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1 Introduction and Motivation

We consider the numerical solution of nonsymmetric lingatems of equations of
the form
Au =T, (1)

that arise from the discretization of partial differengguations (PDES). In practical
problems, the number of mesh points is very large, and tlaastae number of un-
knowns in (1), and the resulting matrix is large and spars¢hése circumstances,
iterative methods are often used, due to their ability td deare effectively with
a high degree of sparsity. A popular iterative method isGegeralized Minimum
Residual iterative scheme, or GMRES [8, 9, 10]. This method is baseahioimiz-
ing at thekth iterate the residual within the affine Krylov subspage-.#(A,r),
whereug is an initial vectoryg = f — Aug is the initial residual, and

XA ro) = sparfro,Arg, ..., A rg).

The performance of GMRES is often (though not exclusivetgdmined by the
structure of the eigenvalues of the mathixLoosely speaking, if they are strongly
clustered, then GMRES is expected to converge fast. To guiésima clustering
effect, apreconditioner M is typically used: instead of solving (1) we solve, say,

AM{ = f,

whereM is constructed so th&M has a more favorable eigenstructure thablpon
incorporating the precondition®, the Krylov subspace changes accordingly: the
matrix associated with the subspace becoAids and the preconditioned residual
is now minimized.

A common way of dealing with the large number of degrees oédoen in a
fine mesh is to break the problem down into a number of more geaide sub-
problems. This amounts to the techniquedofnain decomposition; see, e.g., [11].
We can then incorporate preconditioners that work on theurains into the gen-
eral iterative framework.

The additive Schwarz preconditioner [11] and its restdotariant (RAS) [3],
can be written in the form
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M= iifv\laﬁ

wheret is usually the number of subdomairi®,is a restriction operatoF,%,-T is a
prolongation operator, arfl = R,-TAR; is the restriction oA onto theith subdomain.

A possible generalization would be to use a weighted adddiwestricted addi-
tive Schwarz preconditioner, say of the form

t

S

where the Weighttsrfk> are chosen at thieh iteration of GMRES so as to minimize
the preconditioned residual, cf. f1]What we propose in this paper is to go a step
further, and implicitly find at each iteration both the cunreveights and all the
weights at the previous iterations, so as to minimize thigluas at the current step.

Incorporating weights which change from one iteration ®tlext is significant
and we can no longer talk about a standard iterative meththdangingle precondi-
tioner. Instead, the proposed strategy fits into the MPGMB&&digm the authors
recently described in [5], where more than one precondtionay be applied si-
multaneously. Our main goal in this paper is to show that this methodologyais
ticularly effective in the domain decomposition paradigimce we can associate
each subdomain with a specific, unique preconditioner.

An outline of the remainder of this paper follows. In Sectne briefly describe
Additive and Restricted Additive Schwarz PreconditionimgSection 3 we describe
the MPGMRES algorithm. We address the question of communtakicost of the
algorithm and characterize the generalized Krylov subspad its unique features
in domain decomposition setting. In Section 4 we provideesdetails on numerical
experiments. Finally, in Section 5 we make some concludingarks.

2 Additive Schwar z Preconditioning

Suppose we divide the domaéh containingn nodes intd subdomaing2y,...,Q;,
which overlap by bands of widtd nodes. Suppose each subdomain consists of
m; < n nodes, which we denote as the entries of thd;s#Ye can define a prolon-
gation matrixR' 5 € R™™ which extends vectons) € R™ to R" by

: My, i .
T i)y ) (uV) ifkel
(R k= { 0 otherwise

1 We point out that this is completely different than the apgtoin [4], where the weights are
zeros and ones, and the emphasis is on asynchronous isratio

2 This algorithm extends previous work on using a combinatibpreconditioners — e.g., flexible
GMRES [7] with alternating preconditioners, as describgdRhi et al. [6] in the method they call
multipreconditioned GMRES — by making an ‘optimal’ choidex@ights. See [5] for a discussion.
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The transpose of this matrix defines a restriction opetarich restricts vec-
tors inR" to the subdomai®;. The restriction of the discretized PDAK, to theith
subdomain is given by = R 5AR 5.

We can now define thadditive Schwarz preconditioner as

M 3 RGA R~ 5 M @

whereM; := R'(R 5AR";) 'R, 5. Note that, by the definition &R ;, there exists
some permutatiofl; such that, for alk,

MiMix = (X x0------ O)T,

i.e., the vector resulting from multiplication by tihd (regardless of the permuta-
tion) will be sparse.

We can also define eestricted additive Schwarz (RAS) preconditioner [5] by
considering the prolongatid®’, instead ORT(S in (2).

