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BOUNDS ON EIGENVALUES OF MATRICES ARISING FROM
INTERIOR-POINT METHODS∗

CHEN GREIF† , ERIN MOULDING‡ , AND DOMINIQUE ORBAN§

Abstract. Interior-point methods feature prominently among numerical methods for inequality-
constrained optimization problems, and involve the need to solve a sequence of linear systems that
typically become increasingly ill-conditioned with the iterations. To solve these systems, whose origi-
nal form has a nonsymmetric 3×3 block structure, it is common practice to perform block elimination
and either solve the resulting reduced saddle-point system, or further reduce the system to the Schur
complement and apply a symmetric positive definite solver. In this paper we use energy estimates to
obtain bounds on the eigenvalues of the matrices, and conclude that the original unreduced matrix
has more favorable eigenvalue bounds than the alternative reduced versions. Our analysis includes
regularized variants of those matrices that do not require typical regularity assumptions.
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1. Introduction. Given a symmetric and positive semidefinite Hessian matrix
H ∈ R

n×n, vectors c ∈ R
n and b ∈ R

m, and a Jacobian matrix J ∈ R
m×n, where

m ≤ n, consider the primal-dual pair of quadratic programs (QP) in standard form

minimize
x

cTx+ 1
2x

THx subject to Jx = b, x ≥ 0,(1.1a)

maximize
x,y,z

bTy − 1
2x

THx subject to JT y + z −Hx = c, z ≥ 0,(1.1b)

where inequalities are understood elementwise, and y and z are the vectors of Lagrange
multipliers associated with the equality and nonnegativity constraints of (1.1a), re-
spectively. The case H = 0 corresponds to the linear programming problem in stan-
dard form. Numerical methods for solving (1.1) include the class of widely successful
primal-dual interior-point methods. Their distinctive feature is that they approxi-
mately follow a smooth path lying inside the primal-dual feasible set all the way to
an optimal solution.

This paper focuses on the linear systems that form the core of the iterations of
primal-dual interior-point methods. Specifically, the matrices associated with those
linear systems have a special block form, and techniques that rely on partial elimina-
tion of the unknowns are fairly popular, as the underlying sparsity pattern naturally
lends itself to such reductions. However, we claim that in terms of eigenvalues and
conditioning, it may be beneficial to avoid performing such elimination steps before
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applying a linear solver. Some of the linear systems with which we are concerned are
nonsymmetric and diagonalizable, and eigenvalues describe the convergence behavior
of certain iterative methods—see for example (Saad, 2003, Section 6.11) or (Nachtigal,
Reddy, and Trefethen, 1992). To make our point, we use energy estimates in the spirit
of Rusten and Winther (1992), and obtain upper and lower bounds on the eigenval-
ues of the various matrices that we consider. We also consider regularized variants
of those matrices that arise when an interior-point method is applied to a modified
optimization problem that includes regularization terms.

Our primary goal is to provide a theoretical foundation to the study of spectral
properties of the matrices involved. When the problem is very large, the spectral
structure of the matrices plays a central role in the performance of the interior-point
solver, especially when the underlying linear systems are solved iteratively. We stress
however that we do not perform analysis for iterative solvers or offer specialized pre-
conditioning approaches in the present paper. We also note that the (standard) scaling
approach that we use involves an ill-conditioned diagonal matrix, and its influence on
the performance of iterative solvers warrants further investigation.

In section 2 we provide a short overview of primal-dual interior-point methods and
present the linear systems that arise throughout the iterations. This section includes
a regularized formulation of the optimization problem, which we will extensively ana-
lyze throughout the paper. In section 3 we specify conditions for nonsingularity and
study the inertia of the matrices involved. In section 4 we analyze the regularized op-
timization problem introduced in section 2, provide bounds on the eigenvalues of the
linear systems, and argue that in most cases, those bounds are tighter than existing
related bounds. In section 5 we provide results for the original (unregularized) prob-
lem (1.1), which can be obtained as a special case of the analysis of the regularized
problem. In section 6 we provide numerical validation of our analytical claims and
in section 7 we cover several alternative system formulations. Concluding remarks
appear in section 8.

2. Background and preliminaries. In this section we provide a brief overview
of primal-dual interior-point methods and the linear systems that arise throughout
the iterations. Our purpose is to set the stage for the analysis of the subsequent
sections.

For an index set N ⊆ {1, . . . , n} and a vector v ∈ R
n we denote by vN the

subvector of v indexed by N . Similarly, if A is a matrix with n columns, AN is the
submatrix of the columns of A corresponding to indices in N . If A is square, ANN
represents the matrix with both rows and columns corresponding to indices in N .

Throughout the paper we separate vector components by commas. To avoid
ambiguities, inner products are denoted by a transpose operation. Thus, (x, y) is a
vector whose components are x and y (each of which may be a vector) whereas xT y
is the inner product of the vectors x and y.

2.1. Primal-dual interior-point methods. If x is feasible for (1.1a), we let

A(x) := {i = 1, . . . , n | xi = 0} and I(x) := {1, . . . , n} \ A(x)

be the index sets of active and inactive bounds, respectively. For simplicity and when
there is no ambiguity, we write A and I instead of A(x) and I(x). All solutions
(x, y, z) of (1.1) must satisfy the complementarity condition

xizi = 0 for all i = 1, . . . , n,
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which may also be written zI = 0. A solution (x, y, z) of (1.1) is strictly complemen-
tary if zi > 0 for all i ∈ A, which may also be written zA > 0.

It is generally assumed that Slater’s constraint qualification condition holds, i.e.,
that there exists a primal-dual triple (x, y, z) such that Jx = b, JT y + z −Hx = c,
and (x, z) > 0. Primal-dual interior-point methods generate a sequence of iterates
(xk, yk, zk) that remain strictly feasible with respect to the bound constraints, i.e.,
(xk, zk) > 0, but not necessarily to the equality constraints, with the intention of
satisfying, in the limit, the common necessary and sufficient first-order optimality
conditions of (1.1a) and (1.1b). Those iterates (approximately) satisfy the perturbed
optimality conditions

(2.1)

⎡
⎣c+Hx− JT y − z

Jx− b
τe−XZe

⎤
⎦ = 0, (x, z) > 0.

Here the triple (x, y, z) represents a generic current iterate. We drop the subscript k
for brevity and we use the standard notation X and Z to denote diagonal matrices
whose diagonal elements are the components of the vectors x and z, respectively, and
e to represent the vector of ones of appropriate size. The system depends on τ > 0,
the barrier parameter, which governs the progress of the interior-point method and
converges to zero. This parameter is typically set as the product τ := σμ, where

μ :=
xT z

n

is the duality measure and σ ∈ [0, 1] is the centering parameter used to achieve a
desirable reduction in the duality measure at each iteration. Tied to these parameters
is the notion of central path, which is the set of triples (x, y, z) = (xτ , yτ , zτ ) of
exact solutions to (2.1) associated with τ > 0. Practical methods typically seek
a compromise between improving centrality by taking a relatively large value of σ,
which allows for taking a longer step in the next iteration, and reducing the duality
measure μ by taking a small value of σ, which results in a direction closer to the pure
Newton direction, often called the affine-scaling direction.

The matrix associated with the interior-point iterations is the Jacobian of the
system of equations (2.1). It is of size (2n+m)× (2n+m) and can be most naturally
written in a block 3× 3 form. The linear system is given by

(2.2)

⎡
⎣ H JT −I

J 0 0
−Z 0 −X

⎤
⎦
⎡
⎣ Δx
−Δy
Δz

⎤
⎦ =

⎡
⎣−c−Hx+ JT y + z

b− Jx
XZe− τe

⎤
⎦ .

Most blocks of the matrix stay fixed throughout the interior-point iterations. The
only ones that change, X and Z, are diagonal with strictly positive diagonal elements
during the iteration, although in the limit some diagonal elements typically vanish.

We note that there are several ways to arrange the system (2.2) in terms of signs
and ordering of unknowns; we choose this formulation in anticipation of symmetrizing
the matrix in the form of a suggestion of Saunders—see (Forsgren, 2002). The barrier
parameter appears explicitly only in the right-hand side, but it also influences the
matrix itself since the iterates x and z, if they converge, do so at an asymptotic rate
that is a function of the duality measure μ. The solution of (2.2) for (Δx,Δy,Δz)
defines the next iterate

(x+, y+, z+) = (x, y, z) + α(Δx,Δy,Δz),
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where α ∈ (0, 1] is a step length chosen to ensure that (x+, z+) > 0 and possibly other
conditions.

2.2. Block elimination approaches. Given the block structure of the matrix
of (2.2), a few possibilities for solving the system naturally arise due to the special
sparsity structure, particularly the diagonality and positive definiteness of X and Z.
An obvious (though not common) approach is that of directly solving the linear system
(2.2). The matrix is mildly nonsymmetric but easily symmetrizable (see section 3),
and so it is possible to apply symmetric solvers. We note, however, that the sym-
metrization is done by a diagonal matrix that becomes increasingly ill-conditioned as
iterations progress, and hence convergence and numerical accuracy may be affected.

