ⊂Mp;
thus we have a feasible initialization.

Thus, in comparison to IDRstab, the initial data of Mstab lives not only in M0

but even in Mp. This is advantageous because the dimension of Mp is smaller than
the dimension of M0 (which is comparable to the space G0). In particular, we can
show the following result for the associated Petrov spaces of these M-spaces.

Lemma 2 (Petrov spaces of M-spaces). Consider the associated Petrov spaces
{Cj}j∈N0 ⊂ CN to the M-spaces {Mj}:

Cj :=M⊥j \
(
KN (A; r

(2)
0 ) +KN (A; r

(1)
0 )
)⊥
.

Let the requirement of Theorem 2 hold. Then

dim(Cj) ≥

{
j (s− 1), j ≤ p,
p (s− 1) + (j − p) s otherwise.

Proof. The proof follows by induction over j ∈ N0, using dim(C0) = 0 and the
lower estimate for dim(Mj)− dim(Mj+1) from Theorem 2.

Since M(s)stab(`) does not start from M0 but from Mp, the Petrov space does
not start from C0 but rather from Cp, so the initial Petrov space of M(s)stab(`)
has p (s − 1) dimensions. The Petrov space of IDR(s)stab(`) at iteration p had p s
dimensions. Thus, a fraction ϑ = (s − 1)/s of the overall Petrov dimensions avail-
able at that moment during IDRstab is recycled by Mstab, where s is a method
parameter.

4. Practical choice of p. As explained in section 3.2, Mstab is initiated by
calling IDRstab with an additional input parameter p, which determines the matrix Û
defined in (3.2). As Lemma 2 shows, the larger p is, the larger the associated Petrov
spaces are, which is beneficial. However, p cannot be arbitrarily large because U0 in
the initialization (for both IDRstab andMstab) must have full rank. Since the columns

of Û are necessarily in the space A−1Gp and dim(Gp) ≤ dim(KN (A; r
(1)
0 )) − p s,

it follows that the requirement rank(Û) = s ⇒ dim(Gp) ≥ s and the grade of

KN (A; r
(1)
0 ) imply

p ≤
dim

(
KN (A; r

(1)
0 )

)
s

− 1.(4.1)

Clearly, this cannot typically be a practical requirement, as it would necessitate an

accurate prediction of ν := dim
(
KN (A; r

(1)
0 )

)
, the grade of the full Krylov subspace

of the first linear system. In some practical settings we have observed that replacing
ν by the number of matrix-vector products where IDR(s)stab(`) for the first system
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seems to be entering a superlinear phase, and taking p to be the upper bound in (4.1),
yields a value (for p) that gives rise to a good performance of M(s)stab(`).

From a practical point of view, we need to have an algorithmic recipe for select-
ing p. We go about it in the following way. For a given threshold τ ∈ (0, 1), IDRstab
is adapted so that p is the maximal integer value that satisfies

(4.2) ‖rp‖2/‖b‖2 ≥ τ.

Taking p as large as possible would maximize the dimension of C(2)0 , which is desirable
for obtaining speed-up. At the same time, the threshold makes sure in a quantitative
way that rp 6= 0 ⇒ Gp 6= {0} holds and thus (4.1) is satisfied. In practice, we select

the value for p within IDRstab in a greedy fashion. We start with p := 0, Û := 0N×s.
Each time a new iterate xj , rj ,Uj ,Vj satisfies the constraint (4.2) we overwrite p :=

j, Û := Uj . The threshold τ should not be chosen too small, to avoid a damaging

effect of roundoff errors in Û. Values in the range [10−2, 10−4] seem reasonable.
In what follows we illustrate some theoretical and practical convergence prop-

erties of M(s)stab(`). Suppose we need to solve two linear systems in sequence.

