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NUMERICAL EQUIVALENCES AMONG KRYLOV SUBSPACE
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Abstract. We briefly review Krylov subspace methods based on the Galerkin and minimum
residual conditions for solving Az = b with real A and b, followed by two implementations: the con-
jugate gradient (CG) based methods CGNE and CGNR. We then show the numerical equivalence of
Lanczos tridiagonalization and Golub—Kahan bidiagonalization for any real skew-symmetric matrix
A. We give short derivations of two algorithms for solving Az = b with skew-symmetric A and use
the above equivalence to show that these are numerically equivalent to the Golub—Kahan bidiagonal-
ization variants of CGNE and CGNR. These last two numerical equivalences add to the theoretical
equivalences in the work by Eisenstat [Equivalence of Krylov Subspace Methods for Skew-Symmetric
Linear Systems, Department of Computer Science, Yale University, preprint, arXiv:1512.00311, 2015]
that unified and extended earlier work. We next present a method based on the Lanczos tridiagonal-
ization process for minimizing ||AT (b — Axy)||2 when AT = —A and show that for skew-symmetric
systems it is numerically equivalent to LSMR developed by Fong and Saunders [STAM J. Sci. Com-
put., 33 (2011), pp. 2950-2971]. Finally, we illustrate the typical convergence behaviors of these
algorithms with a numerical example and use these and an analysis to give new insights into algo-
rithm choices for general large sparse matrix solution of equations problems.
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1. Introduction. For skew-symmetric matrices A = —AT € R™*" we will ex-
amine iterative orthogonal transformations to tridiagonal or bidiagonal forms and
the use of Krylov subspace methods based on these for solving systems of equations
Az = b and least squares problems min,, |b — Az||2. For the kth approximation zj to
such 2 we will consider three optimality criteria: minimizing the error || — 2|2, the
residual ||b — Axy||2, and the normal equations residual ||AT (b — Axy)||2.

Skew-symmetric linear systems present distinct challenges compared to symmetric
systems. For example, if A is a skew-symmetric matrix, then 7Az = 0 for any
vector x, which eliminates the possibility of considering a method based directly on
minimizing the A-norm of the error \/(z — x1)TA(z — x,), such as the conjugate
gradient (CG) method. In addition, it is not easy to develop preconditioners that
preserve skew-symmetry. It is enough for the dimensions of a skew-symmetric matrix
to be odd for it to be singular, so since we will be interested in solution of equations, for
simplicity here we will assume that all our skew-symmetric matrices are nonsingular.

On the other hand, skew-symmetric matrices have unique mathematical proper-
ties. Their diagonal entries are zero, and their nonzero entries are completely deter-
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mined by their strictly lower or upper triangular part. The symmetry of their (pure
imaginary) eigenvalues with respect to the origin is intriguing. These properties call
out for exploitation by specialized solution methods. We discuss some history of these
in section 3 after an introduction to the relevant Krylov subspace methods.

This paper was initially motivated by the realization that the development in [9]
could be simplified. Greif and Varah [9] derived Krylov subspaces via the Lanczos
tridiagonalization [15] for skew-symmetric A and applied the Galerkin and minimum
residual conditions to provide two iterative solution methods for skew-symmetric sys-
tems. In a recent manuscript, Eisenstat [4] provided algorithm-independent proofs
showing that for skew-symmetric systems, with exact arithmetic there is no advan-
tage in using the Galerkin method over the classic Craig’s method or in using the
minimum residual method over the CG method applied to the normal equations. We
elaborate on these observations in section 3 and below.

Following these insights the present paper shows the numerical equivalence of
carefully implemented pairs of the above, and other solution of equations methods,
by showing the numerical equivalence of Lanczos tridiagonalization and Golub-Kahan
bidiagonalization (GKB) [7] for skew-symmetric matrices.

In section 2 we briefly review Krylov subspace methods based on the Galerkin and
minimum residual conditions for solving general Az = b problems, followed by two
implementations: the CG based methods CGNE and CGNR. These are described, for
example, in [8, Chap. 7]. In section 3 we provide some remarks on related work and
relevant references. Recently we have realized that the structure of the tridiagonal
matrix arising in the Lanczos tridiagonalization process for skew-symmetric matrices,
described in section 4, can be used to develop Az = b solution methods based on this
Lanczos process that do not require the usual decomposition of the tridiagonal matrix.
We show in sections 5 and 6 that for skew-symmetric A two Lanczos process steps are
equivalent to one step of the GKB process. Sections 7 and 8 use this structure and
equivalence to show that if the Galerkin and minimum residual approaches to solving
Ax = b with such A are based on the Lanczos process, the resulting algorithms are
equivalent to the well-known CGNE and CGNR methods, respectively. The method
LSMR in [5] uses GKB to minimize ||AT(b— Azy)|2 at each step for general A. In
section 9 we develop the Lanczos process to carry out this minimization and show that
it is equivalent to LSMR for skew-symmetric A. We briefly discuss preconditioning
in section 10 and examine the behavior of these algorithms in section 11. Section 12
corrects an error in the printed version of the classic Hestenes and Stiefel paper [11]
and provides new insights into the choice of algorithms for large sparse systems of
equations with general unsymmetric matrices.

Notation. We will use Uy, Vi, and Wy to indicate matrices of k vectors, e.g.,
Wi = [wi,...,wg], and produce theoretically orthonormal versions of these where
appropriate. We use “2” to mean “is defined to be” and use “:=” to mean “is
computed to be,” where for simplicity any normalization of the form “wg := b” will
be shorthand for “f := ||b||2, stop if 8 = 0, otherwise w := b/3.”

2. Krylov subspace methods for linear systems of equations. We consider
general A to set up the background. First, Krylov subspace methods for solving

(2.1) Az = b, A € R™"™ nonsingular,
compute a sequence {xy } of approximate solutions where for simplicity we take zo = 0:

zr € Ki(A,b) 2 span{b, Ab, ..., A*1b} = Range(W},), say,
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where Wy, is a rank-k matrix, typically with orthonormal columns. A vector z¢
satisfies the Galerkin condition (-¢ for “Galerkin”) if

(2.2) ka = kag, W,;‘F(b - Akag) =0, Range(Wy) = Kr(A4,b).