A second approach is that of exploiting the nonsingularity and diagonality of X
to perform one step of block Gaussian elimination and obtain

(2.3)

[
H +X−1Z JT

J 0

] [
Δx
Δy

]
=

[−c−Hx+ JT y + τX−1e
b− Jx

]
.

The matrix of (2.3) is a typical symmetric indefinite saddle-point matrix and it has
size (n + m) × (n + m). Significant progress has been made on numerical solution
methods for saddle-point systems in the past few decades (Benzi, Golub, and Liesen,
2005), but here a specific challenge is that X−1Z may cause ill-conditioning as X
and Z have diagonal entries iterating toward zero. The stability of the symmetric
indefinite factorization of the matrix of (2.3) has been studied in Forsgren, Gill, and
Shinnerl (1996).

A third approach is to take an additional step of block Gaussian elimination before
applying a linear solver. This amounts to forming the Schur complement equations

(2.4) J(H+X−1Z)−1JTΔy = b−Jx−J(H+X−1Z)−1(−c−Hx+JT y+ τX−1e).

The matrix associated with the linear system (2.4) is positive definite provided
J has full row rank. This approach is popular with practitioners, since symmetric
positive definite solvers are often preferred over indefinite solvers, and the Schur com-
plement equations are smaller, of size m × m. However, in cases other than linear
programming, forming system (2.4) comes at the potentially costly price of having to
first invert or factor H +X−1Z and having to deal with a significant loss of sparsity.

Since the matrices associated with the linear systems (2.2), (2.3), and (2.4) feature
prominently in the discussion that ensues throughout the paper, we denote them as
follows, where the subscript stands for the “natural” block size of the matrix:

K3 :=

⎡
⎣ H JT −I

J 0 0
−Z 0 −X

⎤
⎦ ,(2.5a)

K2 :=

[
H +X−1Z JT

J 0

]
,(2.5b)

K1 := J(H +X−1Z)−1JT .(2.5c)

2.3. Regularization. Numerical difficulties may arise if J does not have full
row rank, if strict complementarity is not satisfied in the limit—see section 2.1—or
when the linear independence qualification condition is not satisfied—see Definition
2.2 in the next section and a relevant discussion in section 3.

One way to alleviate some of those difficulties is by introducing regularization
terms (Saunders, 1996). This may be done in a variety of ways and we focus on a
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two-parameter regularization approach, aimed at taking eigenvalues of the Hessian
and singular values of the Jacobian away from zero. See, e.g., Gondzio (2012) for a
similar approach. We introduce parameters ρ > 0 and δ > 0, and consider an exact
regularization approach proposed by Friedlander and Orban (2012) for the primal QP
problem:

(2.6)
minimize

x,r
cTx+ 1

2x
THx+ 1

2ρ‖x− xk‖2 + 1
2δ‖r + yk‖2

subject to Jx+ δr = b, x ≥ 0.

Here xk and yk are current primal and dual approximations, respectively. The corre-
sponding dual problem is given as

(2.7)
maximize

x,y,z,s
bT y − 1

2x
THx− 1

2δ‖y − yk‖2 − 1
2ρ‖s+ xk‖2

subject to −Hx+ JT y + z − ρs = c, z ≥ 0.

Note that setting δ = ρ = 0 recovers the original primal-dual pair (1.1a)–(1.1b).
Friedlander and Orban (2012) propose an interior-point method for (2.6)–(2.7)

that converges under standard conditions with either fixed or decreasing values of the
regularization parameters, without assumptions on the rank of J .

For the regularized approach (2.6)–(2.7) the associated linear systems involve a
modified version of the 3× 3 block system (2.2), with the right-hand side unchanged
and the matrix given as follows:

(2.8a) K3,reg :=

⎡
⎣H + ρI JT −I

J −δI 0
−Z 0 −X

⎤
⎦ .

Upon reduction, the 2× 2 matrix reads

(2.8b) K2,reg :=

[
H +X−1Z + ρI JT

J −δI

]
.

Finally, the Schur complement equations now have the matrix

(2.8c) K1,reg := J(H +X−1Z + ρI)−1JT + δI.

Our results essentially consider two distinct situations to analyze the properties
of K1, K2 and K3 and, respectively, of K1,reg, K2,reg, and K3,reg. The first concerns
values of the matrix throughout the iterations while the second concerns the value in
the limit, at a point satisfying complementarity, such as a solution of (1.1).

2.4. Notation and further definitions. We denote the eigenvalues of the Hes-
sian H by λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and the singular values of J by σ1 ≥ σ2 ≥ · · · ≥
σm ≥ 0. The spectral condition number of a matrix B, defined as σmax(B)/σmin(B),
will be denoted by κ(B), where σmax and σmin denote the largest and smallest singular
values, respectively. We use the notation γ and θ to denote a generic eigenvalue of
(2.8b) and (2.8a), respectively.
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For two related positive scalar sequences {αk} and {βk}, we write αk = O(βk)
if there exists a constant ϕ > 0 such that αk ≤ ϕβk for all sufficiently large k.
Equivalently, we write βk = Ω(αk). We write αk = Θ(βk) if αk = O(βk) and βk =
O(αk). If αk = O(βk) and αk = Ω(γk) for some third positive sequence {γk}, we use
the shorthand notation γk � αk � βk.

Throughout our analysis, the following two definitions will be useful.
Definition 2.1 (inertia). For a given symmetric matrix M , the inertia of M is

the triple (n+, n−, n0), where n+, n−, and n0 are the numbers of positive, negative,
and zero eigenvalues of M , respectively.

We note that the definition of inertia extends to nonsymmetric matrices with real
eigenvalues, but our focus is on symmetric matrices. Given a symmetric matrix M ,
if C is a real nonsingular matrix and N = CMCT , Sylvester’s law of inertia asserts
that N and M have the same inertia.

The following definition states a standard qualification condition required to en-
sure certain nonsingularity properties.

Definition 2.2 (LICQ). The linear independence constraint qualification condi-
tion is satisfied at x, feasible for (1.1a), if

[
JT −IA(x)

]
has full column rank.

Note that the LICQ imposes an upper bound on the size of the active set: |A(x)| ≤
n−m. If the LICQ and strict complementarity are satisfied at a solution, we say that
this solution is nondegenerate. As we shall see, these conditions guarantee that the
matrices of interest are nonsingular. These are common assumptions in optimization.

Throughout the paper, we illustrate our bounds on the following generic, but
typical, example situation.

Example 2.1. We consider a generic interior-point method guaranteeing the fol-
lowing asymptotic estimates:

xi = Θ(μ) (i ∈ A), xi = Θ(1) (i ∈ I),(2.9a)

zi = Θ(μ) (i ∈ I), zi = Θ(1) (i ∈ A).(2.9b)

We assume that A �= ∅ and I �= ∅.
Most problems are such that A �= ∅ and I �= ∅ and most interior-point methods

applied to a nondegenerate problem match the situation of Example 2.1. In particular,
when (x, y, z) are exact solutions of (2.1), we have X−1Z = μX−2 = Θ(1/μ), but this
estimate also holds sufficiently close to the central path. Indeed most interior-point
algorithms for convex quadratic programming confine the iterates to a neighborhood
of the central path defined, among other conditions, by the requirement that γ1μ ≤
xizi ≤ γ2μ for all i = 1, . . . , n, for some positive constants γ1 and γ2. That the
relations in (2.9) hold under strict complementarity is then a simple consequence; see,
e.g., (Wright, 1997).

In our implementation we use the predictor-corrector scheme due to Mehrotra
(1992), which is based on first taking the pure Newton direction, i.e., with σ = 0,
and then following a step aiming toward the central path as a correction for the
linearization error in XZ. The algorithm thus solves two linear systems with the
same matrix but with different right-hand sides. Although this algorithm does not
confine the iterates to a neighborhood of the sort mentioned above, we will assume
that (2.9) holds.

We formalize now a few working assumptions related to convexity, positivity, and
complementarity, and refer to them throughout the paper. We note that the last two
assumptions are mutually exclusive.
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Assumption 2.1 (convexity). The Hessian H is symmetric and positive semidefi-
nite.
Assumption 2.2 (positivity). The triple (x, y, z) satisfies (x, z) > 0.
Assumption 2.3 (complementarity). The triple (x, y, z) satisfies (x, z) ≥ 0 and
xizi = 0 for all i = 1, . . . , n.

