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SUMMARY

We develop a fully scalable parallel implementation of an iterative solver for the time-harmonic Maxwell
equations with vanishing wave numbers. We use a mixed finite element discretization on tetrahedral
meshes, based on the lowest order Nédélec finite element pair of the first kind. We apply the block diagonal
preconditioning approach of Greif and Schötzau (Numer. Linear Algebra Appl. 2007; 14(4):281–297),
and use the nodal auxiliary space preconditioning technique of Hiptmair and Xu (SIAM J. Numer. Anal.
2007; 45(6):2483–2509) as the inner iteration for the shifted curl–curl operator. Algebraic multigrid is
employed to solve the resulting sequence of discrete elliptic problems. We demonstrate the performance
of our parallel solver on problems with constant and variable coefficients. Our numerical results indicate
good scalability with the mesh size on uniform, unstructured, and locally refined meshes. Copyright �
2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the time-harmonic Maxwell equations in mixed form in a lossless medium with perfectly
conducting boundaries: find the vector field u and the scalar multiplier p such that

∇×�−1
r ∇×u−k2�ru+�r∇ p = f in �, (1a)

∇ ·(�r u)= 0 in �, (1b)

n�×u = 0 on �, (1c)

p = 0 on �. (1d)

Here �∈R3 is a polyhedral domain, which we assume is simply connected with a connected
boundary �=��, f is a generic source and n� denotes the outward unit normal on �. The
electromagnetic parameters �r and �r denote the relative permeability and permittivity, respectively,
which are scalar functions of position, uniformly bounded from above and below:

0<�min��r��max<∞ and 0<�min��r��max<∞.
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The wave number k is given by k2=�2�0�0, where �0=4�×10−7 (H/m) and �0= 1
36� ×10−9(F/m)

are the permeability and permittivity in vacuum, respectively, and � �=0 is the angular frequency.
We assume throughout that k2�r is not a Maxwell eigenvalue.

The mixed formulation is a natural and well-established way of dealing with the high nullity
of the curl–curl operator. It yields a stable and well-posed problem for vanishing wave numbers
[1–5]. In this paper we thus focus on the case

k�1

including k=0. The latter case is of much interest in many applications, such as magnetostatics [6].
The mixed formulation readily allows for non-divergence-free data. Large values of k are of
extreme importance in wave propagation and other applications, but we have not yet studied our
proposed technique for such ranges.

Finite element discretization using Nédélec elements of the first kind [7] for the approximation
of u and standard nodal elements for p yields a saddle-point linear system of the form(

A−k2M BT

B 0

)
︸ ︷︷ ︸

K

(
u

p

)
=
(
f

0

)
. (2)

The saddle-point matrix K is of size (m+n)×(m+n) and is symmetric indefinite. The matrix
A∈Rn×n corresponds to the �−1

r -weighted discrete curl–curl operator; B∈Rm×n is the �r -weighted
divergence operator with full row rank; M ∈Rn×n is the �r -weighted vector mass matrix; f ∈Rn

is now the load vector associated with the right-hand side in (1a), and the vectors u∈Rn and
p∈Rm represent the finite element coefficients. Note that A is symmetric positive-semidefinite
with nullity m.

The saddle-point matrix problem (2) inherits the properties of the continuous formulation: it
is stable in the limit case k=0 and directly deals with the discrete gradients, without a need for
further postprocessing.

In [8], Schur complement-free block diagonal preconditioners were designed for iteratively
solving system (2) with constant coefficients. These preconditioners are motivated by spectral
equivalence properties. Each iteration of the scheme requires inverting a scalar Laplacian and
solving a linear system with A+�M , where � is a given positive parameter. There are several effi-
cient solution methods for doing so. When a hierarchy of structured meshes is available, geometric
multigrid can be applied [9]; for unstructured meshes, algebraic multigrid (AMG) approaches have
been explored in [10–12], using the smoothers introduced in [9]. See also [13, 14] for an analysis
of multigrid methods and overlapping Schwarz preconditioners for A−k2M . Recently, a highly
efficient nodal auxiliary space preconditioner has been proposed in [15]; it reduces solving for
A+�M into essentially two scalar elliptic problems on the nodal finite element space. In [16],
a massive parallel implementation of the nodal auxiliary space preconditioners was developed,
which can also deal with the limit case �=0, using a gradient projection approach.