If A is symmetric positive definite (SPD), then a unique x{/ always exists and mini-
mizes the A-norm of the error, as is seen by differentiating with respect to yx

(2.3) o —2il|% 2 (2 — o) "A(x — o) = (. — Wign) (b — AWiys).

In our case, considering (z — x3,)TA(z — xy) is inappropriate since with AT = — A this

will be zero for all ;. Worse still, ykG might not always exist in (2.2); see section 3.
Instead of the Galerkin condition, xj could be the vector that minimizes the

Euclidean norm of the residual 7, 2b — Az, where with -» for “Minimum residual,”

(2.4) xﬂ/[ = ka,% y,]y =arg Ir;in |6 — Akang, Range(Wy) = Kr(A4,b).

This x,i‘/[ always exists and is unique at least until the last step. It minimizes the ATA
norm of the error associated with 2 and satisfies W;I AT (b— Az}M) = 0.

The CG method [11] is a Krylov subspace method based on the Galerkin condition
(2.2) for solving Mz = ¢ for SPD M. Thus from (2.2)

(2.5) 7j=W;z,  WI(c—Mi;)=0,  Range(W;) =K;(M,c).
Instead of (2.1), to handle general possibly nonsquare A, CG can be applied to
different forms of MZ = ¢ with SPD M; see, e.g., [8, Chap. 7].
First, Craig’s method [3] is useful for consistent systems Az = b, e.g., when A is
m xn of rank m. Craig’s method is also called CGNE, and uses CG to solve AATy=b,
and then evaluates © = ATy, so that using - to denote CGNE, (2.5) leads to
(2.6) y=U;z7

7

U;‘F(b —AATUJ-zJE):07 Range(U;) =K, (AAT,b), xJE:ATy]E.

Because of the Galerkin condition, with full row rank A this minimizes the AAT-norm
of y — yf; see (2.3). But (y — yf)TAAT(y - yf) = |z — a:fH%, so it also minimizes
the Euclidean norm of x — xf . This suggests that CGNE means “CG minimizing the
Norm of the Error.” Unfortunately, CGNE is sometimes interpreted as “CG Normal
Equations.”

Instead of Craig’s method, another application of CG to solving Az = b or mini-
mizing |[|Az — b||2 was given by Hestenes and Stiefel in [11, eq. (10.2)]. It was called
CGNR in [8, Chap. 7] and CGLS in [20, sect. 7.1] and uses CG to solve the normal
equations ATAx = ATh. With full column rank A, as is the case here, the approxi-

mate solution 2 (-2 from CGNR) at step j is the unique vector that satisfies (see

(2.5)) ’
(2.7) ot =V B

J 3

0=V"AT(b— AV;2"), Range(V;) = K;(A"A, A™b).

Whether A has full column rank or not, zJR minimizes ||b— AV;z;||3 since (2.7) gives
the normal equations for this minimization, so xf minimizes ||b — Az;||3 over all
x; € Range(V}), leading to least squares solutions to Az =~ b. Thus CGNR probably
means “CG minimizing the Norm of the Residual”; see, e.g., [8, pp. 105-106]. An

implementation based GKB [7] is LSQR in [20].



1074 C. GREIF, C. C. PAIGE, D. TITLEY-PELOQUIN, AND J. M. VARAH

3. Related work. An understanding of the special properties of, and theoretical
relationships among, algorithms for skew-symmetric matrix problems Ax = b devel-
oped over the years. As noted in [4], early on Huang, Wathen, and Li [12] gave an
algorithm computing only the even minimum residual iterates x% (see (2.4)). Idema
and Vuik [13] also applied the minimum residual condition (2.4) and observed that
the algorithm in [12] is equivalent to CGNR (see (2.7)), i.e., that x3] = zf. Jiang
[14] again applied the minimum residual condition, while Gu and Qian [10] imposed
the Galerkin condition (see (2.2)). Greif and Varah [9] gave algorithms based on the
Lanczos process for both the minimum residual and the Galerkin conditions, show-
ing that in theory the odd iterates xQGJ 41 in (2.2) do not exist (they would require
solutions of incompatible singular systems for y2GJ +1), while the even iterates xQGJ are
equivalent to CGNE iterates z} (see (2.6)). They also showed that in theory, in (2.4),
x5ty = x3]. The Lanczos process has been applied to other structured matrices;
for example, in [2] the Lanczos process is tailored to take advantage of symplectic
structure.

Eisenstat unified and extended the results of [9] by using his elegant Lemma 1 in
[4] to give algorithm independent proofs that, among other things, if AT = —A, then
in theory a:% = xf in (2.2) and (2.6), and a:%H = x% = a:f/ in (2.4) and (2.7), and
in each case there is no advantage in using the first approach over the second.

These results assumed mathematically exact relationships. In the following we
will show that many of the equivalences can also occur in finite precision computation.

4. Lanczos tridiagonalization of skew-symmetric matrices. Given an in-
teger k>0 and a unit norm vector wy € R™, the k-step Arnoldi iteration [1] for general
A € R™*™ generates a sequence of orthonormal vectors {w;} such that

(4.1) AW, = Wk+1Hk+1,k =W,H + wk+17k+1ef, WEWk = I, WEAW]C = Hy,

where Wi, 2 [wi,...,wg], Hip1x is a (k+ 1) x k upper Hessenberg matrix, and
Range(W4) = Ki(A,w;). These relations may be used in (2.2). If A = —AT ¢ R"*",
then Hl = WIATW,, = —Hy, giving

0 —m
Y2 0 -3
4.2 H = = .
(42) LR : 0 — [’Ykﬂ 6;{}
v 0
VE+1

This leads to Algorithm 1, a short recurrence Lanczos process computing Wy and Hy.