If the two corresponding Krylov spaces have the grades ν := dim
(
KN (A; r

(1)
0 )
)
,

ν̂ := dim
(
KN (A; r

(1)
0 ) + KN (A; r

(2)
0 )
)
, then IDR(s)stab(`) terminates for the second

system after at most dν̂/se (s + 1) matrix-vector products. Choosing p that satisfies
(4.1), M(s)stab(`) in contrast converges for the second system after at most⌈

ν̂ − p (s− 1)

s

⌉
(s+ 1)

matrix-vector products. For p = bν/s− 1c the expression can be bounded as⌈
ν̂ − p (s− 1)

s

⌉
(s+ 1) ≤

⌈
ν

s (s− 1)
+
ν̂ − ν
s

⌉
(s+ 1) .

This is potentially interesting theoretically, because we are not aware of other Krylov-
type methods that, when restricted to O(N s) storage, are capable of terminating in
O(N/s) matrix-vector products.

In the following experiments we show the influence of various choices of the pa-
rameter p on the convergence behavior of Mstab. The first experiment investigates
the termination behavior, whereas the second experiment provides a showcase for
superlinear convergence.

Example 4.1. We apply IDR(4)stab(1) and M(4)stab(1) to solve two systems as
in (1.2), where

A = tridiag(2, 3, 1) ∈ R100×100 , b(1) = e1 , b(2) = e2 , x
(1)
0 = x

(2)
0 = 0 .(4.3)

We solve b(1) with GMRES and IDR(4)stab(1); b(2) is solved with M(4)stab(1) for
three different values of p. In Figure 4.1 we show the results. The residuals rp are
marked in the figure for each value of p by +, ×, �.

From GMRES’s curve we see dim KN (A; b(1)) = 100, and thus IDR(4)stab(1)
terminates after 125 MV-s; cf. Theorem 1(b).
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Fig. 4.1. Convergence graphs of GMRES, IDR(4)stab(1), and M(4)stab(1) for the sequence
from Example 4.1 for different choices of p. The residuals rp in IDRstab’s convergence graph are
marked by +, ×, �.

For p = 20 Theorem 2(b) says thatMstab must terminate after 50 MV-s (because
then the M-space has dimension zero), which it does. For p = 24 Theorem 2(b)
guarantees convergence after at most 35 MV-s, which is better. p = 24 is the largest p
that does not violate (4.1). For p = 26 performance degrades. The convergence curve

of GMRES for b(2) is roughly identical to that for b(1).
From the example we see that larger values for p are likely to achieve earlier

termination and that as a rule of thumb, a value of p that is large enough but at the
same time complies with the upper bound (4.1) may give rise to a good convergence
behavior. That said, in practice even if the optimal value of p is not determined
precisely, nearby values still give rise to decent performance.

In contrast to the smooth convergence graph of GMRES, the residuals of IDRstab
and Mstab converge in a nonmonotonic fashion. This is expected; it is inherited
from BiCG-type methods. In comparing IDRstab to Mstab, we observe that the
residual norm for the latter initially spikes. Eventually Mstab converges faster than
IDRstab, but it takes a few iterations for the residual norm to settle. A possible
explanation for this, in this particular instance, may be that since Mstab starts
iterating from r0 ∈ Mp, only the scalars ωp+1, ωp+2, . . . are available, whereas for
IDRstab the scalars ω1, ω2, . . . , ωp, ωp+1, ωp+2, . . . can be chosen. Mstab then chooses
ωp+1, ωp+2, . . . to stabilize the residual norms, which compensates for the initial spike
in subsequent iterations. We note, however, that in other numerical experiments we
have not observed a similar initial spike of the residual norm forMstab. Obtaining a
bound on the residual norm for early iterations is desirable but would require further
assumptions, since convergence theory for Mstab relies on convergence theory for
BiCG-type methods in the general case.

Example 4.2. Let us consider the two linear systems

A =

[
AI 0
0 AII

]
, b(1) =

(
bI

bII

)
, b(2) ≡ b(1) , x

(1)
0 = x

(2)
0 = 0 ,
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Fig. 4.2. Convergence graphs of GMRES, IDR(16)stab(2) and M(16)stab(2) for the sequence
from Example 4.2 for different values of p. The residuals rp in IDRstab’s convergence graph are
marked by +, ×, �.

where AI ∈ R4096×4096 and bI ∈ R4096 are from [22, section 6.2], which is a discretiza-
tion of a two-dimensional (2D) convection-dominated elliptic PDE, and

AII = tridiag(2, 3, 1) ∈ R3×3 , bII = δ e1 ∈ R3 .