In this paper we extend our work in [8] and develop a fully scalable parallel implementation
for efficiently solving (2) in complex domains in three dimensions. The outer iterations are based
on the approach in [8], extended to the variable coefficient case, and the inner iterations are
solved using the method of Hiptmair and Xu [15]. We use algebraic multigrid solvers for each
elliptic problem, and accomplish almost linear complexity in the number of degrees of freedom.
For our implementation, we use state-of-the-art software packages (PETSc [17], Hypre [18], and
METIS [19]) to optimize the performance of our solvers. We have also developed our own mesher
for structured meshes, and we use TetGen [20] for unstructured and locally refined meshes. We
present an extensive set of numerical experiments, solving problems with several millions degrees
of freedom. Our numerical results scale well with the mesh size on uniform, unstructured, and
locally refined meshes.

The remainder of the paper is structured as follows. In Section 2 we analyze the properties
of the discrete operators. The preconditioning approach is presented in Section 3. In Section 4
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we provide numerical examples to demonstrate the scalability and performance of the proposed
solvers. Finally, we draw some conclusions in Section 5.

2. FINITE ELEMENT DISCRETIZATION

To discretize problem (1), we partition the domain � into shape-regular tetrahedra of a sufficiently
small mesh size h. The electric field is approximated with Nédélec elements of the first family and
the multiplier is approximated with nodal elements of order � [4, 7]. We denote the two resulting
finite element spaces by Vh and Qh , respectively. On Vh we enforce the homogeneous boundary
condition (1c), whereas on Qh we impose (1d). Figure 1 shows the degrees of freedom on the
lowest order Nédélec elements in 2D and 3D.

Let 〈� j 〉nj=1 and 〈�i 〉mi=1 be finite element bases for the spaces Vh and Qh respectively:

Vh = span〈� j 〉nj=1, Qh = span〈�i 〉mi=1. (3)

Then, the weak formulation of (1) yields a linear system of the form (2), see [4, 8], where the
entries of the matrices and the load vector are given by

Ai, j =
∫

�
�−1
r (∇×� j )·(∇×�i )dx, 1�i, j�n,

Mi, j =
∫

�
�r� j ·�i dx, 1�i, j�n,

Bi, j =
∫

�
�r� j ·∇�i dx, 1�i�m, 1� j�n,

fi =
∫

�
f ·�i dx, 1�i�n.

Let us introduce a few additional matrices that play an important role in this formulation. First,
note that ∇Qh ⊂Vh , and define the matrix C ∈Rn×m by

∇� j =
n∑

i=1
Ci, j�i , j =1, . . . ,m. (4)

For a function qh ∈Qh given by qh =∑m
j=1q j� j , we then have

∇qh =
n∑

i=1

m∑
j=1

Ci, j q j�i ,

(a) (b)

Figure 1. A graphical illustration of the degrees of freedom for the lowest order Nédélec
element in 2D and 3D. Degrees of freedom are the average value of tangential component

of the vector field on each edge. (a) 2D and (b) 3D.
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so Cq is the coefficient vector of ∇qh in the basis 〈�i 〉ni=1. In the lowest order case, the entries
of C are

Ci, j =

⎧⎪⎨
⎪⎩
1 if node j is the head of edge i,

−1 if node j is the tail of edge i,

0 otherwise.

Define the �r -weighted scalar Laplacian on Qh as L= (Li, j )mi, j=1∈Rm×m with

Li, j =
∫
�

�r∇� j ·∇�i dx . (5)

Finally, we set Q= (Qi, j )mi, j=1∈Rm×m as the �r -weighted scalar mass matrix on Qh , that is

Qi, j =
∫
�

�r� j ·�i dx .

Let us state a few stability results that extend the analysis in [8] from constant material coefficients
to the variable coefficient case.

Denote by 〈·, ·〉 the standard Euclidean inner product in Rn or Rm , and by null(·) the null space
of a matrix. For a given positive-(semi)definite matrix W and a vector x , we define the (semi)norm

|x |W =
√

〈Wx, x〉.
Proposition 2.1
The following stability properties of the matrices A and B hold:

(i) Continuity of A:

|〈Au,v〉|�|u|A|v|A, u,v∈Rn.

(ii) Continuity of B:

|〈Bv,q〉|�|v|M |q|L , v∈Rn, q∈Rm .