Algorithm 1 The Lanczos process [15] for skew-symmetric A € R"*"

Given w; € R™ with ||wi]|2 = 1 compute ways := Aw;
for k = 2 step 1 until convergence do

Wk 1 Vh41 := AWk + Wr—1Vk
end for

Note that in Algorithm 1 each +y; results simply from the normalization of its w;.
There are at most n orthonormal vectors, so in theory this process must stop in
ko < n steps. And since Hy, is skew-symmetric in AW}, = Wi, Hy,,
(4.3)
nonsingular A=—AT = Algorithm 1 stops in an even number of ky £ 2j, steps.
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Because there is no diagonal element in (4.2), Lanczos tridiagonalization for skew-
symmetric matrices is likely to be marginally more well behaved numerically than
the symmetric Lanczos process, but cancellation will still eventually lead to loss of
orthogonality among the wy, vectors, and the process is unlikely to stop in n steps. It
is the special form of the tridiagonal that leads to the following equivalences.

5. Golub—Kahan bidiagonalization. Often the best way to understand, com-
pare, and implement algorithms such as CGNE and CGNR is via Golub-Kahan bidi-
agonalization (GKB) [7] in the form of “Bidiag 1”7 in [20, sect. 3], which we now state
as Algorithm 2. Again note that every scalar results from a normalization.

Algorithm 2 Golub-Kahan bidiagonalization [7] for general A € R™*™
Given u; € R™ with ||uy]|s = 1 compute viay := ATuy
for 7 = 1 step 1 until convergence do
ujt1Biv1 = Avj —uja;
Vj410541 = ATujJr]_ — Uj/BjJr]_
end for

This gives lower bidiagonal Bj ;1 (denoted by Bj_; in [20]), where after j—1
1

steps with Uj 2 [u1,...,u;] and V; 2 [vq,...,v;] (see [20, sect. 3]),
%1
2 a2 B;_
(51) AVioy =U;Bjj, ATU;=V;Bf, Bjj1 2| 6. | = [5,;T11],
J— J j_
B;

(5.2) U]TUJ-:V}-TVJ»:IJ-, Range(U;) =K, (AAT u1), Range(V;)=K;(ATA, ATuy),

where U; and V; can be used for CGNE in (2.6) and CGNR in (2.7), respectively.

6. Equivalence of Lanczos tridiagonalization and Golub—Kahan bidiag-
onalization for skew-symmetric matrices. When A” = — A, we now show that
one step of Algorithm 2 is equivalent to two steps of Algorithm 1 if u; = w;.

First make the following substitutions in Algorithm 2:

T ~ ~ ~ ~
(61) A — —A, Uj — W2j—1, Vj — Waj, O — —7Y25, ﬂj — Y2j—1,

giving [u1,v1,u2,v2, ..., us,v;] — Waj = [0, W2, W3, . . . , Waj—1, Waj]-

Note that o; — —72; is a substitution, not an equality. Both a; and “»; are positive.
The body of the loop in Algorithm 2 then becomes Wy 4172541 := Ao +Waj—172; and
Wajt2Y2j+2 = Awgjy1 + Wa;y2j+1, or replacing 2j by k, Wy y1Yk+1 1= AWy + W17k
and WgyoYk12 = AWgy1 + WrYk+1, i-€., two successive steps, so Algorithm 2 becomes
the following algorithm.

Algorithm 3 If AT = — A, Golub-Kahan bidiagonalization = Lanczos process

Given @y € R™ with ||@1]]2 = 1 compute wa72 := Aw (assume nonsingular A)
for k£ = 2 step 1 until convergence do

Wit 1Yk41 1= AW, + Wi—17% (ideally this stops with Wk, +15k,+1 = 0; see (4.3))
end for

Thus by expanding one step of GKB into two successive steps, the resulting
Algorithm 3 has the same form as Algorithm 1, and if @, = u; = wy, then Algorithm 3
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develops ezactly as Algorithm 1. Therefore each GKB step in Algorithm 2 with
AT = —A (so that m = n) can be made identical to two Lanczos process steps
in Algorithm 1, and the computational cost and accuracy of this special version of
Algorithm 2 must then be identical to that of Algorithm 1.

Algorithm 1 terminates in ko = 2jo steps for nonsingular A (see (4.3)), so with
u1 = wy it follows from (6.1) and (5.2) that for U; and V; in (6.1), for j = 1:jo,

(62) Range(Uj) = Range([wl, w3z, ... ,’LUQj_l]) = ICj (AAT, wl) = ICj (A2, wl),
Range(V;) = Range([ws, wy, . . ., wa;]) = K;j(ATA, ATw;) = K; (A%, Awy),
U'V; =0, Range([U;,V;]) = Ko;(A,u1) = Koj (A, wy), AV}, = Uy, By,

where U]V = 0 follows from W3;Wy; = Ip;. Thus the odd indexed vectors from
the Lanczos process are the u; vectors from GKB, while the even indexed vectors
from the Lanczos process are the v; vectors from GKB, so interestingly, the two sets
of GKB vectors are orthogonal. Here (6.2) parallels the more theoretical derivation
by Eisenstat [4, Lem. 1] of the following: If AT = —A and Az = b, then (with
b= wlﬁl = ulﬁl)

(6.3) for j =1:jo, Kaj(A,b) =K;(A%b) UK;(A% Ab), K;(A%b) L K;(A?, Ab);
0=Viup =Vyib=V5 Az =-VIATe = —Bl U}z, so xLK;(A%D).

Jo " Jo?

Another approach is to note that if Bj y = e181, then AVj,y = Uj,e181 = b, so
x = Vj,y € Kj,(A%, Ab) L Range(Uj,) = K;, (A%, D).

Now k=25 steps of Lanczos tridiagonalization are equivalent to j steps of GKB,
and Range(W},) =Range([U;, V;]). But in theory £ = 2j < n, so j < % for nonsingular
A, and GKB must in theory (i.e., in the absence of roundoff error) stop in at most
5 steps. Another way of looking at this is that the nonzero eigenvalues of A= —AT
come in imaginary pairs, +0;4/—1, and so each nonzero singular value o; of A occurs
twice, so that GKB must in theory stop in at most 4 steps for nonsingular A.