2.5. Related work. While the algorithms of modern interior-point solvers are
mostly settled, the choice of linear system formulation differs across software pack-
ages. Many modern solvers reduce to the Schur complement equations form, e.g.,
PCx for linear programming (Czyzyk et al., 1999). Others reduce to the saddle-point
form, e.g., OOQP for quadratic programming (Gertz and Wright, 2003) and IPOPT
and KNITRO for general nonlinear programming (Byrd, Hribar, and Nocedal, 1999;
Byrd, Gilbert, and Nocedal, 2000; Wächter and Biegler, 2006). Another example is
HOPDM for linear programming and convex QP, which automatically chooses either
the Schur complement equations or saddle-point form (Altman and Gondzio, 1999).
We are not aware of existing solvers that solve the unreduced system (2.2) for any of
these problems.

Gondzio (2012) provides analysis of properties of the Schur complement equations
form (2.4). The saddle-point formulation (2.3) has properties that directly follow from
the general properties of such matrices—see (Rusten and Winther, 1992; Benzi, Golub,
and Liesen, 2005; Silvester and Wathen, 1994; Gould and Simoncini, 2010; Axelsson
and Neytcheva, 2006; Bai, Ng, and Wang, 2009) for some relevant general results,
and (Friedlander and Orban, 2012) for results specialized to optimization. The ill-
conditioning of some reduced matrices is well known (Fiacco and McCormick, 1990;
Wright, 1992, 2005; Forsgren, 2002; Forsgren, Gill, and Wright, 2002), but it has been
referred to, with some assumptions on solution methods, as “benign” (Wright, 2005;
Forsgren, 2002), “usually harmless” (Forsgren, Gill, and Wright, 2002), and “highly
structured” (Forsgren, Gill, and Wright, 2002). The matrices for classical barrier
methods, corresponding to the choice Z = τX−1, are also ill-conditioned (Wright,
1994; Forsgren, Gill, and Wright, 2002).

There exist relatively few results on the unreduced 3 × 3 formulation. Korzak
(1999) covers some spectral properties of various formulations for the special case
of linear programming. Armand and Benoist (2011) prove uniform boundedness of
the inverse under several assumptions, intended to be used in further theoretical
analysis. A private communication of Saunders is cited by Forsgren (2002) who notes
the symmetrizability and potential appeal of the 3 × 3 system, equivalent to the
symmetrized matrix used in this paper. Forsgren (2002) and Forsgren, Gill, and
Wright (2002) note that the matrix of this system remains well-conditioned though
ill-conditioning remains an issue when forming the right-hand side and unscaling
the variables, due to multiplication by a diagonal matrix with large elements; these
papers mention also a different (ill-conditioned) symmetric formulation. Finally, it is
possible to represent the 3×3 block matrix as a 2×2 saddle-point matrix by splitting
appropriately, and use known results to obtain eigenvalue bounds—see, for example,
Bai (2013). This type of splitting is examined in section 4.3 and is used to establish
that our results are generally tighter than bounds resulting from the application of
such known results.

3. Nonsingularity and inertia. In this section we specify conditions for non-
singularity of the various matrices, and determine the inertia during the iterations
and at the limit. We rely on techniques introduced by Gould (1985) and Forsgren
(2002) to prove our results, introduce a series of propositions, and conclude the section
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with two results for the 3 × 3 block case. See also Moulding (2012) for an additional
discussion and a few alternative proofs.

3.1. Preliminary results. We begin with two fundamental technical results.

Lemma 3.1 (Forsgren, 2002, Proposition 2). Let A = AT ∈ R
q×q, B ∈ R

t×q,
C = CT ∈ R

t×t positive semidefinite,

K :=

[
A BT

B −C

]
,

and r := Rank(
[
B −C

]
). Let the columns of U form a basis for Null(C), the

columns of N form a basis for Null(UTB) and p be the dimension of Null(C). Fi-
nally, let C† denote the pseudoinverse of C. Then

In(K) = In
(
NT (A+BTC†B)N

)
+ (p− t+ r, r, t− r).

In addition, Rank(UTB) = p− t+ r.

When C = 0, Lemma 3.1 reduces to Lemma 3.2.

Lemma 3.2 (Gould, 1985, Lemma 3.4). Let A = AT ∈ R
q×q, B ∈ R

t×q, and

K :=

[
A BT

B 0

]
.

Let r := Rank(B) and the columns of N form a basis for Null(B). Then

In(K) = In(NTAN) + (r, r, t− r).

Lemma 3.1 and Lemma 3.2 may be employed to analyze the inertia—and therefore
nonsingularity—of K2, K3, and their regularized variants. This is the subject of the
rest of this section.

3.2. Inertia and nonsingularity of K2 and K2,reg. We begin our investiga-
tion with the 2× 2 block systems. Strictly speaking, our first result does not require
Assumption 2.1 (convexity) to hold, although of course, the positive semidefiniteness
assumption on H + ρI may be removed if the convexity assumption holds. In other
words, the following proposition holds also if H is indefinite.

Proposition 3.3. If Assumption 2.2 (positivity) holds, ρ ≥ 0 is such that H + ρI
is positive semidefinite, and δ > 0, the inertia of K2,reg is (n,m, 0).

Proof. This follows from Lemma 3.1 with q = n, A = H + X−1Z + ρI, t = m,
B = J , C = δI, r = m, the observations that H + X−1Z + ρI and δI are positive
definite, that p = 0, and that C† = δ−1I. In this case, U is vacuous and the columns
of N form a basis for Null(J).

We may formulate a result concerning the nonsingularity of K2,reg as a direct
consequence of Proposition 3.3.

Corollary 3.4. If Assumption 2.2 (positivity) holds, ρ ≥ 0 is such that H + ρI is
positive semidefinite, and δ > 0, K2,reg is nonsingular.

Note that Corollary 3.4 is a special case of (Benzi, Golub, and Liesen, 2005,
Theorem 3.1). When the system is not regularized, the results are identical but
require Assumption 2.1 (convexity) to hold and J to have full row rank.
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Proposition 3.5. If J has full row rank and Assumptions 2.1 (convexity) and 2.2
(positivity) are satisfied, the inertia of K2 is (n,m, 0).

Proof. This follows directly from Lemma 3.2 with q = n, A = H +X−1Z, t = m,
B = J , r = m, and the observation that H +X−1Z is positive definite.

The following nonsingularity result is a special case of (Benzi, Golub, and Liesen,
2005, Theorem 3.2). Part of the result may be viewed as a direct consequence of
Proposition 3.5.

Corollary 3.6. Suppose Assumptions 2.1 (convexity) and 2.2 (positivity) are
satisfied. The matrix K2 is nonsingular if and only if J has full row rank.

3.3. Inertia and nonsingularity of K3 and K3,reg. It is useful to consider a
symmetrized version of K3, making it possible to work with real arithmetic. Indeed,
it is easy to show that K3 is symmetrizable and has real eigenvalues; see (Forsgren,
2002). Consider the diagonal matrix

(3.1) D =

⎡
⎣I 0 0
0 I 0

0 0 Z
1
2

⎤
⎦ .

Using the similarity transformation associated with D, we obtain the symmetric ma-
trix

(3.2) K̂3,reg := D−1K3,regD =

⎡
⎣H + ρI JT −Z

1
2

J −δI 0

−Z
1
2 0 −X

⎤
⎦ .

When ρ = δ = 0, the matrix of (3.2) is denoted K̂3.
We begin with results on the inertia of K̂3,reg both during the iterations and in

the limit. As before, Assumption 2.1 (convexity) is not required to hold. Note that if
it does hold and ρ > 0, the assumption on the intersection of nullspaces in Lemma 3.7
automatically holds because H + ρI is positive definite.

Lemma 3.7. Let ρ ≥ 0, δ > 0 and assume that H + ρI is positive semidefinite.
Suppose that either

1. Assumption 2.2 (positivity) holds, or
2. Assumption 2.3 (complementarity) holds at (x, y, z), where strict comple-

mentarity is satisfied and Null(H + ρI) ∩ Null(J) ∩ Null(Z) = {0}.
Then In(K̂3,reg) = (n, n+m, 0).

Proof. Suppose first that Assumption 2.2 (positivity) holds. The block decompo-
sition

(3.3) K̂3,reg =

⎡
⎣I Z

1
2X−1

I
I

⎤
⎦
⎡
⎣H +X−1Z + ρI JT

J −δI
−X

⎤
⎦
⎡
⎣ I

I

X−1Z
1
2 I

⎤
⎦

and Sylvester’s law of inertia show that In(K̂3,reg) = In(K2,reg) + In(−X) =
(n, n+m, 0).