(iii) The matrix A is positive definite on null(B) and

〈Au,u〉�	|u|2M , u∈null(B)

with a stability constant 	 which is independent of the mesh size.
(iv) The matrix B satisfies the discrete inf–sup condition

inf
0�=q∈Rm

sup
0�=v∈null(A)

〈Bv,q〉
|v|M |q|L �1.

Proof
The first two properties follow directly from the Cauchy–Schwarz inequality.

To show (iii), we first recall the discrete Poincaré–Friedrichs inequality from [3, Theorem 4.7].
Let u∈null(B) and let uh be the associated finite element function. Then, we have∫

�
|∇×uh |2 dx�


∫
�

|uh |2 dx,

where 
>0 is independent of the mesh size.
Consequently, we bound 〈Au,u〉 as follows:

〈Au,u〉=
∫

�
�−1
r |∇×uh |2 dx� 


�max�max
|u|2M =	|u|2M ,

where 	=
/(�max�max).
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To prove (iv), let 0 �=qh ∈Qh and v be the coefficient vector of vh =∇qh in the basis 〈�i 〉ni=1.
Then it follows that v∈null(A) and

sup
0�=v∈null(A)

〈Bv,q〉
|v|M |q|L = sup

0�=v∈null(A)

∫
� �rvh ·∇qh dx(∫

� �rvh ·vh dx
) 1
2 |q|L

�
|q|2L
|q|2L

=1,

which shows (iv). �

The properties stated in Proposition 2.1 and the theory of mixed finite element methods [21,
Chapter 2] ensure that the saddle-point system (2) is invertable (provided that the mesh size is
sufficiently small).

3. THE SOLVER

To iteratively solve the saddle-point system (2) we use MINRES [22] as an outer solver. This is
discussed in Section 3.1. To solve each outer iteration, we apply an inner solver based on [15]
and presented in Section 3.2. In Section 3.3, we outline the complete solution procedure.

3.1. The outer solver

Following the analysis for constant coefficients in [8], we propose the following block diagonal
preconditioner to iteratively solve (2):

PM,L =
(
PM 0

0 L

)
, (6)

where

PM = A+�M (7)

and

�=1−k2>0 (8)

since k�1.
By proceeding as in [8, Theorem 5.2], we immediately have the following result; see [23] for

further details.

Theorem 3.1
Suppose k�1, the preconditioned matrix P−1

M,LK has two eigenvalues �+ =1 and �− =
−1/(1−k2), each with algebraic multiplicity m. The remaining eigenvalues satisfy the bound

	−k2

	+1−k2
<�<1, (9)

where 	 is the constant in Proposition 2.1 (iii).

3.2. The inner solver

The overall computational cost of using PM,L depends on the ability to efficiently solve linear
systems whose associated matrices are PM in (7) and L in (5).

The linear system L arises from a standard scalar elliptic problem, for which many effi-
cient solution methods exist. On the other hand, efficiently inverting PM is the computational
bottleneck in the inner iteration. Recently, Hiptmair and Xu proposed effective auxiliary space
preconditioners for linear systems arising from conforming finite element discretizations of
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H (curl)-elliptic variational problems [15], based on fictitious spaces as developed in [24, 25]. The
preconditioner is

P−1
V =diag(PM )−1+P(L̄+�Q̄)−1PT+�−1C(L−1)CT, (10)

with � as in (8). The matrix L̄=diag(L̂, L̂, L̂) is the �−1
r -weighted vector Laplacian on Q3

h , where
L̂ denotes the �−1

r -weighted (rather than �r -weighted) version of L in (5). Furthermore, the matrix
Q̄=diag(Q,Q,Q) is the �r -weighted vector mass matrix on Q3

h , C is the null-space matrix in
(4), and P is the matrix representation of the nodal interpolation operator �curl

h :Q3
h →Vh . In the

lowest order case, the operator �curl
h is based on the path integrals along edges; for a finite element

function wh ∈Q3
h it is given by

�curl
h wh =∑

j

(∫
e j

wh ·d�s
)

� j ,

where e j is the interior edge associated with the basis function � j . We have P= [P (1), P (2), P (3)],

where P ∈Rn×3m and P (k) are matrices in Rn×m . The entries of P (k) are given by

P (k)
i, j =

{
0.5di t

(k)
i if node j is the head/tail of edge i,

0 otherwise,

where t (k)i is the kth component of the unit tangential vector on edge i and di is the length of
edge i .