The Lanczos process—GKB equivalence suggests that with skew-symmetric ma-
trices, for any computation involving the Lanczos process, there is a numerically
equivalent computation involving GKB. To support this, and show the required re-
ductions, in each of the next three sections we illustrate a solution of equations
method for Ax = b based on the Lanczos process, and its GKB equivalent, so we

take w151 = w161 = b in Algorithms 1 and 2 to relate (4.1)—(6.3).

7. Lanczos—Galerkin and CGNE methods for skew-symmetric matri-
ces. Let A =—AT € R"*" and b € R", with A nonsingular so that n is even. Assume
(4.1)—(4.2) hold with B; := ||b||2, w1 := b/B1. At step k of the Lanczos process the
Galerkin condition for solving (2.1) is with y& 2 (m1,...,m5)T (see (2.2)),

(7.1) 2 =WiyS, Wlb=e fi=WIAWLyS =HyS, Range(Wi)=Kr(A,b).

This was analyzed and implemented in [9]. Here we show how the same process can
be more briefly presented by using the zero structure in (4.2) and taking k = 2j. The
k = 4 case will make the development easily understandable. From (7.1) we need to
solve Hyy§' = e11; see (7.2). Note that the 4th row of (7.2) gives 13 = 0, so the 2nd
row gives 1 = 0, and these two elements and their columns can then be deleted to
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give the middle matrix equation in (7.2). With (6.1), deleting the 2nd and 4th rows
gives the final matrix equation where the final matrix is By in (5.1):

0 — ml | o3l

Y2 0 -7 72 0 72 0 ai n2|_|B
7.2 = = N — .
(7.2) 3 0 —yal|ms Y3 —7Ya [774] 0 B2 azf(ma] |0

V4 0 ||ma 0 0

In general, the last row of ngyzaj = e1 31 gives y2;m2j—1 = 0, and the remaining even
rows of Hy; show that ng;—1 = 0,7 =1,2,...,j. Deleting the columns corresponding
to zero elements and the resulting zero rows means Hy; becomes B; in (5.1). Writing
t5 2 (12,4, ... ,1m25)" leads to the following Lanczos-Galerkin approximations:
(7.3) Solve BjtjG =e1/1 and form x2GJ = szyQGj = VjtjG = x2Gj72 + v;12;.

Thus only the wy; contribute to x2GJ = ngyQGj, meaning that 25, , = z§ and the
residuals 7§, = r§ for i = 1:j. But the vectors u; = wg;_1 contribute to the
residuals since from (4.1) and Hy;ys; = €11,

(74) TQGJ- é b—AQIQG] Zwlﬁl —AszyQGj :wlﬁl — W2j+1H2j+172jy2Gj = —w2j+1ﬁj+1n2j.

Now to obtain the CGNE approximation xf we take u1 = b/B1, B1 = [|b]|2 (so
that u; = w; in (7.1)) in GKB Algorithm 2, together with the CGNE condition in
(2.6). Then (5.1) and (6.1) give the GKB-CGNE approximations,

(75) 0=U(b—AA"U;z}) = e1p1—B;V]'V; Bl 2} = e1p1 —Bjty’, ¥ 2 Bl=7

2%3
B _ ATy B _ . BT E — v
ot = ATU;2F = V;BIF = vjtP.

3

With tjE é (7'1,’7'2, . ,Tj)T, BjtjE = 6151 in (75) shows that

J
Bl . [ . s E E
(76) 1= — T = —Ti_1f7 Z:2.]7 ﬂ:] = E VT = a:j_l +UJTJ
=1

o1’ o

We see that t¥ = ¢ in (7.3) so that =¥ = 2§} and 7 2 b — AzF = r§;. Thus
for skew-symmetric A, not only are the Lanczos—Galerkin and CGNE approximations
mathematically the same (see [9] and section 3), but they are computationally the
same if the above obvious implementations are used.

Greif and Varah [9] showed that each double step of the Lanczos—Galerkin algo-
rithm is equivalent to a single step of CGNE for skew-symmetric A by scaling the
Lanczos—Galerkin vectors to produce the standard variant of CGNE. In Algorithm 4
we give the CGNE version that comes from (7.6) with GKB in Algorithm 2.

The mathematical equivalence of Algorithm 4 with the standard CG variant was
shown in [9]; see, e.g., [9, Alg. 2, p. 592]. Algorithm 4 requires one less inner product
but two more vector scalings per step. If needed, ¥ = rf; = —u;18;417; follows
from (7.4), (6.1), and ny; = 7;.

We repeat the observation from section 6 that theoretically Algorithm 1 converges
in at most n steps, so that Algorithm 2 and CGNE in Algorithm 4 must converge in at
most n/2 steps, but of course the number of matrix-vector products is the same. The
above observation also follows since CGNE is mathematically equivalent to applying
CG to AATy = b and forming 2 = ATy. But AAT = —A? has at most n/2 distinct
eigenvalues, giving the ideal convergence of CGNE in at most n/2 steps.
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Algorithm 4 Golub-Kahan bidiagonalization [7] version of CGNE for Az = b with
AT=_A
Given b compute u1 81 :=b, viay := —Auy, 11 = S1/aq, 21 := 017
for 57 = 1 step 1 until convergence do
ujJr]_/BjJr]_ = AUj —U; 0y

Vj410541 1= _AujJr]_ — Uj/BjJr]_
Tj+1 = —T;Bj1/ 41
Tjt1 =25 + Vj+1Tj+1

end for

8. Lanczos minimum residual and CGNR methods for skew-symmetric
matrices. To find z¥ in (2.4) using the Lanczos process we take w31 := b in (4.1)
to give in the kth step

b — AWryill2 = |w11 — W1 Hir1,:Yx 2 = lle1 81 — Hit1,6Yk||2,

(8.1) ﬂfiw = kal]cwv yl]cw = argn;in llerS1 — Hiq1,kYk||2-
k

This was carefully analyzed in [9]. But similarly to section 7, a solution method
is more easily developed by using the zero structure in (4.2) and taking even k = 2j.
Define yr. 2 (m1,...,m%)T. The expression 131 — Hy41 Yk in (8.1) separates into two
unconnected sets of rows, the odd rows involving the 7;, and the even rows involving
the 72,1, from which we will see that the 72;_1 = 0 for the minimum in (8.1). The
k = 4 case makes the development easily understandable,