Suppose now that Assumption 2.3 (complementarity) is satisfied and furthermore,
strict complementarity is satisfied at (x, y, z). Then xA = 0, xI > 0, zA > 0, and
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zI = 0. Using the partitioning induced by A and I, we may write

(3.4) K̂3,reg =

⎡
⎢⎢⎢⎢⎢⎢⎣

Hρ
AA Hρ

AI
T

JT
A −Z

1
2

A
Hρ

AI Hρ
II JT

I
JA JI −δI

−Z
1
2

A
−XI

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Hρ := H + ρI. In order to apply Lemma 3.1, we let nA := |A|, nI := |I|, and
define

B :=

⎡
⎣ JA JI
−Z

1
2

A 0
0 0

⎤
⎦ , C :=

⎡
⎣δI 0

XI

⎤
⎦ , U :=

⎡
⎣ 0m×nA
InA×nA
0nI×nA

⎤
⎦ , N :=

[
0nA×nI
InI×nI

]
,

where we indicate the block dimensions for clarity. Since δ > 0 it is clear that
Rank(

[
B −C

]
) = n + m. Note that the p = nA columns of U form a basis for

Null(C) while those of N form a basis for Null(UTB). Because C† is the block
diagonal matrix diag(δ−1I, 0, X−1

I ), we have

NT (Hρ +BTC†B)N = NT (Hρ + 1
δJ

TJ)N = Hρ
II + 1

δJ
T
I JI .

This last matrix is positive definite because Null(H + ρI) ∩ Null(J) ∩ Null(Z) = {0}.
Indeed, the columns of

NZ :=

[
0nA×nI
InI×nI

]

form a basis for Null(Z), and NT
Z (Hρ + 1

δJ
TJ)NZ = Hρ

II + 1
δJ

T
I JI . Lemma 3.1 then

yields

In(K̂3,reg) = (nI , 0, 0) + (nA − (n+m) + (n+m), n+m, 0) = (n, n+m, 0),

which completes the proof.
We now give the inertia of K̂3 and show that it is the same as in the regularized

case both during the iterations and in the limit.

Lemma 3.8. Suppose Assumption 2.1 (convexity) holds and either
1. Assumption 2.2 (positivity) is satisfied and J has full row rank, or
2. Assumption 2.3 (complementarity) holds at (x, y, z), where strict comple-

mentarity holds, JI has full row rank, and Null(H) ∩ Null(J) ∩ Null(Z) =
{0}.

Then In(K̂3) = (n, n+m, 0).

Proof. Under Assumption 2.2 (positivity), if J has full row rank, then (3.3) is
still valid, so that In(K̂3) = In(K2) + In(−X) = (n, n+m, 0).

Under Assumption 2.3 (complementarity), we repeat the proof of Lemma 3.7
using this time

C :=

⎡
⎣0 0

XI

⎤
⎦ , U :=

⎡
⎣ Im×m 0m×nA
0nA×m InA×nA
0nI×m 0nI×nA

⎤
⎦ , N :=

[
0nA×(nI−m)

NI

]
,
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where the (nI −m) columns of NI form a basis for Null(JI). Because JI has full row
rank, we must have nI ≥ m. Note that the columns of U form a basis for Null(C)
while those of N form a basis for Null(UTB). This time,

NT (H +BTC†B)N = NTHN = NT
I HIINI ,

which is positive definite because Null(H) ∩ Null(J) ∩ Null(Z) = {0}. Indeed, the
columns of

NZ :=

[
0nA×nI
InI×nI

]

form a basis for Null(Z), and NT
ZHNZ = HII . Lemma 3.1 now yields

In(K̂3) = (nI −m, 0, 0) + (m+ nA − (n+m) + (n+m), n+m, 0) = (n, n+m, 0),

which completes the proof.
Lemma 3.8 also holds if H is indefinite yet positive definite on the nullspace of

J . This corresponds more closely to a typical case in a neighborhood of an isolated
minimizer, where H is positive definite over a subset of Null(J) only—a cone defined
by the gradients of the active bounds.

Since singularity occurs simultaneously for K3 and K̂3, and their regularized
counterparts, either of them can be considered, and we choose to work with the
nonsymmetric versions. The results above give sufficient conditions for K3 and K3,reg

to be nonsingular. In the rest of this section, we give circumstances under which those
conditions are also necessary. We begin with conditions for K3,reg to be nonsingular
throughout the interior-point iteration. The next result also covers the unregularized
setting δ = ρ = 0.

Proposition 3.9. Let ρ ≥ 0 and suppose Assumptions 2.1 (convexity) and 2.2
(positivity) hold. The matrix K3,reg is nonsingular if and only if either (i) δ > 0 or
(ii) δ = 0 and J has full rank.

Proof. Since X is nonsingular, K3,reg is nonsingular if and only if the matrix[
H + ρI +X−1Z JT

J −δI

]

is nonsingular. Case (i), namely, δ > 0, follows either by applying Lemma 3.1 or
the fact that the above displayed matrix is symmetric quasidefinite (Vanderbei, 1995)
since H + ρI +X−1Z is symmetric positive definite. Case (ii), namely, δ = 0, follows
by Lemma 3.2; nonsingularity holds if and only if J has full rank.

As mentioned earlier, inspection of the proof of Proposition 3.9 reveals that our
initial assumption of positive semidefinite H may be weakened. Indeed, it is suffi-
cient to assume that H is positive semidefinite on the nullspace of J only. In this
case however, the duality relationship between (1.1a) and (1.1b) is no longer so sim-
ple. Nevertheless, such a restricted definiteness assumption is classic in nonconvex
optimization—see, e.g., Gould (1985).

We now consider what happens to K3 in the limit of the interior-point method.

Proposition 3.10. Suppose Assumptions 2.1 (convexity) and 2.3 (complementar-
ity) hold at (x, y, z). Then K3 is nonsingular if and only if the solution (x, y, z)
is strictly complementary, Null(H) ∩ Null(J) ∩ Null(Z) = {0}, and the LICQ is
satisfied.
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Proof. If (x, y, z) is not strictly complementary, there is a zero row in the third
block row of (2.2) and K3 is singular. Therefore, strict complementarity is necessary.

Consider the system

(3.5)

⎡
⎣ H JT −I

J 0 0
−Z 0 −X

⎤
⎦
⎡
⎣u
v
w

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ .

If Null(H) ∩ Null(J) ∩ Null(Z) �= {0}, take 0 �= u ∈ Null(H) ∩ Null(J) ∩ Null(Z),
v = 0, and w = 0. Since Hu = Ju = −Zu = 0, it follows from (3.5) that (u, v, w) is
a nontrivial null vector of K3. Thus this condition is necessary.

Now, assume strict complementarity and Null(H)∩Null(J)∩Null(Z) = {0}, and
suppose (u, v, w) is in the nullspace ofK3. Since zI = 0 at the solution (see section 2.1)
by complementarity, we have Z = diag (zA, zI) = diag (zA, 0) , with zA > 0, so that
Null(Z) = span{ei|i ∈ I}. The third block row of (3.5) and strict complementarity
necessarily yield uA = 0 and wI = 0, and so u = (0, uI), which implies that u lies
entirely in the nullspace of Z. Therefore, uTw = 0. Taking the inner product of the
first block row of (3.5) with u and substituting Ju = 0 from the second block row
gives uTHu = 0. We must thus have u ∈ Null(H) ∩Null(J) ∩Null(Z), which implies
that u = 0. Eliminating u and wI from (3.5), we have

[
JT −IA

] [ v
wA

]
= 0,

which has only the trivial solution if and only if the LICQ holds.
Finally, we consider what happens to K3,reg in the limit of the interior-point

iteration. If (x, y, z) is not strictly complementary, there is a zero row in the third
block row of (2.8a) and K3,reg is singular. Thus strict complementarity is necessary
for nonsingularity in each case. The proposition below includes the unregularized
case, δ = ρ = 0. The proof is similar to that of Proposition 3.10.

Proposition 3.11. Suppose Assumptions 2.1 (convexity) and 2.3 (complementar-
ity) hold at (x, y, z). Necessary and sufficient conditions for the matrix K3,reg to be
nonsingular are that (x, y, z) be strictly complementary, and

• Null(H) ∩ Null(J) ∩ Null(Z) = {0} if ρ = 0, and
• the LICQ be satisfied if δ = 0.

4. Eigenvalue bounds for the regularized systems. In this section we pro-
vide eigenvalue bounds for the three matrices K1,reg, K2,reg, and K3,reg. We first state
known results for the 1× 1 and 2× 2 block systems, and then move on to present new
bounds for the 3×3 block matrix. By continuity of eigenvalues, we choose to start with
the regularized formulation and only then move to the unregularized case, because
bounds for the latter can be obtained as special cases of the regularized formulation
with the regularization parameters set to zero.

4.1. Bounds for the regularized 1 × 1 and 2 × 2 block systems. In (2.8c),
K1,reg is positive definite provided that either δ > 0 or J has full row rank. The posi-
tive definiteness makes the approach of reducing the original system with the matrix
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(2.8a) to the Schur complement system associated with the matrix (2.8c) potentially
attractive. On the other hand, reducing the system this way requires the inversion of
H+X−1Z and may cause computational difficulties, such as potential loss of sparsity.

A straightforward eigenvalue analysis yields the following result.

