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1 Introduction and Motivation

We consider the numerical solution of nonsymmetric linear systems of equations of
the form

Au = f, (1)

that arise from the discretization of partial differentialequations (PDEs). In practical
problems, the number of mesh points is very large, and thus also the number of un-
knowns in (1), and the resulting matrix is large and sparse. In these circumstances,
iterative methods are often used, due to their ability to deal more effectively with
a high degree of sparsity. A popular iterative method is theGeneralized Minimum
Residual iterative scheme, or GMRES [8, 9, 10]. This method is based onminimiz-
ing at thekth iterate the residual within the affine Krylov subspaceu0+K k(A,r0),
whereu0 is an initial vector,r0 = f−Au0 is the initial residual, and

K
k(A,r0) = span(r0,Ar0, . . . ,A

k−1r0).

The performance of GMRES is often (though not exclusively) determined by the
structure of the eigenvalues of the matrixA. Loosely speaking, if they are strongly
clustered, then GMRES is expected to converge fast. To accomplish a clustering
effect, apreconditioner M is typically used: instead of solving (1) we solve, say,

AMũ = f,

whereM is constructed so thatAM has a more favorable eigenstructure thanA. Upon
incorporating the preconditionerM, the Krylov subspace changes accordingly: the
matrix associated with the subspace becomesAM, and the preconditioned residual
is now minimized.

A common way of dealing with the large number of degrees of freedom in a
fine mesh is to break the problem down into a number of more manageable sub-
problems. This amounts to the technique ofdomain decomposition; see, e.g., [11].
We can then incorporate preconditioners that work on the subdomains into the gen-
eral iterative framework.

The additive Schwarz preconditioner [11] and its restricted variant (RAS) [3],
can be written in the form
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M =
t

∑
i=1

R̃iA
−1
i RT

i ,

wheret is usually the number of subdomains,R̃i is a restriction operator,RT
i is a

prolongation operator, andAi = RT
i ARi is the restriction ofA onto theith subdomain.

A possible generalization would be to use a weighted additive or restricted addi-
tive Schwarz preconditioner, say of the form

M(k) =
t

∑
i=1

α(k)
i R̃iA

−1
i RT

i ,

where the weightsα(k)
i are chosen at thekth iteration of GMRES so as to minimize

the preconditioned residual, cf. [1]1. What we propose in this paper is to go a step
further, and implicitly find at each iteration both the current weights and all the
weights at the previous iterations, so as to minimize the residual at the current step.

Incorporating weights which change from one iteration to the next is significant
and we can no longer talk about a standard iterative method with a single precondi-
tioner. Instead, the proposed strategy fits into the MPGMRESparadigm the authors
recently described in [5], where more than one preconditioner may be applied si-
multaneously.2 Our main goal in this paper is to show that this methodology ispar-
ticularly effective in the domain decomposition paradigm,since we can associate
each subdomain with a specific, unique preconditioner.

An outline of the remainder of this paper follows. In Section2 we briefly describe
Additive and Restricted Additive Schwarz Preconditioning. In Section 3 we describe
the MPGMRES algorithm. We address the question of computational cost of the
algorithm and characterize the generalized Krylov subspace and its unique features
in domain decomposition setting. In Section 4 we provide some details on numerical
experiments. Finally, in Section 5 we make some concluding remarks.

2 Additive Schwarz Preconditioning

Suppose we divide the domainΩ containingn nodes intot subdomainsΩ1, . . . ,Ωt ,
which overlap by bands of widthδ nodes. Suppose each subdomain consists of
mi � n nodes, which we denote as the entries of the setIi. We can define a prolon-
gation matrixRT

i,δ ∈ R
n×mi which extends vectorsu(i) ∈ R

mi toR
n by

(RT
i,δ u(i))k =

{
(u(i))k if k ∈ Ii

0 otherwise.

1 We point out that this is completely different than the approach in [4], where the weights are
zeros and ones, and the emphasis is on asynchronous iterations.
2 This algorithm extends previous work on using a combinationof preconditioners – e.g., flexible
GMRES [7] with alternating preconditioners, as described by Rui et al. [6] in the method they call
multipreconditioned GMRES – by making an ‘optimal’ choice of weights. See [5] for a discussion.
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The transpose of this matrix defines a restriction operatorRi which restricts vec-
tors inRn to the subdomainΩi. The restriction of the discretized PDE,A, to theith
subdomain is given byAi = Ri,δ ART

i,δ .
We can now define theadditive Schwarz preconditioner as

M :=
t

∑
i=1

RT
i,δ A−1

i Ri,δ =
t

∑
i=1

Mi, (2)

whereMi := RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ . Note that, by the definition ofRT

i,δ , there exists
some permutationΠi such that, for allx,

ΠiMix = (×·· ·×0· · · · · ·0)T ,

i.e., the vector resulting from multiplication by theMi (regardless of the permuta-
tion) will be sparse.