In Figure 4.2 we consider this case for δ = 10−3. Even though the matrix is block
diagonal with a small 3×3 second diagonal block and the blocks are obviously decou-
pled, the effect of the small parameter δ is detrimental and potentially global, because
the optimal polynomial that is constructed throughout the iteration of a minimum
residual solver (such as GMRES) attempts to resolve very small roots. This, in turn,
has an effect on the overall speed of convergence; it is associated with spectral struc-
ture, independent of the second diagonal block size. As a result, stagnation occurs
at a relative residual which we observe to be approximately 10−5 δ. We use that to
model a stagnation phase and test the ability of our recycling method to overcome
the stagnation and yield convergence.

In contrast to the previous example, where there was essentially no progress
in residual norm reduction until the last iteration and the grade was equal to the
dimension of the linear system, in this example we cannot easily find an estimate for
the grade to apply (4.1). We therefore opt for the algorithmic choice of p that we
have described in the discussion that followed (4.2). For τ between 10−2 and 10−5 we
obtain values for p between 14 and 16.

In Figure 4.2 we see the convergence of Mstab for three different choices of p,
namely, p = 8, 14, 16 . The residuals rp are marked in the figure by +, ×, �. We
observe that for p = 8 the method yields superlinear convergence at a later iterate
than for p = 14. For p = 14 and p = 16 the methods converge in a similar way. The
method for p = 14 stagnates at a slightly smaller residual (≈ 10−8) than the variant
with p = 16 (≈ 10−6).

5. Large-scale numerical experiments. We compare Mstab against the
Krylov recycling methods RBiCGStab [1] and GCRO-DR [18]. We also include
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Table 5.1
Computational cost of methods and parameters used in the numerical experiments: Number of

DOTs and AXPYs (BLAS-1 operations) per matrix-vector product (MV). RBiCGStab is BiCGStab
applied to (2.1) with c = 20 deflation vectors. The last column lays out how much storage in total
the respective methods require in the number of vectors of length N .

Method DOTs/MV AXPYs/MV Stored N -vectors
RBiCGStab (c = 20) 22 33 47
M(6)stab(2) 27.8 29.4 29
M(8)stab(2) 35.7 36.7 37
GCRO-DR(15, 10) 65.7 92.8 42
GCRO-DR(30, 20) 124.5 176.5 72

comparisons with the standard Krylov methods GMRES, PCG, IDRstab. Since those
methods do not utilize a recycling strategy, we expect them to be outperformed by
the recycling methods in the case of multiple right-hand sides. Our code is written in
MATLAB, which has its limitations in terms of providing a precise picture of com-
putational cost in large-scale settings but is nonetheless capable of generating useful
evidence on the computational merits of the various methods that are tested.

For the iterative scheme inMstab and IDRstab we use the robust implementation
[17, Algorithm 26] with ` ∈ {1, 2} adaptively.1 The parameter choice m = 30, k = 20
for GCRO-DR is as recommended in [18]. Of this method we were provided with an
implementation by the second author of [18]. In RBiCGStab we use c = 20 deflation
vectors. We note that GCRO-DR and RBiCGStab are methods for a more general
setting, namely, sequences where also the system matrix changes. We study the
relative residuals with respect to the number of computed matrix-vector products
(#MV) and the computation times.

Table 5.1 shows the average computational cost and the required storage of
each tested method. PCG and BiCGStab are cheaper per iteration than RBiCGStab,
IDR(s)stab(`) and M(s)stab(`). GCRO-DR entails additional orthogonalizations and
requires an additional deflation basis, compared to Mstab. In general, for larger val-
ues of s, ` and m, k the methods require more computation time for each MV but
potentially a smaller #MV in total.