Theorem 4.1 (bounds for K1,reg). Let K1,reg be defined as in (2.8c) and suppose
Assumptions 2.1 (convexity) and 2.2 (positivity) hold. The eigenvalues of K1,reg are
contained in the interval[

σ2
m

λmax(H +X−1Z + ρI)
+ δ,

σ2
1

λmin(H +X−1Z + ρI)
+ δ

]
.

As a consequence, we have the following bound on the spectral condition number:

κ(K1,reg) ≤
σ2
1 + δλmin(H +X−1Z + ρI)

σ2
m + δλmax(H +X−1Z + ρI)

κ(H +X−1Z + ρI).

No clear relation readily emerges from the bound on the condition number given
in Theorem 4.1. However, it is possible to see that when both ρ and δ are positive,
the condition number is strictly smaller than that of the unregularized matrix where
ρ = δ = 0.

Gondzio (2012) provides similar bounds on the eigenvalues except they are further
simplified (and loosened) by replacing the extremal eigenvalues of H + X−1Z + ρI
with a sum of the extremal eigenvalues of H and the maximum or the minimum of
{zi/xi | i = 1, . . . , n}. The eigenvalues of K1,reg are thus contained in the interval

[
σ2
m

λ1 +max (zi/xi) + ρ
+ δ,

σ2
1

λn +min (zi/xi) + ρ
+ δ

]
.

These looser bounds have the advantage of relying only on the eigenvalues of H , which
do not change throughout the interior-point iteration. In contrast, the bounds of The-
orem 4.1 are tighter but require the computation of eigenvalues of a different matrix
at every interior-point iteration. Asymptotically, in the scenario of Example 2.1, the
bound on the condition number reduces to

κ(K1,reg) = O(σ2
1/(ρδ)).

In practice, ρ and δ are allowed to take values as small as about
√
εmach. In this case,

there appears to be a definite disadvantage to using the Schur complement equations
because the condition number likely exceeds the inverse of machine precision early.
Indeed, the implementation of Friedlander and Orban (2012) initializes ρ = δ = 1 and
divides both by 10 at each iteration. In IEEE double precision, after just 8 iterations
the smallest allowed value of 10−8 is reached but convergence is typically not yet
achieved.

Results for the regularized K2 are given in (Friedlander and Orban, 2012, Theo-
rem 5.1), which is itself a specialization of results of Rusten and Winther (1992) and
Silvester and Wathen (1994). In the analysis it is not assumed that J has full rank,
only that ρ > 0 and δ > 0.
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Theorem 4.2 (bounds for K2,reg, Friedlander and Orban (2012)). Suppose As-
sumptions 2.1 (convexity) and 2.2 (positivity) hold, and let Hρ := H +X−1Z + ρI.
Then,

γ+ ≥ λmin(Hρ),

γ+ ≤ 1
2

(
(λmax(Hρ)− δ) +

√
(λmax(Hρ)− δ)2 + 4(σ2

1 + δλmax(Hρ))

)

for any positive eigenvalue γ+ of K2,reg, and

γ− ≥ 1
2

(
(λmin(Hρ)− δ)−

√
(λmin(Hρ)− δ)2 + 4(σ2

1 + δλmin(Hρ))

)
,

γ− ≤ 1
2

(
(λmax(Hρ)− δ)−

√
(λmax(Hρ)− δ)2 + 4(σ2

m + δλmax(Hρ))
)

for any negative eigenvalue γ− of K2,reg. In addition, −δ is an eigenvalue of K2,reg

if and only if J is rank deficient.

Again, similar bounds that are looser yet may require fewer computations were
derived by Gondzio (2012), and can be obtained by replacing the eigenvalues of Hρ

with the extremal eigenvalues of H and the extremal values of X−1Z.
Note that whether or not J is rank deficient, Theorem 4.2 implies that all negative

eigenvalues of K2,reg are bounded above by −δ. Similarly, all positive eigenvalues are
bounded below by ρ. The most noticeable effect of regularization in this case is to
buffer the eigenvalues away from zero.

In the scenario of Example 2.1, Theorem 4.2 yields the following asymptotic
bounds:

−σ1 � γ− ≤ −δ < 0 < ρ ≤ γ+ � λmax(Hρ) ≤ λ1 + ρ+max
i

zi
xi

,

so that we obtain the following asymptotic condition number estimate:

κ(K2,reg) = O(λmax(Hρ)/min(ρ, δ)) = O(1/(μmin(ρ, δ))).

The limits of machine precision, given the common bounds on δ and ρ, are thus not
achieved until μ reaches

√
εmach, which typically occurs in the last few iterations.

4.2. Bounds for the regularized 3 × 3 block system. We now consider the
unreduced 3 × 3 block system. We focus on the symmetrized matrix K̂3,reg since it
allows us to seamlessly work with real arithmetic. We note that the eigenvalues can
give valuable information for both symmetric and nonsymmetric matrices. The conver-
gence of minimum residual methods for diagonalizable matrices, for example, depends
strongly on the distribution of eigenvalues and the conditioning of the eigenvectors
(Saad, 2003, Proposition 6.32). We also note that in our numerical experiments the
computed eigenvalues of K̂3,reg and K3,reg were nearly identical.

A challenge here is that the 3×3 block form gives rise to rather complicated cubic
inequalities in some cases. As we show, simplifying assumptions using the limiting
behavior of elements in X and Z lead to effective bounds, although the case of an
upper bound on the negative eigenvalues proves to be significantly harder to deal with.
The analysis for the 3×3 block system forms the core of our new results. Our technique
largely relies on energy estimates in the spirit of Rusten and Winther (1992). We will
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be using extensively the fact that for any vectors u ∈ R
n and v ∈ Null(J)⊥ ⊂ R

n,

λn‖u‖2 ≤ uTHu ≤ λ1‖u‖2,(4.1)

σm‖v‖ ≤ ‖Jv‖ ≤ σ1‖v‖.(4.2)

Note that the right inequality in (4.2) is satisfied for all v ∈ R
n.

The eigenvalue problem for K̂3,reg is formulated as

(4.3)

⎡
⎣H + ρI JT −Z

1
2

J −δI 0

−Z
1
2 0 −X

⎤
⎦
⎡
⎣u
v
w

⎤
⎦ = θ

⎡
⎣u
v
w

⎤
⎦ .

Our first result provides upper and lower bounds on the positive eigenvalues of
K̂3,reg. Most notably, we show that upon regularization the lower bound is approxi-
mately additively shifted by ρ.

Theorem 4.3 (bounds on the positive eigenvalues of K̂3,reg). Suppose Assump-
tion 2.1 (convexity) is satisfied. As long as Assumption 2.2 (positivity) is satisfied,
the positive eigenvalues of K̂3,reg are bounded in I+ = [ξ, η] , where

ξ = min
j

1
2

(
λn + ρ− xj +

√
(λn + ρ+ xj)2 + 4zj

)

and η is the largest root of the cubic

q3(θ) := θ3 + (δ − (λ1 + ρ))θ2 − (δ(λ1 + ρ) + σ2
1 + zmax)θ − zmaxδ.

When Assumption 2.3 (complementarity) holds, ξ reduces to the uniform lower
bound λn + ρ.

Proof. We examine the upper and lower bounds separately.
Upper bound on the positive eigenvalues. We solve for w in the third block row

of (4.3) to get w = −(θI +X)−1Z
1
2u, which we substitute into the first block row to

obtain

(H + ρI)u+ JT v + Z
1
2 (θI +X)−1Z

1
2 u = θu.

The matrices Z
1
2 and (θI +X)−1 are diagonal, and therefore commute. Taking the

inner product with u gives the following equation for θ:

(4.4) uT (H + ρI)u + uTJT v + uT (θI +X)−1Zu = θ‖u‖2.

Solving for v in the second block row of (4.3) gives v = 1
θ+δJu, which we substitute

into (4.4) to get

(4.5) uT (H + ρI)u+
1

θ + δ
‖Ju‖2 + uT (θI +X)−1Zu = θ‖u‖2.

We use (4.1) and (4.2) to bound the first and second terms in (4.5):

(λ1 + ρ)‖u‖2 + σ2
1

θ + δ
‖u‖2 + uT (θI +X)−1Zu ≥ θ‖u‖2.
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Since (θI +X)−1Z is diagonal, we have

uT (θI +X)−1Zu ≤ max
i

zi
θ + xi

‖u‖2.

We must have u �= 0, since if u = 0 then the second block row of (4.3) implies that
(θ+δ)v = 0. Since the matrix (2.8a) is nonsingular, θ > 0 and thus θ+δ > 0, implying

that v = 0. Then, by the first block row of (4.3), Z
1
2w = 0 would imply w = 0, which

must not occur since an eigenvector must be nonzero. We can thus divide by ‖u‖2,
and using the last two displayed inequalities we get the relation

λ1 + ρ+
σ2
1

θ + δ
+max

i

zi
θ + xi

≥ θ.

