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SUMMARY

We introduce a new preconditioning technique for iteratively solving linear systems arising from finite
element discretization of the mixed formulation of the time-harmonic Maxwell equations. The precondi-
tioners are motivated by spectral equivalence properties of the discrete operators, but are augmentation free
and Schur complement free. We provide a complete spectral analysis, and show that the eigenvalues of the
preconditioned saddle point matrix are strongly clustered. The analytical observations are accompanied
by numerical results that demonstrate the scalability of the proposed approach. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

We introduce new preconditioners for linear systems arising from finite element discretization
of the mixed formulation of the time-harmonic Maxwell equations in lossless media with per-
fectly conducting boundaries [1–4]. The following model problem with constant coefficients is
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282 C. GREIF AND D. SCHÖTZAU

considered: find the vector field u and the multiplier p such that

∇ × ∇ × u − k2u + ∇ p = f in �

∇ · u = 0 in �

u × n = 0 on ��

p = 0 on ��

(1)

Here, � ⊂ R3 is a simply connected polyhedron domain with a connected boundary �� and n
denotes the outward unit normal on ��. The datum f is a given generic source (not necessarily
divergence free), and the wave number satisfies k2 = �2��, where ��0 is the frequency, and
� and � are positive permittivity and permeability parameters. We assume that k2 is not a Maxwell
eigenvalue and that

k2 � 1

The introduction of the scalar variable p guarantees the stability and well-posedness of the equations
as k tends to 0, including the limit case k = 0; see the discussion in [2, Section 3].

Finite element discretization using Nédélec elements of the first kind [5] for the approximation
of the vector field and standard nodal elements for the multiplier yields a saddle point linear system
of the form (

A − k2M BT

B 0

)(
u

p

)
=
(
g

0

)
(2)

where now u ∈ Rn and p ∈ Rm are finite arrays representing the finite element approximations,
and g ∈ Rn is the load vector associated with f . The matrix A ∈ Rn×n is symmetric positive
semidefinite with nullity m, and corresponds to the discrete curl–curl operator; B ∈ Rm×n is a
discrete divergence operator with full row rank, and M ∈ Rn×n is the vector mass matrix.

It is possible to decouple (2) into two separate problems, using the discrete Helmholtz decom-
position [6, Section 7.2.1]. For p we obtain a standard Poisson equation, for which many efficient
solution methods exist. Then, once p is available, the high nullity of the discrete curl–curl operator
in the resulting equation for u can be dealt with by applying a procedure of augmentation: the
matrix A is replaced by AW = A+ BTW−1B, where W ∈ Rm×m is a weight matrix, chosen so that
AW is symmetric positive definite. This does not change the solution, due to the divergence-free
condition Bu = 0. Popular choices for W that have been considered in the literature are scaled
identity matrices or lumped mass matrices; see [7, pp. 319–320] and references therein. A similar
approach in the context of finite volume methods has been proposed in [8].

We note that if k �= 0, a direct approach based on solving (A − k2M)u = g automatically
enforces Bu = 0, provided the right-hand side is divergence free. A multigrid technique for this
case has been proposed in [9]. A regularization technique is introduced in [10] to deal with the
case k = 0, whereby A is replaced by A + �M , where � is a regularization parameter. Algebraic
multigrid is shown to converge even for small �. The solution is divergence free for divergence-free
data, but it changes with the parameter.

Leaving the saddle point system intact is a viable approach that works naturally for the limiting
case k = 0, which is our main interest in this paper. The saddle point matrix does not have to
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PRECONDITIONERS FOR THE TIME-HARMONIC MAXWELL EQUATIONS 283

be modified or regularized even if its (1, 1) block is singular, and its structure lends itself to
effective block preconditioners. Indeed, there are several robust solution methods available for
solving saddle point systems [11].

An Uzawa-type algorithm for the saddle point system, coupled with a domain decomposition
approach, has been proposed in [12]. The original system is transformed into a new system by
augmentation with the scalar Laplacian as a weight matrix, and it is shown that the condition
number of the resulting preconditioned system grows logarithmically with respect to the ratio
between the subdomain diameter and the mesh size. The method incorporates augmentation and
is parameter dependent. Its convergence properties rely on extreme eigenvalues of the augmented
Schur complement, which may be difficult to evaluate.