0 —v 51 —Y2n2 — P1
T
Y2 0 =3 oy 0 Y2t — Y373
Hs 4ys —e11= V3 0 - ns| ~ Ol =1| v3m2—7am
Y4 0 i 0 Yan3
Y5 0 Y574

To minimize the Euclidean norm of this expression we can set the odd rows to zero
without affecting the even ones. So with (6.1) and (5.1) we minimize

=2 b1 o B1
Y3 —Ma [Zi] -0 =B {Zﬂ -0 = HB372 {Zﬂ —e1f
V5 0 9 B3 0 9 2

In general, because of the structure of Hyi1 ) the odd numbered elements of
Hj. 11 1yr involve only even-indexed n;, while the even numbered elements of Hy 1 1Yk
involve only odd-indexed 7;. So, as above, we can set the odd-indexed 7; to zero and,
with z; 2 (2,4, - m25)T = (C1, Coy -+, ¢)T and (6.1), solve

J J
82) z'= argmin || Bj1,;2; — €112, zy] = szmé\f = ZWQM = V2"
! i=1 i=1
Again only the wo; contribute to x% = ngy%— , meaning that x% 11 = x% and
the residuals r3f, ; = r3f. With k = 2j the residuals are then (see (4.1))

(8.3) oy 2 b— Axy] = w11 — AWays] = Wajyi(e1 B — Hajin,2593) ),

757 112 = lle1B1 — Hajq1,253; l2 = || Biy1,52)" — e1al3.
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Similarly to section 7, we can obtain the CGNR solution by taking u; = w; =
b/B1, B1 = ||bll]2 in GKB Algorithm 2 together with the CGNR condition in (2.7).
This gives with (5.1) and (6.1) the CGNR solution xf = VJzJR at step j via GKB,

where it will be seen that 2* 2 (¢f*, ¢4, ..., ()T = 2}" in (8.2),

0=V"AT (b — AV;z[) =B, ;U1 (b= Uj1 Bjr12) =B,y j(e1fr — Bjr12),

R _ . M R _ 1, R _ M _ M
(8.4) 7y =argmin|leif — Bj;zlle = 25, @y = Vizt = Viz' = g,
J
R A R _ R _ _ R _ M
2 b—Ari =wip — AVjzt = w1 — Uj1Bjya,525" = a5,
and again we see that for AT = —A the Lanczos minimum residual approach is

mathematically equivalent to the CGNE approach; see section 3. But if the above
algorithms are used, we now see that they are numerically equivalent.

The method indicated by (8.4) is implemented as Algorithm LSQR in [20, sect. 4],
[21], so there is no reason to repeat it here. The standard CGNE and CGNR algo-
rithms are given in [8, p. 105]. The only thing to remember is to use —A when AT is
required and to note that ideally the methods would stop in no more than n/2 steps.

9. Minimizing the normal equation residual for skew-symmetric ma-
trices. If A is m x n with rank n, then the least squares solution to Ax = b satisfies
ATr = 0, 7 2 b — Az, and it can make sense, even for general Az = b, to choose
x1, from a Krylov subspace to minimize ||AZry|l2 = ||AT (b — Axy)l|2; see Fong and
Saunders [5], who developed the algorithm LSMR (Least Squares via MINRES on
the normal equations) based on GKB to solve such problems. As far as we know,
for skew-symmetric problems no one has published an algorithm based on Lanczos
tridiagonalization to solve such problems, so we will quickly indicate such an approach
and show how, as expected, it can be reduced to LSMR applied to skew-symmetric

A.
For A € R™*" using Wy, in (4.1) would give (-V for “Normal equations residual”)

(0 wipri=b g = argmin [ATG - AWige)lla, @i = Wiy

When AT = —A, the Lanczos process (4.1) and (4.2) leads to the minimization of

(9.2) AT (b — AWiyi)ll2 = || — A(w1 81 — Wi Hig1 5k |2
= || — w2281 + Wrro Hiro k1 Hiv1 kY |2
= |le2v281 — Hiy2,5+1 Hit1,6Yk|2-

But because of the structure of Hyyqp, if yp 2 (m1,... ,mk)T, the odd numbered
elements of Hjy1ryr involve only even-indexed 7;, while the the even numbered
elements of Hjyi Yy, involve only odd-indexed 7;. For the same reason the odd
numbered elements of Hy 2 41 Hp11,1Yr involve only odd-indexed n;, while the even
numbered elements of Hy 2 p+1Hg41,xYx involve only even-indexed 7;. This breaks
the minimization of (9.2) into two separate minimizations, one over the odd-indexed
n; and the other over the even. But the only nonzero element arising from A”b is
e2v201, which is related to even-indexed 7);, so the odd-indexed 7; must be set to zero.

Setting the 12,—1 = 0 in (9.2) leads to the even-indexed elements of Hy 11 xyx being
zero. Removing these and the related columns, and then zero rows, of Hyy2 111 leads
with (6.1) to, for example, for k =4 or k =5,
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Y251 Y2 =3 —2 s T "2
0 | - I B R R [774] = H—elalﬁl + Bji1Bjt1, L]J
0 V6 5 2 ’

In general, with k = 25, 2; 2 (¢1,...,¢)T = (2,...,m2;)T, and (6.1), (9.1) becomes

J J
N . T N N N N
(9.3) 7j = argin ||6’10<151—Bj+1Bj+1,ij||2a Loj = E W2t = E viG =Vjzj.
! i=1 i=1

The GKB approach to minimizing ||A7r; |2 = || AT (b— Az;)|2 is, with -* denoting
LSMR (see (5.1) and (5.2)),

J J 1730

(9.4)  wify:=b, z2F:.= argmin|\AT(b—A1/jzj)||2, zt = V2L

AT (b — AV 2))|l2 = |AT (u1B1 — Ujs1Bjs1,525) 2
= [vion 81 — Vjs1B), 1 Bt

(9.5) = llera1pr — B {1 Bji12ill2 = | By 1 (€181 — Bjy1,32) |l

(cf. (8.4) for LSQR), so from (9.3) and (6.2), 2} = 2, zF = x5 € Range(V;) =
K;(ATA, ATb), and using the identical computation to solve these identical problems
for zJL and ZJN will lead to identical numerical approximations.