We can bound the maximum term above by zmax

θ :

λ1 + ρ+
1

θ + δ
σ2
1 +

zmax

θ
≥ θ.

Multiplying by (θ + δ)θ and rearranging gives

θ3 + (δ − (λ1 + ρ)) θ2 − (
δ(λ1 + ρ) + σ2

1 + zmax

)
θ − zmaxδ ≤ 0.

As a consequence, θ must be bounded above by the largest real root of the above
cubic polynomial. Note that there is exactly one positive real root, since the values
of the cubic and its derivative are negative at zero.

Lower bound on the positive eigenvalues. Taking the inner product of v with the
second block row of (4.3) and rearranging, we have

vTJu = (θ + δ)‖v‖2,
which we substitute into (4.4) to give

uT (H + ρI)u+ (θ + δ)‖v‖2 + uT (θI +X)−1Zu = θ‖u‖2.
Then using (4.1), we have

(λn + ρ)‖u‖2 + (θ + δ)‖v‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.
The last term on the left-hand side may be bounded below with a minimum:

(4.6) (λn + ρ)‖u‖2 + (θ + δ)‖v‖2 +min
i

zi
θ + xi

‖u‖2 ≤ θ‖u‖2.

We denote the index where the minimum occurs by j, then multiply by θ + xj and
rearrange into

(θ2 + (xj − λn − ρ)θ − (xj(λn + ρ) + zj))‖u‖2 ≥ (θ + δ)(θ + xj)‖v‖2 ≥ 0.

Since again u �= 0, we then bound by the positive root of the quadratic. Taking the
minimum over all indices j gives the desired bound.

If Assumption 2.3 (complementarity) holds, we can derive a uniform lower bound
using the fact that mini zi/(θ + xi) ≥ 0 in (4.6) and obtain

(θ − λn − ρ)‖u‖2 ≥ (θ + δ)‖v‖2 ≥ 0.

The lower bound becomes θ ≥ λn + ρ.
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Note that in the special case where all zi converge to 0, and thus zmax = 0 at
the limit, the upper bound at the limit can be written as an explicit quadratic root
independent of zi:

θ ≤ 1

2

(
λ1 + ρ− δ +

√
(λ1 + ρ+ δ)2 + 4σ2

1

)
.

Note in addition that the expression ξ of Theorem 4.3 is always at least equal to
λn + ρ. Thus the uniform bound also applies in the course of the iterations.

We begin our investigation of negative eigenvalues with an upper bound, which
turns out to depend on the scaling of the problem.

Theorem 4.4 (an upper bound on the negative eigenvalues of K̂3,reg during iter-
ations). Let ρ ≥ 0, δ > 0, and Assumption 2.1 (convexity) be satisfied. Suppose
also that Assumption 2.2 (positivity) holds at (x, y, z), where xi > δ for i = 1, . . . , n.
Then the negative eigenvalues of K̂3,reg are bounded above by −δ, and θ = −δ is an
eigenvalue if and only if J is rank deficient.

Proof. We first show that −δ is an upper bound. Assume by contradiction that
there is a negative eigenvalue that satisfies θ > −δ. Upon extracting v = 1

θ+δJu from

the second block row of (4.3) and using the identity wTZ
1
2 u = −wT (θI +X)w from

the third block row, taking the inner product of the first block row with u gives

uT (H + ρI)u+
1

θ + δ
‖Ju‖2 + wT (θI +X)w = θ‖u‖2.

Since θ + δ > 0 by assumption and all xi > δ > −θ, the left-hand side of the last
identity is positive. If u = 0, then both v and w are also zero, giving a trivial eigen-
vector and therefore a contradiction. If u �= 0, θ must be positive, which contradicts
our initial assumption on the sign of θ. Thus the negative eigenvalues are bounded
above by −δ.

We now move on to show when −δ is an eigenvalue. If J is rank deficient, then
u = 0, 0 �= v ∈ Null(JT ), and w = 0 satisfies (4.3) with θ = −δ. Suppose now that
J has full rank. We will show that θ �= −δ. By contradiction, assume that θ = −δ.
From the third block row and the assumption that all xi > δ, we have

wTZ
1
2u = wT (δI −X)w ≤ 0.

Taking the inner product of the first block row of (4.3) with u and using the above
inequality and Ju = 0 from the second block row, we obtain

−δ‖u‖2 = uT (H + ρI)u− uTZ
1
2w ≥ 0.

Since δ > 0, this must mean that u = 0. The third block row of (4.3) then gives
w = 0 and we are left with JT v = 0 in the first block row. Since J has full row rank,
we conclude that v = 0 and that θ = −δ cannot be an eigenvalue.

Interestingly, a similar result holds in the limit, as we show below. We note
however that there seems to be a transition zone between the moment when some
components of x drop below δ and the limit when strict complementarity applies. This
“gray zone” is necessarily attained if A �= ∅, and it is more difficult to characterize
the relationship between θ and −δ in that zone. Theorem 4.5 below assumes that the
optimization problem has been scaled appropriately prior to solving. The “gray zone”
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is strongly tied to the quality of our scaling assumptions; better scaling may shrink
that zone.

Theorem 4.5 (an upper bound on the negative eigenvalues of K̂3,reg in the limit).
Let ρ > 0, δ > 0, and Assumption 2.1 (convexity) be satisfied. Suppose also As-
sumption 2.3 (complementarity) holds at (x, y, z), where strict complementarity is
satisfied, xi > δ for all i ∈ I, and maxi

√
zi is sufficiently small. Then the negative

eigenvalues of K̂3,reg are bounded above by −δ, and θ = −δ is an eigenvalue if and
only if J is rank deficient.

Proof. We first show that −δ is an upper bound on the negative eigenvalues.
Assume by contradiction that there exists a negative eigenvalue that satisfies θ > −δ.
Since K̂3,reg is nonsingular, there must exist an ε > 0 such that θ ≤ −ε for all negative
eigenvalues. If δ ≤ ε this implies −ε ≤ −δ and the eigenvalues are bounded above
by −δ, which would be in line with the statement of the theorem. So let us assume
that ε < δ. In the limit, we have xA = 0, xI > 0, and zI = 0. Because strict
complementarity is satisfied, we must also have zA > 0. Partitioning the third block
row of K̂3,reg in (4.3) into active and inactive components gives

−Z
1
2

AAuA = θwA,(4.7)

−XIIwI = θwI .(4.8)

We may rewrite (4.8) as (XII + θI)wI = 0, which implies wI = 0 because xi + θ >
xi− δ > 0 for all i ∈ I by assumption. Taking the inner product of both sides of (4.7)
with wA gives

(4.9) −wT
AZ

1
2

AAuA = θ‖wA‖2.
Taking now the inner product of the first block row of (4.3) with u, the inner product
of the second block row with v, and combining them, we write

(4.10) θ‖uI‖2 = uT (H + ρI)u+ (θ + δ)‖v‖2 + θ(‖wA‖2 − ‖uA‖2),
where we used the decomposition ‖u‖2 = ‖uA‖2 + ‖uI‖2 and (4.9). Note that from
(4.7), uA = 0 if and only if wA = 0. If both vanish, necessarily uI �= 0, and then
the right-hand side of (4.10) is strictly positive. This would imply that θ > 0, a
contradiction. By our assumption that all

√
zi are sufficiently small, we suppose from

this point on that maxi
√
zi < ε. Suppose now that uA �= 0 and wA �= 0. Rearranging

(4.7) we find that wA = − 1
θZ

1
2

AAuA, and using the upper bounds maxi
√
zi < ε and

θ ≤ −ε we have ‖wA‖2 ≤ ε2

θ2 ‖uA‖2 ≤ ‖uA‖2. Substituting into (4.10) gives

θ‖uI‖2 ≥ uT (H + ρI)u+ (θ + δ)‖v‖2.
The right-hand side above is strictly positive, and if uI �= 0 we have θ > 0, a contra-
diction. If uI = 0, then uA = 0, again a contradiction. Therefore, we cannot have
θ > −δ, and we conclude that θ ≤ −δ.

We now move on to find when −δ is an eigenvalue. If J is rank deficient, then
as in Theorem 4.4, (0, v, 0) with 0 �= v ∈ Null(JT ) is an eigenvector for θ = −δ. Now
suppose that J has full rank, and assume by contradiction that θ = −δ. Partitioning
as above gives

Z
1
2

AAuA = δwA,(4.11)

XIIwI = δwI .(4.12)
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Upon rearranging (4.12), the matrix (XII − δI) has full rank by assumption, so we
have wI = 0. If u = 0 we also have wA = 0 and there only remains JT v = 0 in the
first block row of (4.3), giving a contradiction because we obtain a trivial solution for
the eigenvector. Thus u �= 0. Taking the inner product of (4.11) with wA reveals that

(4.13) wTZ
1
2 u = wT

AZ
1
2

AAuA = δ‖wA‖2.