In this paper we introduce a new block diagonal preconditioning technique for the iterative
solution of the saddle point linear system. While it is motivated by spectral equivalence properties
similar to those in [12] and by augmentation considerations, the actual preconditioners are aug-
mentation free and parameter free. Furthermore, convergence of iterative solvers does not depend
on a Schur complement. We show several equivalence properties of the matrices, and present
spectral bounds based on the stability constants of the differential operators.

Each iteration of our scheme requires solving for A + �M , where � > 0 is given. For such
systems solution techniques with linear complexity are available; see [10, 13–15] and references
therein. We show that the spectral distribution of the preconditioned matrices is favourable for
Krylov subspace solvers in terms of clustering of eigenvalues. We also derive explicit expressions
for the eigenvectors in terms of the null vectors of the discrete operators A and B, making the
convergence analysis complete.

Our numerical results indicate that the proposed technique scales extremely well with the mesh
size, both on uniformly and locally refined meshes. In this paper we only focus on the performance
of the outer solver, and do not consider computational issues related to how to solve the inner
iterations associated with (implicit) inversion of the preconditioner.

The remainder of the paper is structured as follows. In Section 2 we present the mixed finite
element formulation, make some necessary definitions, and discuss the algebraic properties of
the discrete operators. In Sections 3 and 4 we discuss spectral equivalence and augmentation.
In Section 5 we introduce and analyse the proposed preconditioning technique. In Section 6
we provide numerical examples that confirm the analysis and demonstrate the scalability of our
approach. Finally, in Section 7 we draw some conclusions.

2. MIXED FINITE ELEMENT FORMULATION

In this section we provide details on the finite element formulation leading to the saddle point
system (2).

2.1. Discretization

To discretize (1), we consider conforming and shape-regular partitionsTh of � into tetrahedra {K }.
We denote the diameter of the tetrahedron K by hK for all K ∈ Th and define h = maxK∈Th hK .
Let P�(K ) be the space of polynomials of degree � on K and let N�(K ) be the space of Nédélec
vector polynomials of the first kind [5, 6]. The index � is chosen so that P�−1(K )3 ⊂ N�(K ) ⊂
P�(K )3. For ��1, the finite element spaces for the approximation of the electric field and the
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284 C. GREIF AND D. SCHÖTZAU

multiplier are taken as

Vh = {vh ∈ H0(curl) | vh |K ∈ N�(K ), K ∈ Th}

Qh = {qh ∈ H1
0 (�) | qh |K ∈ P�(K ), K ∈ Th}

Here, we use the Sobolev space

H0(curl) ={ v ∈ L2(�)3 : ∇ × v ∈ L2(�)3 , v × n = 0 on �� }
We consider the following finite element formulation: find (uh, ph) ∈ Vh × Qh such that∫

�
(∇ × uh) · (∇ × vh) dx − k2

∫
�
uh · vh dx +

∫
�

vh · ∇ ph dx =
∫

�
f · vh dx

∫
�
uh · ∇qh dx = 0

(3)

for all (vh, qh) ∈ Vh × Qh .
To transform (3) into matrix form, let 〈� j 〉nj=1 and 〈�i 〉mi=1 be standard finite element bases for

the spaces Vh and Qh , respectively:

Vh = span〈� j 〉nj=1, Qh = span〈�i 〉mi=1 (4)

Define

Ai, j =
∫

�
(∇ × � j ) · (∇ × �i ) dx, 1�i, j�n

Mi, j =
∫

�
� j · �i dx, 1�i, j�n

Bi, j =
∫

�
� j · ∇�i dx, 1�i�m, 1� j�n

and let A ∈ Rn×n , M ∈ Rn×n , and B ∈ Rm×n be the corresponding matrices. Let us also define
the scalar Laplace matrix on Qh as L = (Li, j )

m
i, j=1 ∈ Rm×m , where

Li, j =
∫

�
∇� j · ∇�i dx (5)