In the constant coefficient case, it was shown in [15, Theorem 7.1] that for 0<��1, the spectral
condition number �2(P

−1
V PM ) is independent of the mesh size. Although there seems to be

no theoretical analysis available for the variable coefficient case, the preconditioner PV was
experimentally shown to be effective in this case as well [15].

3.3. Solution algorithm

We run preconditioned MINRES as the outer solver for the linear system (2). The preconditioner
is the block diagonal matrix PM,L , defined in (6). For each outer iteration, we need to solve a
linear system of the form (

PM 0

0 L

)(
v

q

)
=
(
c

d

)
. (11)

Two Krylov subspace solvers are applied as the inner iterations. The linear system associated with
the (1,1) block

PMv=c (12)

is solved using conjugate gradient (CG) with the preconditioner PV , which is defined in (10). In
each CG iteration, we need to solve a linear system of the form

PVw=r. (13)

Following (10), this can be done by solving the two linear systems

(L̄+�Q̄)y = s, (14a)

L̄z = t, (14b)

where s= PTr and t=CTr . We run one AMG V-cycle to compute y and z, and we set

w=diag(PM )−1r+Py+�−1Cz. (15)
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Algorithm 1 Solve Kx =b; see (2)
1: initialize MINRES for (2)
2: while MINRES not converged do
3: set c, d to be the right-hand-side for the current inner iteration; see (11)
4: initialize CG for (12)
5: while CG not converged do
6: run one AMG V-cycle to approximate (L̄+�Q̄)−1 and update y in (14a)
7: run one AMG V-cycle to approximate L−1 and update z in (14b)
8: update w in (13), using (15)
9: update v in (12)

10: end while
11: initialize CG for (16)
12: while CG not converged do
13: apply AMG preconditioner to approximate L
14: update q in (16)
15: end while
16: update x in (2)
17: end while

The linear system associated with the (2,2) block of (11)

Lq=d (16)

is solved using CG with an AMG preconditioner.
Our approach is summarized in Algorithm 1. The inner iteration for (12) is initialized in line

4 and laid out in lines 5–10, where CG iterations preconditioned with PV are used. The inner
iteration for (16) is initialized in line 11 and provided in lines 12–15, where a CG scheme with an
AMG preconditioner is used. Once the two iterative solvers converge, we update the approximated
solution x for the next outer iterate in line 16.

4. NUMERICAL EXPERIMENTS

This section is devoted to assessing the numerical performance and parallel scalability of our
implementation on different test cases. We use our own mesher to generate structured meshes,
TetGen [20] for unstructured and locally refined meshes and METIS [19] to partition the elements
into non-overlapping subdomains. We use PETSc [17] as the framework of our iterative solution
code. For AMG preconditioning, we use BoomerAMG [26], which is part of the Hypre [18]
package. In all experiments, the relative residual of the outer iteration is set to 1e–6 and the relative
residual of the inner iteration is set to 1e–8, unless explicitly specified. The code is executed on a
cluster with up to 12 nodes. Each node has eight 2.6GHz Intel processors and 16GB RAM.

The following notation is used to record our results: np denotes the number of processors of the
run, i ts is the number of outer MINRES iterations, i tsi1 is the number of inner CG iterations for
solving PM , i tsi2 is the number of CG iterations for solving L , while ts and ta denote the average
times needed in seconds for the solve phase and the assemble phase, respectively. The parameter
tAMG is the time spent in seconds in one BoomerAMG V-cycle for solving L .

4.1. Example 1

The first example is a simple domain with a structured mesh. The domain is a cube, �= (−1,1)3.
We test both homogeneous and inhomogeneous coefficient cases. In the homogeneous case, we set
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Figure 2. Example 1. Distribution of material coefficients.

Figure 3. Example 1. (a) Structured mesh and (b) grid C1 partitioned on three processors.