Using the Cauchy–Schwarz inequality and the bound on maxi
√
zi, we have

wT
AZ

1
2

AAuA ≤ ε‖wA‖‖uA‖,

and using (4.13) and rearranging gives

(4.14) ‖wA‖ ≤ ε

δ
‖uA‖ ≤ ‖uA‖ ≤ ‖u‖,

since ε < δ. Taking the inner product of the first block row with u, using (4.13) and
Ju = 0 from the second block row, and rearranging, we have

uT (H + ρI)u = δ(‖wA‖2 − ‖u‖2),

which reduces to uT (H + ρI)u ≤ 0 by (4.14). Therefore u = 0, a contradiction, and
hence θ �= −δ when J is full rank.

Next, we derive a lower bound on the negative eigenvalues.

Theorem 4.6 (a lower bound on the negative eigenvalues of K̂3,reg). Suppose
Assumption 2.1 (convexity) is satisfied. Assume θI + X is nonsingular for all θ
throughout the computation. Then the negative eigenvalues θ of the matrix K̂3,reg

satisfy θ ≥ ζ, where

(4.15) ζ := min

{
1
2

(
λn + ρ− δ −

√
(λn + ρ+ δ)2 + 4σ2

1

)
, min
θ+xj<0

θ∗j

}
,

and θ∗j is the smallest root of the cubic

q̄3(θ) := θ3 +
(
xj + δ − λn − ρ

)
θ2 +

(
δxj − δ(λn + ρ)− xj(λn + ρ)− σ2

1 − zj
)
θ

− (
δxj(λn + ρ) + σ2

1xj + zjδ
)
.

Proof. We assume that θ + δ < 0. The case where θ ≥ −δ poses no difficulty
because it is easy to verify that ζ ≤ −δ.

We start from (4.5) with the bounds in (4.1) and (4.2) to get

(λn + ρ)‖u‖2 + 1

θ + δ
σ2
1‖u‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.

We note that u �= 0, since if u = 0 the second block row of (4.3) implies (θ + δ)v = 0,

implying that v = 0. The first line yields Z
1
2w = 0 and thus w = 0, a contradiction.

Bounding the last term of the left side of the previous inequality by the minimum,

(
λn + ρ+

1

θ + δ
σ2
1 +min

i

zi
θ + xi

)
≤ θ.
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We consider two cases. In case one, θ + xi > 0 for all indices i, and in this case we
can bound the minimum term from below by zero. In case two, some θ+ xi < 0, and
there exists an index j such that mini

zi
θ+xi

=
zj

θ+xj
.

Case one. We bound the minimum term below by zero in the inequality above,

(4.16) λn + ρ+
1

θ + δ
σ2
1 ≤ θ,

which we can multiply by (θ + δ) and rearrange to give

θ2 + (δ − λn − ρ)θ − (δ(λn + ρ) + σ2
1) ≤ 0.

Therefore,

θ ≥ 1
2

(
λn + ρ− δ −

√
(δ − λn − ρ)2 + 4(δ(λn + ρ) + σ2

1)

)
.

Case two. We use the index j for the minimum to get

λn + ρ+
1

θ + δ
σ2
1 +

zj
θ + xj

≤ θ.

Multiplying by (θ + δ)(θ + xj) and rearranging, we get

θ3 + (xj + δ − λn − ρ)θ2 + (δxj − δ(λn + ρ)− xj(λn + ρ)− σ2
1 − zj)θ

− (δxj(λn + ρ) + σ2
1xj + zjδ) ≥ 0.

We then define θ∗j to be the smallest root of the cubic above.
The bound stated in the theorem is given by the minimum of these possible

bounds from cases one and two.
We remark that in practice we cannot know which indices j satisfy θ+xj < 0, but

we can simply compute θ∗j for all indices j and use this in the comparison. Second,

we note that the possibility that some θ < 0 in the spectrum of K̂3 be an eigenvalue
of −X could arise in the course of the iterations or in the limit if there are inactive
bounds.

Consider now the scenario of Example 2.1. Assuming that the problem has been
scaled appropriately, the bounds of the previous results simplify to

ζ ≤ θ ≤ −δ < 0 or 0 < λn + ρ ≤ θ ≤ η,

where ζ and η are both finite. Thus we obtain the asymptotic condition number
estimate

κ(K3,reg) ≤ max(η,−ζ)/min(ρ+ λn, δ) = O (1/min(ρ+ λn, δ)) .

Here we have the validation of our claim that the block 3 × 3 system sees the best
conditioning. Under the usual choices of ρ and δ and unless the conditioning of the
problem is such that η or ζ is very large, this condition number will remain within
computing limits through convergence of the iteration. Our numerical experiments,
presented in section 6, verify that the 3×3 matrices remain numerically nonsingular—
and reasonably conditioned—throughout.
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4.3. Comparisons with existing bounds. It is instructive to ask whether the
bounds we provide in this paper are sharper than existing bounds. In this section we
compare our results with known bounds from the literature and show that, indeed, for
the cases we have been able to analyze, our bounds are generally sharper. This is not
surprising because our bounds exploit the specific block structure of our saddle-point
matrices.

Silvester and Wathen (1994, Lemma 2.2) generalize the results of Rusten and
Winther (1992) for saddle-point matrices to the case of a nonzero (2, 2) block. They
focus on the discretized Stokes equations, but their paper contains several results
that are applicable to general regularized saddle-point systems with a positive definite
leading block and a positive semidefinite (2, 2) block. In the context of the present
paper, we can apply the Silvester and Wathen results by splitting

K3,reg =

[
A BT

B −C

]
, where A := H + ρI, B :=

[
J

−Z1/2

]
, C :=

[
δI 0
0 X

]
.

In their analysis, Silvester and Wathen use the extremal eigenvalues of A, the extremal
singular values ofB, and a bound on the norm of C, which here is ‖C‖ ≤ max(δ, xmax),
where xmax := max1≤i≤n xi. Note that the singular values of B are the square roots

of the eigenvalues of BTB = JTJ + Z.
In this section we denote generic positive and negative eigenvalues of K3,reg by

θ+ and θ−, respectively. Silvester and Wathen (1994, Lemma 2.2) provide the upper
bound

θ+ ≤ 1

2

(
λmax(H + ρI) +

√
λ2
max(H + ρI) + 4λmax(J

T J + Z)

)

≤ 1

2

(
λ1 + ρ+

√
(λ1 + ρ)2 + 4(σ2

1 + zmax)

)
,(4.17)

where we used our notation for the eigenvalues of H and singular values of J , and
the facts that λmax(H + ρI) = λ1 + ρ and σ2

max(B) ≡ λmax(J
T J + Z) ≤ σ2

1 + zmax,
where zmax := max1≤i≤n zi. The transition from the first row of (4.17) to the sec-
ond row is a natural relaxation whose purpose is to make the bounds practical and
directly connected to the blocks of K3,reg. Note that contrary to the bound given by
Theorem 4.3, the parameter δ plays no role in (4.17).

It is straightforward to show that when δ = 0, the largest positive root of the
cubic polynomial q3 of Theorem 4.3 reduces precisely to (4.17). Denote this root
by θ0. When δ > 0 we claim that the largest root of q3, denoted θδ, decreases,
which means that the upper bound on θ+ becomes tighter. To show this, we draw
from the perturbation analysis of Wilkinson (1959, section 3). Let us first write
q3(θ) = p3(θ) + δp2(θ), where

p3(θ) := θ3 − (λ1 + ρ)θ2 − (σ2
1 + zmax)θ and p2 := θ2 − (λ1 + ρ)θ − zmax.

If the polynomial p3 is perturbed by δp2, the root is perturbed according to

θδ = θ0 +
dθ0
dδ

δ + · · · , where
dθ0
dδ

= −p2(θ0)

p′3(θ0)
,

where the derivative is interpreted as the derivative of θδ with respect to δ subsequently
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evaluated at δ = 0. In order to evaluate p2(θ0), first note that

θ20 =
1

2

[
(λ1 + ρ)

(
λ1 + ρ+

√
(λ1 + ρ)2 + 4(σ2

1 + zmax)

)
+ 2(σ2

1 + zmax)

]

= (λ1 + ρ)θ0 + (σ2
1 + zmax).

We conclude that p2(θ0) = σ2
1 > 0. On the other hand, it is straightforward to confirm

that p′3(θ0) > 0 and we conclude that dθ0/dδ < 0. Therefore, at least for small values
of δ, θδ < θ0, and hence our bound is sharper than (4.17).

Next, Silvester and Wathen (1994, Lemma 2.2) provide the lower bound

θ+ ≥ λmin(H + ρI) = λn + ρ.