In each test case we solve a sequence (1.1) with at least two right-hand sides

b(1),b(2). As described at the beginning of section 3.2 and illustrated in Figure 3.1,
IDR(s)stab(`) generates Û when it solves the first system. Then M(s)stab(`) uses it
when solving the subsequent linear systems. In each convergence figure the residual
rp on IDRstab’s convergence graph is marked by a circle. In all the experiments p is
algorithmically chosen using the threshold τ = 10−3.

5.1. A 2D elliptic convection-diffusion-reaction problem. The following
problem is from [22, section 6.4(b)], but with a finer mesh. We consider the unit square
Ω = (0, 1)2 and apply a centered finite difference discretization of the following elliptic
PDE on a Cartesian mesh of 350×350 interior points, resulting in a real nonsymmetric
linear system of N = 122, 500 equations:

−∆u+
1000√

2
(ux + uy)− 1000u = f in Ω,

u = g on ∂Ω.

1In the legends of our figures we state the maximum value of ` that was used.
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Fig. 5.1. Convergence graphs of GMRES, IDR(6)stab(2), and M(6)stab(2), showing the num-
ber of matrix-vector products versus normalized residuals for the 2D convection-diffusion-reaction
problem. The circle signifies rp.

We consider a sequence of two right-hand sides b(1) and b(2) that are chosen such
that the discrete solutions on the mesh points are, respectively,

u(1)(x, y) = sin(x) sin(y) exp(x+ y);

u(2)(x, y) = sin(x+ y) exp(x+ y).

The initial guesses are x
(1)
0 = 0 and x

(2)
0 = αx(1), where α is a scalar so that ‖b(2) −

A x
(2)
0 ‖2 is minimal; we say it is a residual-optimal initial guess. Choosing the second

initial guess in this way is reasonable because it is in line with the spirit of modern
iterative methods, which typically aim to reduce the norm of the residual.

The convergence graphs are shown in Figure 5.1. IDRstab takes approximately
88 seconds to solve each of the two linear systems. Mstab achieves a speed-up over
IDRstab of a factor of approximately 3.6 in #MV and a similar factor in computation
time: approximately 24 seconds.

5.2. A preconditioned 2D elliptic surface problem. In [27], a finite element
discretization of an elliptic PDE model for the ocean of planet earth is presented. This
discretization leads to one linear system of N = 169,850 equations for each month
with a nonchanging mildly nonsymmetric system matrix and changing right-hand-
side vectors. The right-hand sides arise from a time-dependent wind-field model. The
triangulation uses uniform spherical coordinates, resulting in bad conditioning of the
system matrix.

For preconditioning we use ILUTP with drop tolerance 10−2. The ratio of non-
zeros in the preconditioner over the system matrix is 1.62 . We apply GMRES,
BiCGStab, IDR(8)stab(2), RBiCGStab, and M(8)stab(2) to the split preconditioned
system, where the permutation matrix is merged into the left factor. For the deflation
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Fig. 5.2. Convergence graphs of GMRES, BiCGStab, RBiCGStab with c = 20 deflation vectors,
IDR(8)stab(2), and M(8)stab(2), showing the number of matrix-vector products versus normalized
residuals for the preconditioned 2D surface problem. The circle signifies rp.

basis in RBiCGStab we use c = 20 Ritz vectors, which we compute from the absolute
smallest eigenvalues of the Arnoldi basis of GMRES.

Figure 5.2 shows the numerical results. We observe that IDR(8)stab(2) is close to
GMRES in terms of speed of convergence. M(8)stab(2) yields a speed-up over IDRstab
of 1.8 in #MV and computation time (approximately 68 second versus 127 seconds).
The deflation in RBiCGStab initially yields a speed-up compared to BiCGStab. How-
ever, at a relative residual of 10−4 the method stagnates, and its overall computational
time is approximately 230 seconds. The deflation introduces overhead (cf. Table 5.1)
of ≥ 10 AXPYs and DOTs per MV, leading to a longer computation time in total.
GCRO-DR(30, 20) did not converge for this problem.

5.3. A 3D parabolic convection-diffusion-reaction problem. This prob-
lem is an instationary extension of [22, section 6.2]. We solve on Ω = (0, 1)3 a
discretization of the following parabolic PDE:

ut −∆u+ 1000 (xux + y uy + z uz) + 10u = 1 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(t = 0, ·) = 0 in Ω.