We further introduce the load vector g ∈ Rn by setting

gi =
∫

�
f · �i dx, 1�i�n

where f is the source term in (1). We identify finite element functions uh ∈ Vh or ph ∈ Qh with
their coefficient vectors u = (u1, . . . , un)T ∈ Rn and p= (p1, . . . , pm)T ∈ Rm , with respect to the
bases (4). The finite element solution of (3) can now be computed by solving the saddle point
linear system (2).
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PRECONDITIONERS FOR THE TIME-HARMONIC MAXWELL EQUATIONS 285

2.2. Properties of the discrete operators

Let us now present a few key properties of the operators, using the well-known discrete Helmholtz
decomposition for Nédélec elements. To that end, note that ∇Qh ⊂ Vh , and let us introduce the
matrix C ∈ Rn×m by setting

∇� j =
n∑

i=1
Ci, j�i , j = 1, . . . ,m

For a function qh ∈ Qh given by qh =∑m
j=1q j� j , we then have

∇qh =
n∑

i=1

m∑
j=1

Ci, j q j�i

so that for q = (q1, . . . , qm)T, we have that u =Cq is the coefficient vector of uh =∇qh in the
basis 〈�i 〉ni=1.

We shall denote by 〈·, ·〉 the standard Euclidean inner product in Rn or Rm , and by null(·) the
null space of a matrix. For a given positive (semi)definite matrix W and a vector x , we define the
(semi)norm

|x |W =√〈Wx, x〉
Proposition 2.1
The following relations hold:

(i) Rn = null(A) ⊕ null(B).
(ii) For any u ∈ null(A) there is a unique q ∈ Rm such that u =Cq .
(iii) 〈Mu,Cq〉= 〈Bu, q〉 for u ∈ Rn and q ∈ Rm .
(iv) 〈MCp,Cq〉= 〈Lp, q〉 for p, q ∈ Rm .
(v) Let u ∈ null(A) with u =Cp. Then |u|M = |p|L .

Proof
The first two relations readily follow from the discrete Helmholtz decomposition, see, for example,
[6, Section 7.2.1]. If uh and qh are the finite element functions associated with the vectors u and
q , then we have

〈Mu,Cq〉=
∫

�
uh · ∇qh dx =〈Bu, q〉

which shows (iii). Relation (iv) follows similarly, and (v) follows from (iv). �
Let us further show a few connections of C to the other matrices.

Proposition 2.2
The following relations hold:

(i) AC = 0.
(ii) BC = L .
(iii) MC = BT.
(iv) If the datum f is divergence free, then CTg= 0.
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Proof
The first assertion is obvious since the null space of A is equal to the range of C , by Proposition 2.1.
The defining properties of B, C and L yield, for 1�i, j�m,

(BC)i, j =
n∑

k=1
Bi,kCk, j =

∫
�

(
n∑

k=1
Ck, j�k

)
· ∇�i dx =

∫
�

∇� j · ∇�i dx = Li, j

This shows identity (ii). The third one follows similarly. Finally, to see (iv), note that for 1� j�m,
using integration by parts and the divergence-free condition, we obtain

(CTg) j =
n∑

i=1
Ci, j gi =

∫
�

f · ∇� j dx = −
∫

�
(∇ · f ) � j dx = 0

This completes the proof. �

An orthogonality property with respect to the inner product 〈M ·, ·〉 is obtained as follows. Let
uA ∈ null(A) and uB ∈ null(B). Setting uA =Cq , we have

〈MuA, uB〉= 〈MuB,Cq〉= 〈BuB, q〉= 0 (6)

by relation (iii) in Proposition 2.1. Consequently, we also have the following result.

Proposition 2.3
Let u = uA + uB with uA ∈ null(A) and uB ∈ null(B). Then we have |u|2M = |uA|2M + |uB |2M .