�r = �r =1. In the variable coefficient case, we assume that there are eight subdomains in the cube
as shown in Figure 2 and each subdomain has piecewise constant coefficients. The coefficients are

�r = �r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1a if x<0 and y<0 and z<0,

2a if x>0 and y<0 and z<0,

3a if x<0 and y>0 and z<0,

4a if x>0 and y>0 and z<0,

5a if x<0 and y<0 and z>0,

6a if x>0 and y<0 and z>0,

7a if x<0 and y>0 and z>0,

8a otherwise,

(17)

where a is a constant. We set the right-hand side so that the solution of (1) is given by

u(x, y, z)=

⎛
⎜⎝
u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

⎞
⎟⎠=

⎛
⎜⎜⎝
(1− y2)(1−z2)

(1−x2)(1−z2)

(1−x2)(1− y2)

⎞
⎟⎟⎠ (18)

and

p(x, y, z)= (1−x2)(1− y2)(1−z2). (19)

In this example, the homogeneous boundary conditions in (1) are satisfied.
Uniformly refined meshes are constructed shown in Figure 3(a). The number of elements and

matrix sizes are given in Table I. Figure 3(b) shows how grid C1 is partitioned across three
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Table I. Example 1. Number of elements (Nel) and the size of
the linear systems (n+m) for grids C1–C3.

Grid Nel n+m

C1 7146096 9393931
C2 14436624 19034163
C3 29478000 38958219

Table II. Example 1. Partitioning of grid C1.

Processor Local elements Local DOFs

1 2 359 736 3 119 317
2 2 424 224 3 199 406
3 2 362 136 3 075 208

Table III. Example 1. Iteration counts and computation times for various grids, k=0.

np Grid i ts i tsi1 i tsi2 ts (s) ta (s) tAMG (s)

3 C1 5 34 7 1,473.58 44.83 16.03
6 C2 5 35 9 1,634.17 45.26 20.55
12 C3 5 34 9 1,879.06 48.93 25.39

Table IV. Example 1. Iteration counts for various values of k.

k=0 k= 1
8 k= 1

4

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

3 C1 5 34 7 5 34 7 5 34 7
6 C2 5 35 9 5 35 9 5 35 9
12 C3 5 34 9 5 34 9 5 34 9

processors. Elements with the same color are stored on the same processor. Elements with the
same color are clustered together, which means that the communication cost is minimal. Table II
shows the local numbers of elements and degrees of freedom on each processor for grid C1. The
number of degrees of freedom on each processor is roughly the same, which indicates that the
load is balanced.

In our first experiment, material coefficients are homogeneous. Scalability results are shown in
Table III and the results with different values of k are shown in Table IV. To test scalability, we
refine the mesh and increase the number of processors in a proportional manner, so that the problem
size per processor remains constant. Full scalability would then imply that the computation time
also remains constant. We observe in Table III that when the mesh is refined, the numbers of outer
and inner iterations stay constant, which demonstrates the scalability of our method. The time spent
in the assembly also scales very well. The time spent in the solve increases slightly. This is because
each BoomerAMG V-cycle seems to take more time when the mesh is refined. For different values
of k, we have observed very similar computation times as in Table III. Table IV shows that the
iteration counts stay the same for the values of k that we have selected. This demonstrates the
scalability of our solver.

Setting the outer tolerance as 1e–6, we test our solver with different inner tolerances. The results
are given in Table V. We see that when the inner tolerance is looser, fewer inner iterations are
required; however if the tolerance is too loose, more outer iterations are required. For this example,
1e–6 is the optimal inner tolerance.
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Table V. Example 1. Iteration counts and computation times for grid C1
on 16 processors for inexact inner iterations, k=0.

Inner tol i ts i tsi1 i tsi2 ts (s)

1e–10 5 43 9 557.08
1e–9 5 39 8 505.30
1e–8 5 35 8 440.92
1e–7 5 30 7 383.34
1e–6 6 21 7 375.91
1e–5 8 20 6 409.57
1e–4 21 16 5 794.15

Table VI. Example 1. Iteration counts for various values of a, k=0.

a=1 a=10 a=20

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

3 C1 21 36 8 128 33 8 238 31 8
6 C2 21 35 10 128 33 10 238 31 10
12 C3 21 33 11 130 33 11 236 31 11

Figure 4. Example 2. Distribution of material coefficients.

In the remaining examples, we stick to 1e–6 and 1e–8 as outer and inner tolerances, respectively.
We select a tight inner tolerance since one of our goals is to investigate the speed of convergence
of outer iterations.