For this section, to minimize || AZr;||2 at each step we need simply apply the GKB
Algorithm LSMR in [5], with the same proviso as was given at the end of section 8.
Fong and Saunders [5] give an ingenious way of minimizing (9.5) and updating = in
(9.4) efficiently in a numerically reliable way. The algorithm for the updates, which
includes careful implementations of Givens rotations for the QR factorizations, is laid

out in steps 4, 5, and 6 of [5, sect. 2.8].

10. Preconditioning. Using a preconditioner can significantly accelerate con-
vergence for Ax = b, so we briefly point out a few observations from this study.

A challenge in the design of preconditioners for skew-symmetric systems is that
in general, skew-symmetric preconditioners do not easily accommodate the desired
property of maintaining skew-symmetry of the preconditioned matrix. In other words,
given a skew-symmetric matrix A, a skew-symmetric matrix M will typically yield a
preconditioned matrix M ~'A that is not skew-symmetric or “skew-symmetrizable”
(and possibly not diagonalizable). On the other hand, an SPD preconditioner can
maintain skew-symmetry, in the sense that for M = FF7T the matrix F~1AF~T is
skew-symmetric if A is. See [9] for an illustration of an incomplete factorization ap-
proach for skew-symmetric matrices that computes a positive definite preconditioner.

For the present study of Krylov subspace methods for skew-symmetric matrices,
a solution method based on the Lanczos process, and one based on the corresponding
GKB method, lead to numerically identical results, so a preconditioner that maintains
skew-symmetry will indeed give identical results for both approaches.

On the other hand, a difference between the two approaches is that a precon-
ditioner that does not maintain skew-symmetry will destroy the desirable proper-
ties of a method based on the Lanczos process in Algorithm 1. The short recur-
rence of the Lanczos process in Algorithm 1 produces orthogonality of w1 against
w1, Wa, . . ., Wi_o only because A is skew-symmetric, and this orthogonality is the basis
for the excellent qualities of the process. Note that even wiwsvys = wlAw; cannot be
expected to be zero unless A is skew-symmetric. Nor does Algorithm 1 give the same
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results as Algorithm 2 when A is not skew-symmetric. For example, Algorithm 1 uses
A alone, while Algorithm 2 uses A and AT

A preconditioner that does not maintain skew-symmetry can be applied effectively
with a GKB based method but can no longer in theory be expected to converge in
n/2 steps—it can double the effective dimension of the problem. It may double
the number of distinct singular values and even generate an adverse effect in terms
of singular value grouping. Nevertheless, practical preconditioners are expected to
generate a strong clustering effect, with the iteration count going significantly below
n/2, and a good preconditioner that does not maintain skew-symmetry might still be
superior to a less effective one that maintains skew-symmetry.

11. A numerical example. Numerical experiments for the examples that we
have explored support the equivalence of Lanczos tridiagonalization and GKB for
skew-symmetric matrices. As expected, orthogonality is lost so that none of UL U}, =
Iy, VIVy, = I, or ULV, = 0 need hold—the supposedly zero elements may be large,
slowing convergence significantly.

We illustrate our findings on an artificially generated example, which could be
loosely described as a simple finite difference discretization of a constant convective
term on the unit cube in three dimensions, (0,1) x (0,1) x (0,1). For a given positive
integer n and a real scalar «, let us denote by T,(«) the n x n skew-symmetric
tridiagonal matrix

0 «
—a 0 «
Ty (o) = —a 0 e R™™.
o
—a 0

The matrix A for which we solve the linear system Ax = b is defined by

where ® denotes the Kronecker product and (3,7, d) is a triplet of preselected scalars.
Evidently A is of dimensions n3 x n3. The right-hand side is randomly generated.

We show results with n = 16, i.e., a matrix A of dimensions 4096 x 4096, and the
triplet (8,v,0) = (0.4,0.5,0.6). We do not expect fast convergence in this example
because preconditioning is not incorporated; our goal here is to observe and confirm
the theoretical properties of the various algorithms that we have studied.

A very useful summary of the theoretical monotonic or otherwise behavior of the
Euclidean norms of various vectors from Conjugate Gradients in [11] and MINRES
in [19] for symmetric systems, and LSQR and LSMR for least squares problems, is
given by Fong and Saunders in [6, Tabs. 5.1 and 5.2]. In particular, it is stated that
for LSQR and LSMR applied to linear least squares problems, ||z — xg||2, ||7 — 7%||2;
and ||rx|l2 are monotonically decreasing, while ||A%r||2 is monotonically decreasing
for LSMR but not LSQR. Here x and r are the optimal solution and residual (r = 0
in our case). Our computations with skew-symmetric A support this for LSQR (i.e.,
CGNR) and LSMR.

We also encountered nonmonotonic residual norms for CGNE, in line with the
theory for CG in [6]. From now on we will refer to LSQR rather than CGNR because
LSQR is the implementation of (2.7) that we use. To further distinguish the colored
plots, we order the labels in the figures from worst plot (top) to best (bottom).
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Relative residuals: CGNE, LSMR, and LSQR
10 T T T

CGNE

— LSMR

[Ir, 1/ 11bll

I I I I
0 500 1000 1500 2000 2500 3000
Iteration

FiG. 11.1. Recorded relative residuals, ||rk||/||bl|, for CGNE, LSMR, and LSQR, applied to a
skew-symmetric numerical example of dimensions 4096 x 4096.

Figure 11.1 plots the relative residuals for CGNE, LSMR, and LSQR. CGNE
features a nonmonotonic curve. LSQR minimizes the norm of the residual, and so
its associated curve lies below the other two. Here the LSMR and LSQR curves are
very close for a large number of the initial iterations, but in the later, probably more
important iterations, LSQR shows a marked advantage.