Let us now present stability properties of the matrices A and B. First, by the Cauchy–Schwarz
inequality, we obviously have

|〈Au, v〉|�|u|A|v|A, u, v ∈ Rn

A similar continuity property holds for B:

|〈Bv, q〉|�|v|M |q|L , v ∈ Rn, q ∈ Rm (7)

Secondly, the matrix A is positive definite on null(B) and

〈Au, u〉��(|u|2A + |u|2M ), u ∈ null(B) (8)

with a stability constant � which is independent of the mesh size and only depends on the
shape regularity of the mesh and the approximation order � [7, Theorem 4.7]. Note that, since
〈Au, u〉 = |u|2A, we must have 0 < � < 1 and then also

|u|2A��̄|u|2M , u ∈ null(B) (9)

with

�̄ = �

1 − �
(10)

Finally, the matrix B satisfies the discrete inf–sup condition (see [6, p. 179; 7, p. 319])

inf
0 �=q∈Rm

sup
0 �=v∈null(A)

〈Bv, q〉
|v|M |q|L �1 (11)
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The above-stated properties and the theory of mixed finite element methods [16] ensure that
(3) is well-posed and the saddle point system is uniquely solvable (provided that the mesh size
is sufficiently small). Moreover, it can been shown that asymptotically the method is optimally
convergent in the mesh size; see [6, Chapter 7].

3. SPECTRAL EQUIVALENCE PROPERTIES

Consider the augmented matrix

AL = A + BTL−1B (12)

where L is the scalar Laplacian defined in (5). The spectral equivalence properties derived below
motivate the preconditioners presented in Section 5.

Applying the discrete Helmholtz decomposition in Proposition 2.1, we have the following result.

Lemma 3.1
Let u = uA + uB with uA ∈ null(A) and uB ∈ null(B). Then

|Bu|L−1 = |uA|M
Proof
From Proposition 2.1, we have uA =Cp for a vector p ∈ Rm . Using the identity BC = L in
Proposition 2.2, we obtain

|Bu|2L−1 =〈L−1Bu, Bu〉= 〈L−1BuA, BuA〉= 〈L−1BCp, BCp〉 = 〈Lp, p〉 = |p|2L
Since |p|L = |uA|M , the result follows. �

As an immediate consequence of Lemma 3.1, we conclude that BTL−1B and M are spectrally
equivalent on the null space of A.

Corollary 3.2
For any u in the null space of A the following relation holds:

〈BTL−1Bu, u〉 = 〈Mu, u〉
Theorem 3.3
The matrices AL and A + M are spectrally equivalent:

�� 〈ALu, u〉
〈(A + M)u, u〉�1

for any u ∈ Rn , where 0 < � < 1 is the coercivity constant in (8).

By noticing that

〈(A + M)u, u〉 = |u|2A + |u|2M
the proof of Theorem 3.3 is readily obtained from the bounds in the subsequent lemma. We note
that a similar result can be found in [12, Theorem 3.1].

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 14:281–297
DOI: 10.1002/nla



288 C. GREIF AND D. SCHÖTZAU

Lemma 3.4
The following relations hold:

(i) |〈ALu, v〉|�(|u|2A + |u|2M )1/2(|v|2A + |v|2M )1/2 for u, v ∈ Rn .
(ii) 〈ALu, u〉��(|u|2A + |u|2M ) for u ∈ Rn .

In (ii) 0 < � < 1 is the coercivity constant given in (8).

Proof
By Proposition 2.1, we may decompose u and v into u = uA + uB and v = vA + vB with uA,
vA ∈ null(A) and uB , vB ∈ null(B). Furthermore, there are vectors p and q in Rm such that
uA =Cp and vA =Cq .

Let us show the first assertion. By the Cauchy–Schwarz inequality,

|〈Au, v〉|�|u|A|v|A
Similarly, the Cauchy–Schwarz inequality, Lemma 3.1 and the orthogonality in Proposition 2.3
yield

|〈BTL−1Bu, v〉| = |〈L−1Bu, Bv〉|�|Bu|L−1 |Bv|L−1 = |uA|M |vA|M�|u|M |v|M
The first assertion readily follows from summing the last two inequalities and applying again the
Cauchy–Schwarz inequality. To show the result in (ii), note that the stability property (8) of the
matrix A yields:

〈Au, u〉 = 〈AuB, uB〉��(|uB |2A + |uB |2M )

From Lemma 3.1,

〈L−1Bu, Bu〉 = |Bu|2L−1 = |uA|2M
and since 0 < � < 1 we have

〈ALu, u〉��(|uA|2M + |uB |2A + |uB |2M )