3 The MPGMRES Algorithm for Domain Decompaosition
Problems

MPGMRES [5] is a minimal residual algorithm for solving adiar system of equa-
tions which allows the user to apply more than one precashti simultaneously
(see also [2] for a multipreconditioned version of the coaijte gradient method).
At each step, new search directions are added to the seaach,sprresponding
to AM;v for eachi = 1,...,t, and for each basis vector of the current search
space. The multipreconditioned search directions areaalibined into a gener-
alized Krylov subspace, and the minimization procedureireg solving a linear
least-squares problem. As opposed to standard GMRES, Ieaibspace grows
quickly due to the presence of multiple search directiornd e projection can
be expressed in terms of a block upper Hessenberg matrikigeee 1. It has been
shown in [5] that a so-callest ective MPGMRES (sMPGMRES) algorithm — which
chooses a subset béearch directions and hence keeps the size of the searah spac
growing only linearly — can be an effective method. MPGMRESpth complete
and selective forms) is given as Algorithm 1.

3.1 Computational Work

In the selective algorithm we neédmatrix-vector products andpreconditioner
solves per iteration, as opposed to one for both in the stdnpeeconditioned
GMRES algorithm. The main other source for work is the innexdpicts. Note
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(a) Complete MPGMRES (b) Selective MPGMRES

Fig. 1 Schematic of Arnoldi decompositions in complete and seledPGMRES

Algorithm 1 MPGMRES
Chooseug, ro =f — .&/ug
B=llroll, va=ro/B
Zy = [ MV - - MV
for k=1,..., until convergencelo
W = & Z
for j=1,...,kdo
Hik=(Vj)TW
W =W —VjH«
end for
W = Vip 1Hkg 1k (skinny QR factorization)
Yk = argmin|Ber — Hiy|l2
Uk = Uo + [Z1--- Zk]yk
7 [ A1 Vi - MNiq]  for complete MPGMRES
LT Vi 11 Vi1 1] for selective MPGMRES
end for

that every entry in the Hessenberg mathy is the result of an inner product,
and these are the only inner products in the algorithm. MPG&BIEherefore needs
(2k— 1)% + %t inner products at thieth step [5, Table 4.1].

Significantly, in the domain decomposition setting, dud®nature of the stan-
dard Additive Schwarz preconditioner, the preconditigrstep isexactly the same
cost when using both selective MPGMRES and standard précmet GMRES.
Moreover, since the vectors we obtain by applying the prditmmers are sparse,
the cost of the matrix-vector products will also be of the sander as in the stan-
dard GMRES algorithm — the only extra expense coming fromawerlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vaguotoduct would be
identical here too. While we studied RAS in the context of MIPRES in [5], in the
rest of this paper we restrict our comments and experimengsiditive Schwarz.
The extra cost in the MPGMRES approach therefore lies caelgleith the inner
products. The vectors here are, in general, dense, as wapassity ofW in the
modified Gram-Schmidt step (in the inner loop of Algorithm 1)
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3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multidiw subspace
’%/'Vlflw,Mt (A’ ro),
where

St (ATo) = span{M;Arq, ..., MiAro},
Hra i (ATo) = span{MiAro, ..., MtAro, M1AM1r o, ..., MiAMro, ..
., M{AM1ro,..., |\/|tA|\/|tI'()}7

etc. Usually the size of this space grows exponentially wébh iteration. However,
in an additive Schwarz context the situation is not quiteis®, és we see below.
First, note that each preconditioned matrix is a projectsimce

MiAM; = R5(R 5ART5) 'R AR 5(R 5AR 5) 'R 5 = M.

Hence applyingv; to AM; does nothing to enrich the space.
Next, note that

MiAM; = RT5(R 5AR5) 'R sART 5(R; 5ART 5) 'R; 5.

In the middle of this expression is the cross- tERﬂ;ART Now note that

R, 5AR 5= = 0 whenevel; Nlj = 0. Provided the overlag is not large enough to
touch two subdomains, this implies that only the contritnosi from sub-domains
that touch each other add anything to the multi-Krylov salegp This is the number
of edges + corners in 2D (a maximum of 8 for a tensor produsetarid), and

these plus the number of faces in 3D (a max of 26 for a tensalyatebased grid).

Altogether, this means that

dim(y i (Aro)) = (ke+ Dt

wherecis a constant independentiot. Therefore, even in the complete MPGMRES
case, we only havienear growth in the search space.