Normal equations relative residuals: CGNE, LSQR, and LSMR
10 T T T T

T T
A" r /1A " bl

0 500 1000 1500 2000 2500 3000
Iteration

FIG. 11.2. Recorded normal equations relative residuals, ||ATrg||/||ATd||, for CGNE, LSQR,
and LSMR, applied to a skew-symmetric numerical example of dimensions 4096 x 4096.

Figure 11.2 shows the convergence history of ||A%ry||/||ATb|| for CGNE, LSQR,
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and LSMR. As expected, the curve for LSMR lies below the curve for LSQR. since
the former minimizes this particular norm. The convergence curves for CGNE and
LSQR are nonmonotonic, as typically observed for other matrices (see the study in
[5] for LSQR).

Relative errors: LSMR, LSQR, and CGNE
10 T T T

—— LSMR
LSQR
CGNE

[le, 17111
>
T

4 I I I I I
0 500 1000 1500 2000 2500 3000
Iteration

Fic. 11.3. Recorded relative errors, |lekl||/||x||, for LSMR, LSQR, and CGNE, applied to a
skew-symmetric example of dimensions 4096 x 4096. Here e, =x;—x, where x is the exact solution.

Figure 11.3 compares the convergence behavior of the error norms for LSMR,
LSQR, and CGNE. Note how CGNE minimizes the Euclidean norm of the error
throughout the iterations; see the paragraph containing (2.6). In fact this theoretical
error norm is always monotonic for CGNE, LSQR, and LSMR: the first follows from
the minimization property of CGNE and the other two from [6, Tab. 5.2] (and from
(12.3), which follows from [11]).

12. Choice of algorithms. There are important relationships between LSQR
and LSMR when solving linear least squares problems min, ||b — Ax||2 where the
matrix A has full column rank. Let us use the following notation:

e In solving min, ||b — Az||2 with residuals 7, = b— Az, denote LSQR vectors
by - (see (2.7) and (8.4)) and LSMR by -L (see (9.4)).
e For ATAz = ATb with residuals 7, = AT (b — AZy), let CG and MINRES
vectors be denoted by -¢“ and -ME  respectively.
Since CGNR and LSQR are mathematically equivalent to CG applied to ATAz = ATb

(see the last paragraph of section 2), we see that 2{'¢ = xff, so that

S = AT (b — AZ{9) = AT (b — Axy) = ATr.

Now MINRES for ATAz = ATbh and LSMR for min,, ||b— Az|| both minimize ||AT(b—

Azy)||2 over the same subspace (see section 9), giving M7 = 2, so that

PR = AT (b — ARY) = AT (b — Axf) = AT
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Equipped with the above definitions, we prove below that

(12.1)
AT |4 .
||rk|\2—||k||2+2” T I = Il (see Figure 11.1)
(12.2)
ATL
|ATrE 2 = [ ATy 2 (see Figure 11.2),
VL= IATEI3/1 AT 13
(12.3)
lo—afls < llo—afills lle—aflls < lle—af ]2 < Jo—sf ]l (see Figure 11.3).

Hestenes and Stiefel [11] applied CG to Ah = k with A SPD; see [11, p. 411, 2nd
para.], where the equivalence with our notation is A = ATA, h = x, k = ATb. They
used zj, to denote their CG iterate (see the start of [11, sect. 6]) and Zj to denote
their MINRES iterate (see the start of [11, sect. 7] and [11, Thm. 7:2]), so from our
results above,

(12.4) ap =9 =aff, 7O =ATE g =aMB =af, R = AT

They showed [11, Theorem 7:4, eq. (7:7)] that

f(z;) = f(wj41)

7511

)

F(@x) = fxr) + 7l Z

7=0
where from [11, eq. (4:5)], f(z;) & (h — z;)TA(h — x;). In our notation,

flaj) = (@ = af)T(ATA) (@ — o) = || Az — Az|5 = ||rf — (b~ Ax)|3
= I3 + 11— Az[|3 — 2(r)" (b — Az) = |Irf|I3 — [[b— Axl3,

where the last equality follows from
(rf)T(b —Az) = (b— Axf)T(b — Az) = b7 (b — Az) = (b — Ax)T (b — Ax),
since for the least squares residual b — Az, AT(b — Az) = 0. Similarly,
F(@5) = i3 = lIb - Ax|3.

Then using (12.4), 7; = f‘}vm = ATTJ-L, and (12.1) follows.
Next, (12.2) comes directly from the CG-MINRES relationship for symmetric

systems [|7{% ]2 = ||7"MRH2/\/1 [|[7MR|2/]|7MR |13, which follows from [19, eqgs. (7.4)

and (7.5)] using s2+c; = 1; see also [8, Exer. 5.1]. It is a special case of the well-known
“peak-plateau” relationship between Galerkin and minimum residual methods, often
attributed to Weiss; see [22, 23].

Finally, by using the equivalences in (12.4) we can obtain (12.3). The first in-
equality in (12.3), the monotonicity of the error norm using LSQR, follows directly
from [11, Thm. 6:2], while the final two inequalities, the superiority of the error norm
using LSQR and the monotonicity of the error norm using LSMR, follow directly
from the corrected version of [11, Thm. 7:5], which contains typographical errors.
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We will state a corrected version of the theorem and proof using their notation and
equation references. The errors and corrections were pointed out to us by Liesen [16],
who noted that the errors were not present in the typewritten report of Hestenes and
Stiefel, which was the basis for the printed paper.

THEOREM 12.1 (see [11, Theorem 7:5, p. 419]). The error vector y; = h — x; is
shorter than (i.e., has smaller 2-norm than) the error vector §; = h — Z;. Moreover,
y; s shorter than y;—1.