By the orthogonality relation in Proposition 2.3 we have |u|2M = |uA|2M + |uB |2M , from which
relation (ii) follows. �

We end this section by pointing out a connection between L and the Schur complement associated
with AL , S = BA−1

L BT. The matrices S and L are spectrally equivalent; we have

�� 〈Sp, p〉
〈Lp, p〉��−1

for any p ∈ Rm . Here, � is the coercivity constant from (8). The proof is a consequence of
Lemma 3.4, the inf–sup condition in (11), and standard arguments for mixed finite element meth-
ods [16]. We also refer the reader to [12, Theorem 3.3]. As a consequence, the preconditioners
we propose in the sequel are closely related to block preconditioners that rely on forming approx-
imations of the Schur complement. Such techniques have been successfully used in a variety of
applications, notably for the discretized Stokes and Navier–Stokes equations [17, 18].
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4. AUGMENTATION WITH THE SCALAR LAPLACIAN

We now turn our attention to the linear system and consider augmentation with the Laplacian as
a starting point. We will assume that A − k2M is non-singular; this can always be achieved by
choosing the mesh size sufficiently small [6, Corollary 7.3].

Consider the matrix of (2):

K=
(
A − k2M BT

B 0

)
(13)

and define the symmetric positive definite block diagonal matrix

KL =
(
AL − k2M 0

0 L

)
(14)

We stress that KL will not be the preconditioner that we eventually use; it is only introduced
to lay the theoretical basis and motivation for the preconditioning approach that we propose in
Section 5. Note that AL − k2M is symmetric positive definite for k sufficiently small.

Theorem 4.1
The matrix K−1

L K has two distinct eigenvalues, given by

�+ = 1, �− =− 1

1 − k2

with algebraic multiplicities n and m, respectively.

Proof
The matrix K−1

L K has a complete set of linearly independent eigenvectors that span Rn+m . The
corresponding eigenvalue problem is(

A − k2M BT

B 0

)(
v

q

)
= �

(
A − k2M + BTL−1B 0

0 L

)(
v

q

)

From the non-singularity of K−1
L K it follows that � �= 0. Substituting q = �−1L−1Bv, we obtain

for the first block row

�(A − k2M)v + BTL−1Bv = �2(A − k2M + BTL−1B)v (15)

By inspection it is straightforward to see that any vector v ∈ Rn satisfies (15) with � = 1, and thus
the latter is an eigenvalue of K−1

L K, with eigenvectors of the form (v, L−1Bv), where v �= 0. We
claim that the eigenvalue � = 1 has algebraic multiplicity n. (That is, there is no other eigenvector
associated with �= 1 in addition to the above set.) Indeed, if the vectors {(vi , L−1Bvi )}n+r

i=1 , with
r�0, are linearly independent then necessarily {vi }n+r

i=1 are also linearly independent, and the latter
is impossible unless r = 0.

Let us now point out a specific set of eigenvectors for � = 1, and derive expressions for
the remaining eigenpairs. According to Proposition 2.1 we can decompose v = vA + vB , where
vA ∈ null(A) and vB ∈ null(B). We now show that if an eigenvector (v, �−1L−1Bv) = (vA +
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vB, �−1L−1BvA) has a non-zero vB component, then its associated eigenvalue must necessarily
be � = 1. Noting that by (6)

〈M(vA + vB), vB〉 = |vB |2M
after taking inner products of (15) with vB and dividing by � we get

(� − 1)(|vB |2A − k2|vB |2M ) = 0

Since the symmetric matrix A − k2M is non-singular, it follows that for vB �= 0 we must have
|vB |2A − k2|vB |2M =〈(A − k2M)vB, vB〉 �= 0, and hence � = 1.

Next, we argue that at least 2m of the vectors v must have a non-zero vA component. Let us
prove this by showing that assuming otherwise leads to a contradiction. Suppose the eigenvectors
are given by (v, �−1L−1Bv) for a set of n + m choices of v. If the assumption does not hold,
then more than n −m eigenvectors satisfy v = vB , and must be of the form (vB, 0). But since the
null space of B is of rank n − m, there cannot be more than this number of linearly independent
vectors (vB, 0).