We can also define arestricted additive Schwarz (RAS) preconditioner [5] by
considering the prolongationRT

i,0 instead ofRT
i,δ in (2).

3 The MPGMRES Algorithm for Domain Decomposition
Problems

MPGMRES [5] is a minimal residual algorithm for solving a linear system of equa-
tions which allows the user to apply more than one preconditioner simultaneously
(see also [2] for a multipreconditioned version of the conjugate gradient method).
At each step, new search directions are added to the search space, corresponding
to AMiv for eachi = 1, . . . , t, and for each basis vectorv of the current search
space. The multipreconditioned search directions are all combined into a gener-
alized Krylov subspace, and the minimization procedure requires solving a linear
least-squares problem. As opposed to standard GMRES, here the subspace grows
quickly due to the presence of multiple search directions and the projection can
be expressed in terms of a block upper Hessenberg matrix; seeFigure 1. It has been
shown in [5] that a so-calledselective MPGMRES (sMPGMRES) algorithm – which
chooses a subset oft search directions and hence keeps the size of the search space
growing only linearly – can be an effective method. MPGMRES (in both complete
and selective forms) is given as Algorithm 1.

3.1 Computational Work

In the selective algorithm we needt matrix-vector products andt preconditioner
solves per iteration, as opposed to one for both in the standard preconditioned
GMRES algorithm. The main other source for work is the inner products. Note
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(a) Complete MPGMRES (b) Selective MPGMRES

Fig. 1 Schematic of Arnoldi decompositions in complete and selective MPGMRES

Algorithm 1 MPGMRES
Chooseu0, r0 = f−A u0
β = ‖r0‖, v1 = r0/β
Z1 = [M1v1 · · ·Mtv1]
for k = 1, . . ., until convergencedo

W = A Zk
for j = 1, . . . ,k do

H j,k = (Vj)
TW

W =W −VjH j,k
end for
W =Vk+1Hk+1,k (skinny QR factorization)
yk = argmin‖β e1− H̃ky‖2
uk = u0+[Z1 · · ·Zk]yk

Zk+1 =

{
[M1Vk+1 · · ·MtVk+1] for complete MPGMRES
[M1Vk+11 · · ·MtVk+11] for selective MPGMRES

end for

that every entry in the Hessenberg matrixHk is the result of an inner product,
and these are the only inner products in the algorithm. MPGMRES therefore needs
(2k−1) t2

2 + 3
2t inner products at thekth step [5, Table 4.1].

Significantly, in the domain decomposition setting, due to the nature of the stan-
dard Additive Schwarz preconditioner, the preconditioning step isexactly the same
cost when using both selective MPGMRES and standard preconditioned GMRES.
Moreover, since the vectors we obtain by applying the preconditioners are sparse,
the cost of the matrix-vector products will also be of the same order as in the stan-
dard GMRES algorithm – the only extra expense coming from theoverlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vectorproduct would be
identical here too. While we studied RAS in the context of MPGMRES in [5], in the
rest of this paper we restrict our comments and experiments to additive Schwarz.
The extra cost in the MPGMRES approach therefore lies completely with the inner
products. The vectors here are, in general, dense, as we losesparsity ofW in the
modified Gram-Schmidt step (in the inner loop of Algorithm 1).
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3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multi-Krylov subspace

K
k

M1,...,Mt
(A,r0),

where

K
1

M1,...,Mt
(A,r0) = span{M1Ar0, . . . ,MtAr0},

K
2

M1,...,Mt
(A,r0) = span{M1Ar0, . . . ,MtAr0,M1AM1r0, . . . ,M1AMtr0, . . .

. . . ,MtAM1r0, . . . ,Mt AMtr0},

etc. Usually the size of this space grows exponentially witheach iteration. However,
in an additive Schwarz context the situation is not quite so dire, as we see below.

First, note that each preconditioned matrix is a projection, since

MiAMi = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

i,δ (Ri,δ ART
i,δ )

−1Ri,δ = Mi.

Hence applyingMi to AMi does nothing to enrich the space.
Next, note that

MiAM j = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

j,δ (R j,δ ART
j,δ )

−1R j,δ .

In the middle of this expression is the cross-termRi,δ ART
j,δ . Now note that

Ri,δ ART
j,δ = 0 wheneverIi ∩ I j = /0. Provided the overlapδ is not large enough to

touch two subdomains, this implies that only the contributions from sub-domains
that touch each other add anything to the multi-Krylov subspace. This is the number
of edges + corners in 2D (a maximum of 8 for a tensor product-based grid), and
these plus the number of faces in 3D (a max of 26 for a tensor product-based grid).
Altogether, this means that

dim(K k
M1,...,Mt

(A,r0)) = (kc+1)t,

wherec is a constant independent ofk, t. Therefore, even in the complete MPGMRES
case, we only havelinear growth in the search space.

