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PRECONDITIONERS FOR SADDLE POINT LINEAR SYSTEMS WITH HIGHL Y
SINGULAR (1,1) BLOCKS *

CHEN GREIF AND DOMINIK SCHOTZAU*

Abstract. We introduce a new preconditioning technique for the iteeagolution of saddle point linear systems
with (1,1) blocks that have a high nullity. The preconditos are block diagonal and are based on augmentation,
using symmetric positive definite weight matrices. If thdlityis equal to the number of constraints, the precon-
ditioned matrices have precisely two distinct eigenvalgigng rise to immediate convergence of preconditioned
MINRES. Numerical examples illustrate our analytical fimgh.
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1. Introduction. Consider the following saddle point linear system

R OROR

with F' € R"*" andB € R"™*" wherem < n. The matrixF' is assumed to be symmetric
and have a high nullity. We further assume tRa nonsingular, from which it follows that

(1.2) rank(B) =m and null(F)Nnull(B) = {0}.

From (1.2 it also follows thatF' has rank at least — m, and hence its nullity can be at
mostm. Saddle point linear systems of the forfnk) appear in many applications; s€g [
for a comprehensive survey. Frequently they are large aasspand iterative solvers must
be applied. In recent years, a lot of research has focusedeaking effective precondition-
ers. For example? x 2 block diagonal preconditioners have been successfullg irséhe
simulation of incompressible flow problems; s& &nd references therein. Those precon-
ditioners typically have a (1,1) block that approximatess h,1) block of the original saddle
point matrix, and a (2,2) block that approximates the Schurgement.

However, wher#' is singular, it cannot be inverted and the Schur complemees ot
exist. In this case, one possible way of dealing with theesysis by augmentation, for
example by replacing’ with F' + BTW ~! B, whereWW € R™*™ is a symmetric positive
definite weight matrix; se€3] and references therein.

In this paper we consider the case of a (1,1) block with a higjlityy and introduce a
Schur complement-free preconditioner based on augmentiat leads to an effective itera-
tive solution procedure. We show that if the nullity Bfis m, then preconditioned MINRES
[8] converges within two iterations. The approach presemtekis paper is motivated in part
by the recent work4], where a block diagonal preconditioner is proposed foviagl the
time-harmonic Maxwell equations in mixed form.

The remainder of this paper is structured as follows. IniBe&@&we present the precon-
ditioners and analyze their spectral properties. In Se&ioumerical examples that validate
our analytical findings are given. We conclude with brief agks in Sectiont.
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2. The proposed preconditioners.We start with a general form of our preconditioners,
and then discuss a specific choice that is particularly Slgittor matrices with a semidefinite
(1,2) block with high nullity. We end the section with a br@igcussion of computational
costs.

2.1. The preconditioner My . Consider the following block diagonal matrix as a
preconditioner:

F+BTU'B 0
Muw = < 0 W > ;

whereU, W € R™*™ are symmetric positive definite.

PROPOSITION2.1. SupposeMy, w is symmetric positive definite. Lét;}; " be
a basis of the null space dB. Then the vector$z;, 0) are n — m linearly independent
eigenvectors OM;WIC with eigenvalud.

Proof. The eigenvalue problem fot/l[}}WIC is

F BT v\ F+B"™U'B 0 v

B 0 g ) —H 0 w q )"
From the nonsingularity ok’ it follows thatu # 0. Substitutingy = %W”Bv, we obtain
for the first block row

(2.1) uFv+ B"W 'Bv = p*(F + B"U ' B)w.
Suppose that = z; # 0 is a null vector ofB. Then @.1) simplifies into
(N’Z - N)FZZ =0,

and since by 1.2) a nonzero null vector oB cannot be a null vector of, it follows that
Fz; # 0 and hence we must haye= 1. SinceBz; = 0, it follows thatq = 0 and therefore
u = lis an eigenvalue QM[}fWIC of algebraic multiplicity (at least) —m, whose associated
eigenvectors argz;,0),i =1,...,n — m. d

2.2. The preconditioner My,. From Propositior2.1 it follows that regardless of/
andW, we have at leasi — m eigenvalues equal tb. Stronger clustering can be obtained
for specific choices of those two weight matrices. For theea#sa (1,1) block with high
nullity it is possible to obtain a preconditioner with impeal spectral properties by making
the choice/ = W. Let us define

_(F+B™W B 0
(2.2) My = < 0 W ) .