Since at least 2m of the eigenvectors satisfy vA �= 0, and since the multiplicity of � = 1 is n, it
follows that at least m of the eigenvectors associated with � = 1 satisfy vA �= 0. Thus, consider m
such vectors, v = vA + vB with vA �= 0. Then (15) reads

�(AvB − k2M(vA + vB)) + BTL−1BvA = �2(AvB − k2M(vA + vB) + BTL−1BvA)

Taking inner products with the vectors vA and noting that by (6)

〈M(vA + vB), vA〉 = |vA|2M
and by Corollary 3.2 we have

〈BTL−1BvA, vA〉= 〈MvA, vA〉
it follows that

−(�2 − �)k2|vA|2M + (�2 − 1)|vA|2M = 0

Hence we have

(1 − k2)�2 + k2� − 1= 0 (16)

from which it follows that �+ = 1 and �− =−1/(1 − k2). We have thus shown that �− is the only
possible eigenvalue that is not equal to 1, and its algebraic multiplicity must be equal to m. This
completes the proof. �

The proof of Theorem 4.1 in fact shows that the eigenspace of K−1
L K can be expressed in

terms of the null vectors of A and B, as follows.

Corollary 4.2
Let {vi }mi=1 be a basis for the null space of A and {zi }n−m

i=1 a basis for the null space of B.
Then {(vi , L−1Bvi )}mi=1 and {(zi , 0)}n−m

i=1 are n linearly independent eigenvectors associated with
the eigenvalue �+. The vectors {(vi ,−(1−k2)L−1Bvi )}mi=1 arem linearly independent eigenvectors
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associated with the eigenvalue �−. Grouped together, those eigenvectors form a complete eigenspace
that spans Rn+m .

From Theorem 4.1 it follows that if MINRES were to be used for solving (2), with KL as
a preconditioner, then convergence would require merely two iterations, if roundoff errors are
ignored. However, forming AL may be too computationally costly. We mention also that the
results in Theorem 5.2 can be extended to general algebraic settings, i.e. not necessarily to the
Maxwell operator, as we show in [19].

5. AUGMENTATION-FREE PRECONDITIONERS

Define

PM = A + �M (17)

where � = 1 − k2. For the saddle point system (2) we consider preconditioning with

PM,L =
(
PM 0

0 L

)
(18)

Throughout, we will assume that preconditioned MINRES for the saddle point system is used.
A crucial factor in the speed of convergence of this method is the distribution of the eigenvalues;
strong clustering yields fast convergence [20, Section 3.1]. The choice of PM and PM,L is
motivated by the spectral equivalence results given in Theorem 3.3 and the eigenvalue distribution
observed in Theorem 4.1, which allow us to observe thatPM ≈ AL−k2M andPM,L ≈ KL . Thus,
the overall computational cost of the solution procedure will depend on the ability to efficiently
solve linear systems whose associated matrices are A + �M and L (or approximations thereof).
For solving the former we refer the reader to [10, 13–15].
Theorem 5.1
The matrix

P−1
M (AL − k2M)

has an eigenvalue �= 1 of algebraic multiplicity m. The rest of the eigenvalues are bounded as
follows:

�̄ − k2

�̄ + 1 − k2
< � < 1 (19)

with �̄ defined in (10).

Proof
The corresponding eigenvalue problem is

(A − k2M + BTL−1B)v = �(A + (1 − k2)M)v

Suppose v = vA + vB , where vA ∈ null(A) and vB ∈ null(B). We then have

AvB − k2M(vA + vB) + BTL−1BvA = �(AvB + (1 − k2)M(vA + vB))
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By linear independence considerations, there are at least m vectors v that satisfy vA �= 0. For m
such vectors, taking inner products with vA and noting that by Corollary 3.2

〈BTL−1BvA, vA〉 = |vA|2M
and that by (6) we have

〈M(vA + vB), vA〉= 〈MvA, vA〉 = |vA|2M
we get

�(1 − k2)|vA|2M = (1 − k2)|vA|2M
It follows that � = 1 is an eigenvalue of multiplicity m.