4 Numerical Experiments

If we split the domain into a small number of subdomains, e have a high
proportion of subdomains lying on an edge, then there mapeaotuch difference
between the spaces minimized over by the selective algorghd the complete
algorithm.
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For example, consider the special case where we split theithaf into two
subdomains2; and Q, such thatQ; U Q, = Q. Then it can be shown [5, Sec-
tion 5.2.1] that, provided the subdomain solves are exaetspace over which we
minimize in both selective and complete MPGMRES are idahtic

Figure 2 shows the convergence curves for solving the aidwediffusion equa-
tion

—Pu+w-Ou=f inQ (3)
u=0 ondQ, 4)
whereQ denotes the unit square and= 10(005(%),sin(§))T . This is discretized

using finite differences with a uniform mesh sizeand the right hand side is taken
to be the vector of ones. Thus, in 2D= 1/h? and in 3D,n = 1/h%.

0 10 20 30 40 50 60 70 0 10 20 30 40 50
its its
GMRES - — - sMPGMRES GMRES - - - sMPGMRES

(@ 2D, h={27324252°627 28} (b) 3D, h={2"22324275

Fig. 2 Convergence curves for solving the advection-diffusionatigpn (3-4) with two subdomains
in 2D and 3D. The iteration number is plotted along the x-aaigl||ri||2 is plotted along the y-
axis.

As we see in Figure 2, the iteration counts are significarglyes using a mul-
tipreconditioned approach. Despite only having a seriallMAB code, this also
corresponds to significantly better timings, as is seen bi€Ta: it is anticipated
that the difference between the two approaches would be mga striking in a
parallel implementation.

For a large numbers of subdomains, the work involved in theriproducts and
vector updates becomes significant, even though the worktirally applying the
preconditioners is essentially the same as for the usual Athaod. Convergence
curves for the problem (3)-(4) are given in Figure 3.

Although the iteration counts are impressive for a large Ineinof subdomains
(with, e.g., 101 iterations for GMRES with an additive Schavareconditioner be-
ing reduced to 17 iterations with selective MPGMRES for 26Bdomains), the
timings in this case are not yet competitive — e.g., for theeaaith 256 subdomains
GMRES converges in.8s whereas SMPGMRES takes.9his is due to the fact
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Table1 Timings for sMPGMRES and GMRES with two subdomains in 2Dt)lahd 3D (right)

h SMPGMRES GMRES
- 0008 2007 h sMPGMRES GMRES
24 0.015 0.023 2-2 0.010 0.011
2-5 0.13 0.087 273 0.059 0.058
26 0.32 0.55 274 1.03 1.49

277 2.1 3.7 25 25.6 39.7

28 15.3 28.6

MPGMRES, 4 subs
GMRES, 4 subs
—— MPGMRES, 16 subs
GMRES, 16 subs
i —-— - MPGMRES, 64 subs
—— GMRES, 64 subs
—e— MPGMRES, 256 subs
——=— GMRES, 256 subs

0 20 20 60 80 100 120

its
Fig. 3 Convergence curves for multiple subdomains in 2D=(2-5). The iteration number is
plotted along the x-axis, antx||2 is plotted along the y-axis.

that we are using a proof-of-concept (serial) MATLAB codecRll that the only
extra work between the methods is in calculating the innedpcts and the subse-
quent vector update in the Gram-Schmidt process. Due toltduk mature of the
proposed method much of this extra work could be distribammdss any available
processors. We envisage that a state-of-the-art implextientwould yield great
computational savings, which would be manifested in a Sigamntly reduced run-
ning time. This would be especially true for very large sqaieblems, where the
cost of the subdomain solves would dominate the cost of ¢éacdtion. A Fortran 95
implementation of MPGMRES HSL_M 29 — will be included in the 2013 release
of the HSL subroutine library.

Recall from Algorithm 1 that in the implementation of SMPGHR reported
here we apply each preconditioner to the sum of the columig.af This choice
is by no means unique, and there are many other possibleisalstrategies [5,
Section 2.3]. The approach employed here seems to perfolihomva wide range
of problems, but it is a somewhat arbitrary choice. There magituations where
another selection strategy would be superior; this is oeaaw for future research.
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5 Conclusions

We have presented an algorithm that applies Additive Schwih Variable Weights.
The approach is incorporated as a set of multiple precamdits into MPGMRES.
Domain decomposition has a few unique features that makeoroach partic-
ularly attractive. First, the preconditioning step erstdile same cost when using
both selective MPGMRES and standard preconditioned GMRI&S,the cost of
the matrix-vector products is also of the same order as istdredard GMRES al-
gorithm. Secondly, because there is a very low degree ofagvbetween nodes in
the different subdomains, the growth in the search spacmfoplete MPGMRES is
only linear, i.e., very modest. This is in contrast to othiraions, where the search
space for complete MPGMRES grows exponentially and weeskitl a selective
algorithm. For these reasons we believe that the combimafidomain decompo-
sition preconditioners and the MPGMRES framework is ancgiffe method for the
numerical solution of linear systems arising from PDEs.
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