4 Numerical Experiments

If we split the domain into a small number of subdomains, i.e., we have a high
proportion of subdomains lying on an edge, then there may notbe much difference
between the spaces minimized over by the selective algorithm and the complete
algorithm.
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For example, consider the special case where we split the domain Ω into two
subdomains,Ω1 andΩ2 such thatΩ1 ∪Ω2 = Ω . Then it can be shown [5, Sec-
tion 5.2.1] that, provided the subdomain solves are exact, the space over which we
minimize in both selective and complete MPGMRES are identical.

Figure 2 shows the convergence curves for solving the advection-diffusion equa-
tion

−∇2u+ω ·∇u = f in Ω (3)

u = 0 on∂Ω , (4)

whereΩ denotes the unit square andω = 10
(
cos(π

3 ),sin(π
3 )
)T

. This is discretized
using finite differences with a uniform mesh sizeh, and the right hand side is taken
to be the vector of ones. Thus, in 2D,n = 1/h2 and in 3D,n = 1/h3.
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(a) 2D, h = {2−3,2−4,2−5,2−6,2−7,2−8}
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(b) 3D, h = {2−2,2−3,2−4,2−5}

Fig. 2 Convergence curves for solving the advection-diffusion equation (3-4) with two subdomains
in 2D and 3D. The iteration number is plotted along the x-axis, and‖rk‖2 is plotted along the y-
axis.

As we see in Figure 2, the iteration counts are significantly better using a mul-
tipreconditioned approach. Despite only having a serial MATLAB code, this also
corresponds to significantly better timings, as is seen in Table 1: it is anticipated
that the difference between the two approaches would be evenmore striking in a
parallel implementation.

For a large numbers of subdomains, the work involved in the inner products and
vector updates becomes significant, even though the work in actually applying the
preconditioners is essentially the same as for the usual AS method. Convergence
curves for the problem (3)-(4) are given in Figure 3.

Although the iteration counts are impressive for a large number of subdomains
(with, e.g., 101 iterations for GMRES with an additive Schwarz preconditioner be-
ing reduced to 17 iterations with selective MPGMRES for 256 subdomains), the
timings in this case are not yet competitive – e.g., for the case with 256 subdomains
GMRES converges in 2.5s whereas sMPGMRES takes 9s. This is due to the fact
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Table 1 Timings for sMPGMRES and GMRES with two subdomains in 2D (left) and 3D (right)

h sMPGMRES GMRES

2−3 0.008 0.007
2−4 0.015 0.023
2−5 0.13 0.087
2−6 0.32 0.55
2−7 2.1 3.7
2−8 15.3 28.6

h sMPGMRES GMRES

2−2 0.010 0.011
2−3 0.059 0.058
2−4 1.03 1.49
2−5 25.6 39.7
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Fig. 3 Convergence curves for multiple subdomains in 2D (h = 2−6). The iteration number is
plotted along the x-axis, and‖rk‖2 is plotted along the y-axis.

that we are using a proof-of-concept (serial) MATLAB code. Recall that the only
extra work between the methods is in calculating the inner products and the subse-
quent vector update in the Gram-Schmidt process. Due to the block nature of the
proposed method much of this extra work could be distributedacross any available
processors. We envisage that a state-of-the-art implementation would yield great
computational savings, which would be manifested in a significantly reduced run-
ning time. This would be especially true for very large scaleproblems, where the
cost of the subdomain solves would dominate the cost of each iteration. A Fortran 95
implementation of MPGMRES –HSL MI29 – will be included in the 2013 release
of the HSL subroutine library.

Recall from Algorithm 1 that in the implementation of sMPGMRES reported
here we apply each preconditioner to the sum of the columns ofVk+1. This choice
is by no means unique, and there are many other possible selection strategies [5,
Section 2.3]. The approach employed here seems to perform well on a wide range
of problems, but it is a somewhat arbitrary choice. There maybe situations where
another selection strategy would be superior; this is one avenue for future research.
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5 Conclusions

We have presented an algorithm that applies Additive Schwarz with Variable Weights.
The approach is incorporated as a set of multiple preconditioners into MPGMRES.
Domain decomposition has a few unique features that make ourapproach partic-
ularly attractive. First, the preconditioning step entails the same cost when using
both selective MPGMRES and standard preconditioned GMRES,and the cost of
the matrix-vector products is also of the same order as in thestandard GMRES al-
gorithm. Secondly, because there is a very low degree of overlap between nodes in
the different subdomains, the growth in the search space forcomplete MPGMRES is
only linear, i.e., very modest. This is in contrast to other situations, where the search
space for complete MPGMRES grows exponentially and we settle for a selective
algorithm. For these reasons we believe that the combination of domain decompo-
sition preconditioners and the MPGMRES framework is an effective method for the
numerical solution of linear systems arising from PDEs.
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