For the rest of the eigenvectors we must have vB �= 0, and now taking inner products with vB
and noting that

〈BTL−1BvA, vB〉 = 〈L−1BvA, BvB〉= 0

and that by (6) we have

〈M(vA + vB), vB〉 = 〈MvB, vB〉 = |vB |2M
it follows that

(1 − �)|vB |2A =
(
(1 − k2)� + k2

)
|vB |2M (20)

It is impossible to have �= 1, since in this case (20) collapses into |vB |M = 0, which cannot
hold for vB �= 0. We cannot have � > 1 either, since that would imply that in (20) the left-hand
side is negative but the right-hand side is positive. (Recall that we assume k � 1.) We conclude
that we must have � < 1.

From (9) we recall that for any u ∈ null(B), |u|2A��̄|u|2M with �̄ = �/(1 − �) > 0. Applying
this to (20) we conclude (1− k2)�+ k2��̄(1−�), and since 1− k2 + �̄ > 0 we obtain (19). Since
� can be either equal to 1 or satisfy (19), but not simultaneously both, the algebraic multiplicities
follow. �

Theorem 5.2
Let K be the saddle point matrix (13). Then �+ = 1 and �− = −1/(1 − k2) are eigenvalues of the
preconditioned matrix P−1

M,LK, each with algebraic multiplicity m. The rest of the eigenvalues
satisfy the bound (19).

Proof
The eigenvalue problem for P−1

M,LK is(
A − k2M BT

B 0

)(
v

q

)
= �

(
A + (1 − k2)M 0

0 L

)(
v

q

)

Setting q = �−1L−1Bv and multiplying the resulting equation for v by �, we have

[(�2 − �)A + ((1 − k2)�2 + k2�)M]v = BTL−1Bv
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The rest of the proof follows by taking the same steps taken in the proof of Theorem 5.1. We
get m equations of the form

(1 − k2)�2 + k2� − 1= 0

from which �+ and �− are obtained. Note that this quadratic equation is identical to Equation (16)
for the eigenvalues of K−1

L K, cf. Theorem 4.1. This reinforces that PM,L is an effective sparse
approximation of KL . Obtaining the bound (19) is done in a way identical to the last part of the
proof of Theorem 5.1. �

For k = 0 the result of Theorem 5.2 simplifies as follows.

Corollary 5.3
For the preconditioned matrix P−1

M,LK with k = 0, there are eigenvalues �± = ±1, with algebraic
multiplicity m each. The rest of the eigenvalues satisfy � < � < 1.

6. NUMERICAL EXPERIMENTS

Our numerical experiments were performed using MATLAB; for generating the meshes we used
the PDE toolbox. We implemented the two-dimensional version of the time-harmonic Maxwell
equations. The lowest order elements were used, i.e. � = 1. The solutions of the preconditioned
systems in each iteration were computed exactly.

6.1. A smooth domain with a quasi-uniform grid

In this example the domain is the unit square. Uniformly refined meshes were constructed, by
subsequently dividing each triangle into four congruent ones. The number of elements and matrix
sizes are given in Table I.

First, we set the right-hand side function so that the exact solution is given by

u(x, y) =
(
u1(x, y)

u2(x, y)

)
=
⎛
⎝1 − y2

1 − x2

⎞
⎠

Table I. Number of elements (Nel) and the size of
the linear systems (n + m) for seven grids used in

Example 6.1.

Grid Nel n + m

G1 64 113
G2 256 481
G3 1024 1985
G4 4096 8065
G5 16 384 32 513
G6 65 536 130 561
G7 262 144 523 265
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Table II. Iteration counts for Example 6.1 with a di-
vergence-free right-hand side, for various meshes and
values of k, using MINRES for solving the saddle point

system with the preconditioner PM,L .

Grid k = 0 k = 1
8 k = 1

4 k = 1
2

G1 5 5 5 5
G2 5 5 5 5
G3 5 5 5 5
G4 6 6 5 6
G5 6 6 6 6
G6 6 6 6 6
G7 6 6 6 6

Note: The outer iteration was stopped once the initial rel-
ative residual was reduced by a factor of 10−10.