If in addition F' is semidefinite, it follows fromX.2) that the augmented (1,1) block is
positive definite, making it possible to use the precondébconjugate gradient.

The next theorem provides details on the spectrum of theopditioned matrixM;V] K.

THEOREM 2.2. Suppose that' is symmetric positive semidefinite with nullity Then
u = 1is an eigenvalue QM‘}}IC of algebraic multiplicityn andp = —1 is an eigenvalue of
multiplicity ». The remainingn — r eigenvalues QM;VUC are all strictly between-1 and0
and satisfy the relation

(2.3) ==
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where) are them — r positive generalized eigenvalues of
(2.4) AFv = B"W ' Bo.

A set of linearly independent eigenvectorsfo= +1 can be found as follows. Lét;};" "
be a basis of the null space &f, {z;}]_, a basis of the null space df, and{y;};" ;" a set
of linearly independent vectors that completdl(F') U null(B) to a basis ofR™. Then the
n — m vectors(z;, 0), ther vectors(z;, W ! Bx;) and them — r vectors(y;, W ~! By;) are
linearly independent eigenvectors associated with 1, and ther vectors(z;, —W ~' Bx;)
are eigenvectors associated wjth= —1.

Proof. Let i, be an eigenvalue OM;VlIC with eigenvectofv, ¢). Then

F BT v . F+BTW-'B 0 v
B 0 qg )~ H 0 w q )
Sincek is nonsingular, we have # 0. Substituting; = %W”Bv we obtain

(2.5) (u? — p)Fv+ (p* — )B"W 'Bv =0.

If © = 1,then Q.5 is satisfied for any arbitrary nonzero vectog R", and hencév, W ! Bv)
is an eigenvector aM ;' K.
If x € null(F') then from @.5) we obtain

(u? —1)BT"W'Bz =0,

from which it follows that(z, W —! Bz) and(z, —W ~! Bz) are eigenvectors associated with
u = landu = —1 respectively.

Next, supposeu| # 1. We divide @.5) by u* — 1, which yields @.3), with v defined
in (2.4). SinceF andB"W ' B are positive semidefinite, the remaining generalized eigen
valuesA must be positive and hengemust be strictly betweer 1 and0, as stated in the
theorem.

A specific set of linearly independent eigenvectors o= +1 can be readily found.
The vectors(z; };=" and{z;}}_, defined above are linearly independent ihy?( and span
a subspace dk” of dimensiom — m + r. Let{y;};=," complete this set to a basis Bf
as stated above. It follows that;, W ! Bz;), (z;,0), and(y;, W ~! By;) are eigenvectors of
M ;V]IC associated withy = 1. Ther vectors(z;, —W ! Bz;) are eigenvectors associated
with = —1. d

A convenient choice for the weight matrix i ~! = I, wherey > 0 is a parameter
that takes into account the scales of the matricemnd B [3]. In this case, notice that from
Theorem2.2 it follows that them — r eigenvalueg: of M;VlIC that are not equal te:1 are
given by

__ M
Ay +1°

where) are the generalized eigenvalues defined by
AFv = BT Bu.

Thus, asy increases these eigenvalues tend-tg and further clustering is obtained. We
note, however, that choosingtoo large may result in ill-conditioning oMy .
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By (1.2) the nullity of F* must bern at most. From Theorerd.2 we conclude that the
higher it is, the more strongly the eigenvalues are cludtdrefact, for nullitym we have the
following result.

COROLLARY 2.3. Suppose that' is positive semidefinite with nullit.. Then the
preconditioned matrix/\/l;V]IC has precisely two eigenvalueg: = 1, of multiplicity n, and
u = —1, of multiplicity m.

Corollary 2.3 implies that a preconditioned minimal residual Krylov sphece solver is
expected to converge within two iterations, in the absericeundoff errors. Each precon-
ditioned MINRES iteration withMy, includes a matrix-vector product witki, a solve for
W, and a solve foFy, = F + BTW'B. If Fyy is formed explicitly, then solving for it
includesn solves forlV, one for each column aB. However, typicallyFy is not formed
explicitly sinceW ! is dense. In this case one can apply the (preconditionedyigate
gradient method, and then the number of solvesgfors equal to the number of iterations.
Hence, since the number of MINRES iterations is guaranteds tsmall by the analysis of
this section, the key for an effective numerical solutiongadure overall is the ability to
efficiently solve forFy, .