Next we test the variable coefficient case. Table VI shows the iteration counts for different
variable coefficient cases. Note that the larger a is, the more variant the coefficients are in different
regions. As expected, the eigenvalue bound depends on the coefficients. Table VI shows that as
a increases, the eigenvalue bounds in Theorem 3.1 get looser and the iteration counts strongly
increase. In the variable coefficient case, both the inner and outer iterations are not sensitive to
changes in the mesh size.

4.2. Example 2

In this example, we test the problem in a complicated domain with a quasi-uniform mesh.
The domain is a complicated 3D gear, which is bounded in (0.025,0.975)×(0.025,0.975)×
(0.025,0.15292).We test two different cases: constant and variable coefficient cases. In the constant
coefficient test, we set �r = �r =1. In the variable coefficient case, there are two subdomains as
shown in Figure 4. We have two experiments for this case: first, we assume �r =1 in the domain,
and for x<0.5, �r =1 and for x�0.5, �r varies from 10 to 1000. In the next experiment, we assume
�r =1 in the domain, and for x<0.5, �r =1 and for x�0.5, �r varies from 10 to 1000. In both
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Figure 5. Example 2. (a) Quasi-uniform mesh on the gear and (b) grid G1 partitioned on 12 processors.

Table VII. Example 2. Number of elements (Nel) and the size of the linear
systems (n+m) for grids G1–G4.

Grid Nel n+m

G1 723594 894615
G2 1446403 1810413
G3 2889085 3650047
G4 5778001 7354886

Table VIII. Example 2. Iteration counts and computation times for various grids, k=0.

np Grid i ts i tsi1 i tsi2 ts (s) ta (s) tAMG (s)

12 G1 4 58 8 72.11 2.50 0.42
24 G2 4 61 9 102.27 2.56 0.67
48 G3 4 64 9 138.87 2.55 1.05
96 G4 4 66 10 190.19 2.68 1.52

Table IX. Example 2. Iteration counts for various values of k.

k=0 k= 1
8 k= 1

4

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

12 G1 4 58 8 4 58 8 4 58 8
24 G2 4 61 9 4 61 9 4 61 9
48 G3 4 64 9 4 64 9 4 64 9
96 G4 4 66 10 4 66 10 4 66 10

constant and variable coefficient cases, we set the right-hand side function so that the exact solution
is given by (18) and (19), and enforce the inhomogeneous boundary conditions in a standard way.

The domain is meshed with quasi-uniform tetrahedra as shown in Figure 5(a). The number of
elements and matrix sizes is given in Table VII. Figure 5(b) shows how to partition G1 across 12
processors.

First, we test our approach with constant coefficients. The scalability results are shown in
Table VIII. The results with different values of k are shown in Table IX. We observe that when
the mesh is refined, both the inner and outer iteration counts stay constant. Again, the time spent
in the assembly scales very well. The time spent in the solve is increasing slightly, which can be
explained by the increase in tAMG. We note that the computational times for different values of k
are similar to those reported for k=0 in Table VIII. Table IX shows that the iteration counts do
not change for different k values.
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Table X. Example 2. Iteration counts for various values of �r , �r =1, k=0.

�r =10 �r =100 �r =1000

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

12 G1 5 58 8 9 47 8 18 50 8
24 G2 5 60 9 9 51 9 18 54 9
48 G3 5 63 9 9 54 10 17 54 10
96 G4 5 65 10 9 53 10 17 55 10

Table XI. Example 2. Iteration counts for various values of �r , �r =1, k=0.

�r =10 �r =100 �r =1000

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

12 G1 5 59 8 7 61 8 15 69 8
24 G2 5 64 9 7 63 9 15 64 9
48 G3 5 65 9 7 62 9 14 67 9
96 G4 5 65 10 7 64 10 14 65 10

Figure 6. Example 3. Distribution of material coefficients.

Next, we test the variable coefficient example. Tables X and XI show the results for different
variable coefficient cases. Again, we observe that when the variation of the material coefficients
increases, the iteration counts increase. We also observe that both the inner and outer iterations
are not sensitive to changes in the mesh size for the example with unstructured meshes.