Table III. Iteration counts for Example 6.1 with a
right-hand side that is not divergence free, for various
meshes and values of k, using MINRES for solving the
saddle point system with the preconditioner PM,L .

Grid k = 0 k = 1
8 k = 1

4 k = 1
2

G1 5 5 5 5
G2 6 6 6 6
G3 6 6 6 6
G4 6 6 6 7
G5 7 7 7 7
G6 7 7 7 7
G7 7 7 7 7

Note: The outer iteration was stopped once the initial rel-
ative residual was reduced by a factor of 10−10.

and p ≡ 0. The datum f in this case is divergence free. We ran MINRES with the preconditioner
PM,L . The counts of the outer iterations are given in Table II. The inner iterations were solved
by the conjugate gradient method, preconditioned with incomplete Cholesky factorization, using
a tight convergence tolerance. As expected, the outer solver scales extremely well with hardly any
sensitivity to the mesh size and the wave number.

We also ran the saddle point solver on an example with a right-hand side function that was not
divergence free. We took the same u as above, and p= (1 − x2)(1 − y2). The iteration counts
are given in Table III. As before, the solver scales very well. Figure 1 depicts the eigenvalues of
the preconditioned matrix P−1

M,LK for grid G2 with k = 1
4 . This linear system has 481 degrees of

freedom, with n = 368 and m = 113. As is expected from Theorem 5.2, the m negative eigenvalues
of the matrix are equal to −1/(1 − k2) =− 16

15 =−1.0666 . . . , and for the positive ones, m of them
are equal to 1 and the remaining n −m eigenvalues are bounded away from 0 and below 1. In our
computations we observed strong clustering beyond what can be concluded from Theorem 5.2.
Three of the positive eigenvalues are between 0.7 and 0.9, with the smallest equal to 0.706 . . . ,
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Figure 1. Plot of the eigenvalues of the preconditioned matrix P−1
M,LK, for

k = 1
4 , for grid G2 in Example 6.1.
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Figure 2. Grids L1–L4 for Example 6.2.
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Table IV. Number of elements (Nel) and the size of
the linear systems (n + m) for five grids used in

Example 6.2.

Grid Nel n + m

L1 258 451
L2 458 813
L3 1403 2608
L4 5164 9927
L5 19 339 37 882

Table V. Iteration counts for Example 6.2 with various
meshes and values of k, using MINRES for solving
the saddle point system with the preconditioner PM,L .

Grid k = 0 k = 1
8 k = 1

4 k = 1
2

L1 5 5 5 5
L2 5 5 5 5
L3 5 5 5 5
L4 5 5 5 5
L5 4 4 4 4

Note: The outer iteration was stopped once the initial rel-
ative residual was reduced by a factor of 10−10.

and four additional ones are between 0.9 and 0.95. The remaining 361 eigenvalues are all between
0.95 and 1, with 113 of them identically equal to 1, again as is known by the same theorem. This
clustering effect explains the fast convergence of the preconditioned iterative solver.

6.2. An L-shaped domain with locally refined grids

In this example we consider an L-shaped domain. The meshes were locally refined at the non-
convex corner at the origin; the number of elements and sizes are given in Table IV. Four of the
five grids that were used are depicted in Figure 2. We set up the problem so that the right-hand side
function is equal to 1 throughout the domain. As in the previous example, we applied MINRES,
preconditioned by PM,L , to the saddle point system. Table V demonstrates the scalability of the
solvers: the outer iteration counts do not seem to be sensitive to changes in the mesh size.

7. CONCLUSIONS

We have introduced a new augmentation-free and Schur complement-free block diagonal precon-
ditioning approach for solving the discretized mixed formulation of the time-harmonic Maxwell
equations. We have presented a complete spectral analysis, and have shown that the outer iteration
counts are hardly sensitive to changes in the mesh size or in small values of the wave number.

We have limited the discussion in this paper to the convergence of the outer iterations, relying
on the assumption that robust solution techniques exist for solving A + �M . Future research
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will focus on further computational aspects of our solution technique, and we will explore using
efficient inner solvers. Finally, we will investigate whether similar preconditioners can be applied
to problems in three dimensions and problems with variable coefficients.
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