3. Numerical examples.In this section we illustrate the performance of our pre¢ond
tioning approach on two applications in which the (1,1) kkof the associated matrices are
highly singular.

3.1. Maxwell equations in mixed form. We first consider a finite element discretiza-
tion of the time-harmonic Maxwell equations with small wauembers 9, Section 2]. The
following two-dimensional model problem is considereddfinandp that satisfy

VxVxu—k’u+Vp=f in Q,
V-u=0 in Q,

u-t=20 on o,

p=20 onon.

Herew is the electric field ang is a Lagrange multiplier? ¢ R? is a simply connected
polygonal domain, and denotes the tangential unit vector 8f. The datumf is a given
generic source. We assume that the wave nurbisrsmall and is not a Maxwell eigenvalue.

We employ a standard finite element discretization on umifprefined triangular meshes
of sizeh. The lowest order two-dimensional Nédélec elementsefitist kind [, 7] are used
for the approximation of the electric field, along with stardinodal elements for the multi-
plier. This yields a saddle point linear system of the form

(5006

where nowu € R andp € R™ are finite arrays representing the finite element approxima-
tions, andg € R” is the load vector associated with the datfimlhe matrixA € R"*" is
symmetric positive semidefinite with ramk— m, and corresponds to the discrete curl-curl
operator;B € R™*" is a discrete divergence operator. Due to the zero Dirididendary
conditions,B has full row rank:rank(B) = m. Indeed, the discretization that we use is
inf-sup stable§, p. 179]. The matrixt’ = A — k%M is positive semidefinite fok = 0 and
indefinite fork > 0. When the mesh size is sufficiently small, the saddle poiritim& is
nonsingular §, Chapter 7].

For the purpose of illustrating the merits of our approachwill deliberately avoid ex-
ploiting specific discrete differential operator-relapgdperties, and focus instead on purely
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algebraic considerations. To that end, we pick a scaleditgtenatrix, W ! = /. Based
on scaling considerations, we 3et H’;H% .

We consider five meshes; the number of elements and dimeuofsiba resulting systems
are given in Tabl&.1

TABLE 3.1
Example3.1: number of elements and sizes of the linear systems for fiskene

Mesh | Nel n+m
Gl 64 113
G2 256 481
G3 1024 | 1985
G4 4096 | 8065
G5 | 16384 | 32513

Experiments were done with several right hand side funstiand the iteration counts
were practically identical in all experiments. In the tablelow we report the results that
were obtained by setting = 1. (Note that in this case the datum is divergence free.)

Table3.2 validates the analysis of Secti@n It shows the iteration counts for precondi-
tioned MINRES, applying exact inner solves, for variousiesl ofk and meshes G1-G5. The
(outer) iteration was stopped using a threshold®f® for the relative residual. We observe
that fork = 0 convergence is always reached within a single iteratiorichvis better than
two iterations guaranteed by Theor@n2. (This behavior might be related to special prop-
erties of the underlying differential operators, that allfor decoupling the problem using
the discrete Helmholtz decompositiof].) As k& grows larger, and/or as the mesh is refined,
Theorem2.2 does not apply anymore and convergence is slower. HowekgppBition2.1
holds and the solver is still remarkably robust, at leassfoall values of. Preconditioning
the same problem with high wave numbers introduces additioomputational challenges
and is not considered here.

TABLE 3.2
Example3.1: iteration counts for various values @&f and meshes G1-G5 using exact inner solves. The
iteration was stopped using a thresholdiof— ¢ for the relative residual.

Mesh| k=0 | k=025|k=05|k=075| k=1
G1 1 1 1 1 1
G2 1 2 2 3 3
G3 1 2 2 3 3
G4 1 2 2 3 3
G5 1 2 2 3 3

Figure3.1depicts the negative eigenvalues of the preconditionedng;‘)lC for the
mesh G2 and: = 0.5. They are extremely close tel. This shows the potential of the
preconditioner even for cases of an indefinite (1,1) blockyhich case Theorer?.2 does
not hold.