For the spatial discretization we construct finite volumes on a 65× 65× 65 grid. The
temporal discretization is done by implicit Euler with time step ∆t = 0.1 . This
results in a sequence of nonsymmetric linear systems of N = 262,144 equations. x(ι)

holds the temporal increment of the solution at the ιth time step. Residual-optimal
initial guesses are used.

Figure 5.3 shows the convergence results of GMRES, IDRstab, and the recycling
methodsMstab and GCRO-DR for the first three systems. Both of the recycling meth-
ods improve upon GMRES and have a similar convergence behavior in terms of residual
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Fig. 5.3. Convergence graphs of GMRES, IDR(6)stab(2), M(6)stab(2), and GCRO-DR(30,20),
showing the number of matrix-vector products versus normalized residuals for the 3D parabolic
convection-diffusion-reaction problem with a positive shift. The circle signifies rp.

reduction over the number of matrix-vector products. However, Mstab is faster
in computation time because it entails less computational overhead; cf. Table 5.1.
Indeed, in this case Mstab takes approximately 76 seconds to converge, whereas
IDRstab takes approximately 166 seconds. GCRO-DR is significantly outperformed
in this case in terms of computation times. The matrices in this example are very
sparse (pentadiagonal), and thus #AXPY and #DOT play an important role in com-
putation time; see Table 5.1. If the matrices were denser, then computation time
would be dominated by #MV, which is similar for both methods. Consequently,
for denser problems the overall performance of GCRO-DR and Mstab is likely to be
similar.

5.4. A 2D parabolic diffusion problem. We discretize the following parabolic
PDE, where Ω is shown in Figure 5.4:

ut −∆u = 1 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(t = 0, ·) = 0 in Ω.

For the temporal discretization we choose the implicit Euler method with time step
∆t = 0.1. For the spatial discretization we use piecewise linear finite elements on the
tetrahedral mesh given in Figure 5.4 . The mesh has N = 26,398 nodes and 53,510
finite elements. The systems are preconditioned by incomplete Cholesky factorization
with fill-in of first level. Residual-optimal initial guesses are used.

The linear systems here are symmetric positive definite, and it may be natural
to restrict our attention to PCG and its variants. But since Mstab is a short-term
recurrence method, too, its ability to recycle data makes it superior in this case to
PCG. In Figure 5.5 we observe that Mstab yields convergence within about half of
the number of iterations of PCG for all but the first right-hand side.
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Fig. 5.4. Scaled stationary solution (left) and tetrahedral mesh (right) for the finite elements
discretization of the parabolic diffusion problem.

Fig. 5.5. Convergence graphs of PCG, IDR(6)stab(2), and M(6)stab(2), showing the number
of matrix-vector products versus normalized residuals for the 2D parabolic diffusion problem. The
circle signifies rp.

6. Concluding remarks. Mstab is a new IDR-type method that is based on a
generalized theory of IDR. We have presented theoretical results that provide some
insight into the merits of this method and presented test cases in which the method
converges faster than competing methods.
Mstab of degree ` inherits the properties of BiCGStab(`). Recent advances in

the theoretical and experimental understanding of BiCGStab(`) and IDRstab indicate
that these methods can handle strongly nonsymmetric systems very well, and we
observe that Mstab has similar properties. Our numerical experiments indicate that
for sparse and highly nonsymmetric problems arising from discretized elliptic and
parabolic PDE with convection terms, the approach taken in this paper is effective.
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There are a few possible directions for future work. The choice of the parameter
p requires careful attention, and it is desirable to provide additional evidence that the
method is not overly sensitive to it. Another question to investigate is the ability of
Mstab to handle strongly indefinite linear systems. We suspect that the answer to
this question is tied to robustness of bi-Lanczos methods at large, and the key may
be the design of robust and highly efficient preconditioners.

In contrast toMstab, GCRO-DR has the advantage that it is suitable for treating
the more general problem where not only the right-hand sides but also the system
matrices change. It would be highly desirable to adapt Mstab to situations not
currently covered.
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