Proof. The first statement follows from (7:2) and theorem 6:2, since Z; is in S;.
By (7:2) the point Z; lies in the line segment joining x; to Z;—;. The distance from h
to T; exceeds the distance from h to xz;. It follows that as we move from Z; to x;_1
the distance from h is increased, as was to be proved. a

The simple proofs here did not require the matrices to be skew-symmetric. The
results hold for general linear least squares problems min,, ||b — Az||2 when A has full
column rank. Initial computations suggest that (12.1)—(12.3) might also hold using
finite precision computations.

To understand the relative behavior of |||z and |7 |2 in Figure 11.1, note that
in (12.1), [[ATrf]l2/[|ATrE |2 < 1, so when [|ATrf ||y is decreasing quickly, or when
the LSQR residual norm ||rft||2 is decreasing slowly, we will have ||rf |2 & ||rf||2; see
Figures 11.2 and 11.1. But when ||ATr |5 stagnates and ||7f||2 is decreasing quickly,
then ||rL||2 and ||7f||2 will differ significantly; see the later iterations in Figure 11.1.

For other types of problems, Fong and Saunders [5] wrote that the LSMR residual
norm “is never very far behind the corresponding value for LSQR.” Their comments
probably arose because the combination of two conditions is required to produce
a clear advantage of LSQR over LSMR: ||ATrE (|2 stagnating with ||rf||2 decreasing
quickly, while either of two conditions would be sufficient for the two curves to be close.
However, we encountered the case in Figure 11.1 without seeking it. Figure 11.1 and
(12.1) emphasize the continued useful role of LSQR in minimizing the residual norm.

For Figure 11.2, we see from (12.2) that when ||A”rk|, stagnates we can have
[|ATr|2 significantly greater than [|A"rf|lo. Thus while the stagnation of || A”r gl
can make the normal equations residual of LSQR significantly worse than that of
LSMR, it can also contribute to the residual of LSQR being noticeably better than
that of LSMR.

From the above analysis and computations we now suggest some possible choices
among these three GKB based algorithms, CGNE (Craig’s method), LSQR (CGNR),
and LSMR, for more general unsymmetric matrix problems.

For full row rank A, in theory, CGNE minimizes ||#—z||> where Z is the minimum
Euclidean norm solution of Az = b. For the error norm, CGNE showed a clear
advantage over LSQR in Figure 11.3, which showed a clear advantage over LSMR, so
that CGNE appears to be a possible choice for minimizing the error norm, but there
are difficulties. If A is ill-conditioned for solution of equations, then the computed
solution can be very different from the exact solution, and it is probably better to seek
a method giving a small residual. More significantly, there is usually no good measure
of ||# — zF||> available during the computation. Unfortunately, the nonmonotonic
nature of [|r¥||2 and || ATrZ||5 (see, e.g., Figures 11.1 and 11.2) indicates that stopping
criteria based on these are also less than ideal for CGNE. Nevertheless, if one criterion
is to obtain as small as possible a computed error in a fixed number of steps, CGNE
would be a good choice. CGNE is also an important method for solving full row rank
underdetermined systems.
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For solving Az = b with nonsingular A, LSQR cannot only give a significantly
smaller residual norm than LSMR (see Figure 11.1) but also a significantly smaller
error norm too (see Figure 11.3 and (12.3)), and it would appear to be the algorithm
of choice in this situation.

For incompatible full column rank linear least squares problems, LSMR minimizes
the useful criterion || ATry|2, while || ATrE||5 and ||ATr||2 can be nonmonotonic. The
LSMR residual norm is also monotonic, and often quite close to that given by LSQR,
so that LSMR is an ideal choice for least squares, as was pointed out in [5, 6].

To find practical codes for such general problems, follow the relevant links avail-
able from http://stanford.edu/group/SOL/software/lsqr/.

For skew-symmetric systems, we have dealt only with nonsingular A, where using
LSQR with a criterion based on the residual norm would seem to be the correct
approach, unless using another criterion and algorithm has an obvious advantage.

13. Summary and conclusions. Because of the numerical equivalence of the
Lanczos process and GKB for skew-symmetric matrices, we have seen that for each
of the above solution of equations methods using the Lanczos process there is an
equivalent method based on GKB, and the latter is easier to develop because we do
not have to figure out the nonzero elements and their relationships from among the
zero elements. Briefly, for

zr € Ki(A,b) 2 span{b, Ab, ..., A*'b} = Range(W},), say, with 1y 2 b— Axy,

the following pairs of algorithms for Az = b, AT = — A are theoretically equivalent:

e Lanczos-Galerkin (W)r; =0) and CGNE (Craig’s method),

e Lanczos Minimum Residual (min ||r4]|2) and CGNR (CGLS, LSQR),

e Lanczos min ||Ary||2 and LSMR (minimum normal equations residual).
But if these are implemented carefully with the second of each pair being implemented
via GKB in the form of “Bidiag 1,” each pair is numerically identical. The first two
pairs support the theoretical results in [4] and earlier works and extend them to
computational equivalences.

We introduced a method based on the Lanczos process for minimizing the normal
equations residual when A” = — A, and section 9 showed the equivalence of this method
to LSMR in [5] for such matrices. Adapting LSMR to skew-symmetric matrices is
straightforward, and our numerical example showed that the smoothness of ||r;| and
| ATr;]| is as observed by Fong and Saunders in [5, 6] for other types of matrices. The
residual norms for LSMR and LSQR decrease monotonically, while that for CGNE
can be quite erratic. The residual norm for LSMR can be much larger than that
for LSQR, but it usually is not. However, while ||ATr;|| decreases monotonically for
LSMR, it decreases in an erratic fashion for both CGNE and LSQR.

GKB provides a concise way of deriving Galerkin, minimum residual, and mini-
mum normal equations residual Krylov subspace methods for skew-symmetric linear
systems. The unique mathematical structure of the tridiagonal matrix that arises
during the Lanczos process, and specifically the fact that the diagonal is zero and
that the subdiagonal is just the negation of the superdiagonal, is the reason for being
able to derive the equivalence with GKB. The numerical behaviors of the versions
based on the Lanczos process and GKB should be identical, but the insight gained
from the development of these algorithms should make it easier to carry out rounding
error analyses with the approach initiated in [17, 18].
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