In practice the preconditioner solves need to be done ivetpt Efficient multigrid
solvers that exploit the properties of the differential igters are available and can be used
(see b, Chapter 13] and references therein). Here we simply censig¢ conjugate gradient
iteration, preconditioned using the incomplete Choleskgainposition, IC(0). It should be
noted that the use of a non-stationary iteration (like PG&he inner solves means that a
non-constant, nonlinear preconditioning operator isoahticed for the outer solver. In such
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Fic. 3.1. Example3.1: the negative eigenvalues of the preconditioned ma&rbgvllc for k = 0.5 and grid
G2. All thepositiveeigenvalues QM;V1 K are identically equal to 1.

settings flexible Krylov methods for the outer iteration ammonly used. However, we
have used MINRES and experimented with a fixed loose innerante, and our conclusion
is that this inner solve strategy works well.

Table 3.3 shows the performance of MINRES, preconditioned with o@cpnditioner,
with a fixed inner tolerance dfo—2 and an outer tolerance af)—. Naturally, there is an
increase of iterations as the inner tolerance is loosered; evident when Table3.2 and
3.3are compared to each other. Nevertheless, the speed ofrgence of the inner solves,
resulting from loosening the stopping criterion, more tbampensates for the increase in the
number of outer iterations, and results in significant sgin

TABLE 3.3
Example3.1 iteration counts for various values &f and meshes G1-G5 using inexact inner solves. The
stopping criterion for the inner iterations was a thresholdl0~2 for the relative residual. For the outer iterations,
the threshold wag0 6.

Mesh | k
Gl
G2
G3
G4
G5

0| k=025|k=05|k=075|k

)l e) W) W) NN M
o) e Mo Mo NN
o) oMo Mo REN
~Nooo o
N ~N~NOo ol

3.2. Aninverse problem. As a second numerical example we consider a nonlinear min-
imization problem taken from5], which arises in geophysics, electromagnetics, and other
areas of applications. Suppose the vebtogpresents observations of a fieldt some dis-
crete locations andis the underlying model to be recovered. Suppose furtheétihpaojects
the fieldv onto the measurement locations. The constrained problemutation in ] is
based on minimizingQv — bl|2, subject to a forward problem (typically a discretized seto
order PDE)C(r)v = f that needs to be solved exactly. Upon regularization, theviing
minimization problem is obtained:

S 1
minimize o(v.r) = £ Qv — b3 + 2 1S(r ~ o)
subject to C(r)v = f
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wherer, is a reference modef” S is a smoothing operator (typically a diffusion operator),
andg is a regularization parameter.

The constraints are incorporated using a Lagrange muatiplpproach, and a Gauss-
Newton iteration is applied. At each step, an indefinitedingystem of the following block
form has to be solved:

QTQ 0 cT ov L,
0 psSTs GT or | = | L
C G 0 P Ly

Hered A are the increments of the Lagrange multipliers &his the Jacobian of’ with re-
spect tor. The matrix@) can be extremely sparse, in particular in situations of tsatapling.

A three-dimensional problem on the unit cube is considedéstretized by standard
finite volumes. The regularization parameteis equal tol10~2. The operatoiS is the
discretized gradient an@ is a discrete diffusion operator with diffusivity depenglion .
Finally, f is a vector obtained from sampling a smooth analytical fionctA full description
of models of this type is given irb].

We consider the performance of preconditioned MINRES oereahiniformly refined
meshes M1-M3. Since there is no obvious scaling strateggetié” = 7. The dimensions
of the associated linear systems, the nullities of(thé) blocks, and the iteration counts are
given in Table3.4. As is evident, our solver performs extremely well. Numak&gxperiments
for other values of the regularization parametdrave shown similar iteration counts.

TABLE 3.4
Example3.2 sizes of the linear systems and iteration counts for mestedvi3 using exact inner solves. The
iteration was stopped using a threshold16f— ¢ for the relative residual.

Mesh| n m Nullity | Iterations
M1 189 | 125 72 4
M2 | 1241 | 729 530 3
M3 | 9009 | 4913 | 4538 2

Finally, in Figure3.2we show the distribution of the eigenvalues of the precdmuiitd
matrix for mesh M2. As expected, we observe strong clugesfrihe eigenvalues at1.

15
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FiG. 3.2.Example3.2 Eigenvalues of the preconditioned matrix for mesh M2.
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4. Conclusions. We have presented a new Schur complement-free precoridgiap-
proach based on augmenting the (1,1) block and using thentueigtrix applied for augmen-
tation as the matrix in the (2,2) block. As we have shown,dlpisroach is very effective, and
specifically, in cases where the (1,1) block has high nulibnvergence is guaranteed to be
almost immediate. We have shown the high potential of ouragagh for the time-harmonic
Maxwell equations in mixed form and for an inverse problem.
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