4.3. Example 3

The last example is the Fichera corner problem. We are interested in testing our solver on a series of
locally refined meshes. The domain �= (−1,1)3\[0,1)×[0,−1)×[0,1) is a cube with a missing
corner. We also test both homogeneous and inhomogeneous coefficients. In the homogeneous
coefficient case, we set �r = �r =1. In the inhomogeneous case, we assume that there are seven
subdomains in the domain as shown in Figure 6 and each subdomain has piecewise constant
coefficients. The coefficients are the same as (17). In both tests, we set the right-hand side function
so that the exact solution is given by (18) and (19), and enforce the inhomogeneous boundary
conditions in a standard way.

The domain is discretized with locally refined meshes toward the corner. Figure 7 shows an
example of a sequence of locally refined meshes. The number of elements and matrix sizes is
given in Table XII. Figure 8 shows the partitioning of F1 on four processors.

First, we assume that the material coefficients are homogeneous. The scalability results are
shown in Table XIII. The results with different values of k are shown in Table XIV. On the locally
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Figure 7. Example 3. A sequence of locally refined meshes.

Table XII. Example 3. Number of elements (Nel) and the size
of the linear systems (n+m) for grids F1–F4.

Grid Nel n+m

F1 781614 957277
F2 1543937 1917649
F3 3053426 3832895
F4 6072325 7689953

Figure 8. Example 3. Illustration of grid F1 partitioned on four processors.

Table XIII. Example 3. Iteration counts and computation times for various grids, k=0.

np Grid i ts i tsi1 i tsi2 ts (s) ta (s) tAMG (s)

4 F1 5 59 8 204.82 6.54 0.88
8 F2 5 56 9 213.16 6.39 1.17
16 F3 5 58 10 253.81 6.29 1.65
32 F4 5 62 10 314.88 6.38 1.99

refined meshes, we also observe that when the mesh is refined, both the inner and outer solvers
are scalable. Again, the time spent in the assembly scales very well. The time spent in the solve
is increasing, which is due to the increasing cost of BoomerAMG V-cycles. Table XIV shows that
the iteration counts do not change for different wave numbers. As in the previous examples, in
our experiments the computational times are also roughly the same as in Table XIII for different
values of k.
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Table XIV. Example 3. Iteration counts for various values of k.

k=0 k= 1
8 k= 1

4

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

4 F1 5 59 8 5 59 8 5 59 8
8 F2 5 56 9 5 56 9 5 56 9
16 F3 5 58 10 5 58 10 5 58 10
32 F4 5 62 10 5 62 10 4 63 10

Table XV. Example 3. Iteration counts for various values of a, k=0.

a=1 a=10 a=20

np Grid i ts i tsi1 i tsi2 i ts i tsi1 i tsi2 i ts i tsi1 i tsi2

4 F1 13 59 8 86 77 9 158 92 9
8 F2 13 55 9 81 69 9 153 82 9
16 F3 13 56 10 85 61 10 144 79 10
32 F4 13 60 10 84 60 11 139 82 10

Next, we test the variable coefficient case. Table XV shows the results for different variable
coefficient cases. Again, we observe that when the coefficients vary more, the iteration counts
increase, but the scalability with respect to the mesh size is very good.

5. CONCLUSIONS

We have developed and implemented a fully scalable parallel iterative solver for the time-harmonic
Maxwell equations with heterogeneous coefficients, on unstructured meshes. For our parallel
implementation we use our own code, combined with PETSc [17], Hypre [18], METIS [19]), and
TetGen [20].

Our mixed formulation maintains a saddle-point structure, which allows for dealing with the
discrete gradients without post-processing. From a computational point of view, the saddle-point
form provides some extra flexibility, which we exploit by using an inner–outer iterative approach.
For the outer iterations we adapt [8] to the variable coefficient case. The inner iterations are based
on the auxiliary spaces technique developed in [15].

We have shown that for moderately varying coefficients, the preconditioned matrix is well
conditioned and its eigenvalues are tightly clustered; this is key to the effectiveness of the proposed
approach. As our extensive numerical experiments indicate, the inner and outer iterations are
scalable in terms of iteration counts and computation times, and the solver is minimally sensitive
to changes in the mesh size.

More work is required for making our solver robust for highly varying or discontinuous coeffi-
cients. Currently, the iteration counts are insensitive to the mesh size, but they increase when the
coefficients vary strongly. Furthermore, our results apply to low wave numbers; dealing with high
wave numbers is a primary challenge of much interest and remains an item for future work.
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