The latter coincides with the lower bound of Theorem 4.3 in the special case where
z = 0, which is a rather unlikely scenario. In all other cases, our bound is sharper.
This is most easily seen from (4.6), which may be written

θ ≥ λn + ρ+min
i

zi
θ + xi

> λn + ρ

for any positive eigenvalue θ, where the last inequality is strict in the course of the
iterations and typically holds as an equality in the limit. Note also that from the
expression in Theorem 4.3, we have ξ ≥ λn + ρ for any nonnegative values of xj

and zj , j = 1, . . . , n. In addition, ξ is a decreasing function of xj and an increasing
function of zj with limxj→∞ ξ = λn + ρ, where the limit is taken over all indices j.

Regarding negative eigenvalues, Silvester and Wathen (1994, Lemma 2.2) provide
the upper bound

θ− ≤ 1

2

(
λmax(H + ρI)−

√
λ2
max(H + ρI) + 4λmin(J

TJ + Z)

)

≤ 1

2

(
λ1 + ρ−

√
(λ1 + ρ)2 + 4(σ2

m + zmin)
)
,

where zmin = mini zi. This bound is again independent of δ. When J is rank deficient,
σm = 0 and the above bound reduces to −zmin, which typically converges to zero. By
contrast, under the assumptions of Theorem 4.4, our bound is −δ and hence is sharper.

Finally, Silvester and Wathen (1994, Lemma 2.2) provide the lower bound

θ− ≥ 1

2

(
λmin(H + ρI)−

√
λ2
min(H + ρI) + 4λmax(JT J + Z)

)

≥ 1

2

(
λn + ρ−

√
(λn + ρ)2 + 4(σ2

1 + zmax)

)
.(4.18)

Again, there is no dependence in δ. This bound is more complicated to analyze and
we now show that, except in certain cases, it is tighter than the bound of Theorem 4.6.
The value (4.18) is the smallest root of the quadratic

p2(θ) := θ2 − (λn + ρ)θ − (σ2
1 + zmax).

Our lower bound is given by the value ζ of Theorem 4.6. Suppose temporarily that
the first term realizes the minimum in (4.15). In this case, ζ is the smallest root of
the quadratic

p̄2(θ) := θ2 − (λn + ρ− δ)θ − (σ2
1 + δ(λn + ρ))

= p2(θ) + δ(θ − (λn + δ)) + zmax.
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Wilkinson’s analysis generalizes easily to the case of perturbations of the form above.
More precisely, let p̄(θ) = p(θ) + δr(θ) + zs(θ), where δ and z are perturbation
parameters, let β = β(0, 0) be a simple root of p, i.e., a simple root of p̄ when
δ = z = 0, and let β(δ, z) be the corresponding root of p̄ for given values of δ and z.
Then,

β(δ, z) = β + δ
dβ

dδ
+ z

dβ

dz
+ · · · , where

dβ

dδ
= − r(β)

p′(β)
,

dβ

dz
= − s(β)

p′(β)
.

More concisely, β(δ, z) = β − (δr(β) + zs(β))/p′(β) + · · · .
We may apply the above perturbation estimate to our situation by understanding

β as the bound of (4.18) and by selecting p̄ = p̄2, p = p2, r(θ) := θ − (λn + δ), and
s(θ) := 1 to obtain

ζ = β − δ(β − (λn + ρ)) + zmax

p′2(β)
+ · · · .

Because p′2(β) < 0 and β − (λn + ρ) < 0, we have ζ > β provided that

δ >
zmax

λn + ρ− β
=

2 zmax

λn + ρ+
√
(λn + ρ)2 + 4(σ2

1 + zmax)
.

In particular, our bound is sharper in the unlikely scenario where zmax = 0 provided
δ > 0. In all other cases, our bound is tighter provided zmax is sufficiently small.

We now turn our attention to the case where ζ is the second term in the minimum
of the statement of Theorem 4.6, i.e., the smallest root of the cubic

q̄3(θ) = p3(θ) + δq2(θ) + xj q̄2(θ) + δxjq1(θ),

where

p3(θ) := θ
(
θ2 − (λn + ρ)θ − (σ2

1 + zj)
)
, q2(θ) := θ2 − (λn + ρ)θ − zj,

q̄2(θ) := θ2 − (λn + ρ)θ + σ2
1 , q1(θ) := θ − (λn + ρ).

The bound β given by Silvester and Wathen is the smallest root of p3(θ) when zj =
zmax, the latter being the index that minimizes the value of β over all j = 1, . . . , n.
Let us thus assume that zj = zmax and the corresponding xj . Proceeding as above,
we have, to first order,

ζ = β − δq2(β) + xj q̄2(β) + δxjq1(β)

p′3(β)
+ · · · .

It is not difficult to verify that β2 = (λn + ρ)β + σ2
1 + zmax and therefore that

q2(β) = σ2
1 > 0, q̄2(β) = 2σ2

1 + zmax > 0, and q1(β) < 0. In addition, p′3(β) =
β(2β− (λn+ρ)) > 0. These inequalities combine with the above first-order expansion
to establish that ζ > β, i.e., the bound of Theorem 4.6 is tighter than (4.18), whenever

1
2δxj

(
λn + ρ+

√
(λn + ρ)2 + 4(σ2

1 + zmax)

)
> δσ2

1 + xj(2σ
2
1 + zmax).

We now consider more general results introduced by Bai (2013), who derives
bounds for saddle-point matrices with an indefinite leading block. In this setting, we
write

K3,reg =

[
A BT

B −C

]
, where A :=

[
H + ρI JT

J −δI

]
, B :=

[−Z1/2 0
]
, C := X.
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Note that because A is quasi definite, A−1 is also quasi definite with the same block
structure (Vanderbei, 1995). In particular, the leading block of A−1 is positive definite.
The Schur complement of A in K3,reg is

−X − [
Z1/2 0

] [H + ρI JT

J −δI

]−1 [
Z1/2

0

]

and is therefore negative definite. Considering this fact, the result that is relevant to
the present situation is (Bai, 2013, Theorem 3.2 (i)). In Bai’s notation, let Ψ > 0 be
an upper bound on the eigenvalues of BA−2BT . This upper bound is used to define
two constants φ ∈ (0, 1) and Φ > 1. Bai’s theorem 3.2 (i) then states that the positive
eigenvalues of K3,reg are located in the interval [φλ+

min(A),Φλmax(A)], where λ
+
min(A)

is the smallest positive eigenvalue of A. It is now easy to see that Bai’s lower and
upper bounds are Silvester and Wathen’s bounds multiplied by factors φ ∈ (0, 1) and
Φ > 1, respectively, and are therefore looser. It must be stressed that Bai’s bounds
apply to a substantially more general case, for which they are effective.

It is difficult to compare our bounds on the negative eigenvalues to the corre-
sponding result in (Bai, 2013, Theorem 3.2 (i)), because the latter relies on bounds
on the eigenvalues of the Schur complement. In our setting, assuming such knowledge
is impractical.

5. Eigenvalue bounds for the unregularized systems. Eigenvalue analysis
for systems (2.2), (2.3), and (2.4) can be straightforwardly done as special cases of the
analysis of section 4. We choose to state these results separately, as corollaries, due to
the importance of the unregularized approach in the implementation of interior-point
solvers.

5.1. Bounds for the unregularized 1 × 1 and 2 × 2 block systems. For
the Schur complement system, the following result is a straightforward consequence
of Theorem 4.1.

Corollary 5.1 (bounds for K1). Let K1 be defined as in (2.4) and suppose
Assumptions 2.1 (convexity) and 2.2 (positivity) hold and J has full row rank. The
eigenvalues of K1 are contained in the interval

[
σ2
m

λmax(H +X−1Z)
,

σ2
1

λmin(H +X−1Z)

]
.

As a consequence, we have an upper bound on the spectral condition number of K1:

κ(K1) ≤ κ(J)2 κ(H +X−1Z).

In the typical situation of Example 2.1, it is clear that K1 approaches singularity.
We have the asymptotic estimates

(5.1) λmin(H +X−1Z) = Ω(λn + μ) and λmax(H +X−1Z) = Θ(1/μ).

As μ → 0, Corollary 5.1 thus yields the asymptotic estimate

(5.2) κ(K1) = κ(J)2 O
(
1/(μ(λn + μ))

)
.

Note that at least in the case of linear programming, the bounds of Corollary 5.1 and
(5.2) are tight and (5.2) becomes κ(K1) = κ(J)2 Θ(1/μ2). On the other hand, when
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λn > 0, (5.2) becomes κ(K1) = κ(J)2 O(1/μ). This last estimate is in line with those
of Wright (1994), who assumes that a second-order sufficiency condition holds.

Similarly to the situation of Theorem 4.1, bounds in the spirit of Gondzio (2012)
can be obtained by substituting ρ = δ = 0. The eigenvalues can thus be bounded
by expressions involving only the extremal eigenvalues of H and singular values of
J . Asymptotic bounds turn out to be identical in terms of order of magnitude to the
ones based on Corollary 5.1.

Moving on to consider the 2× 2 block system, Corollary 3.6 states that K2 is non-
singular during the iterations if and only if J has full row rank. For this saddle-point
linear system much is known in the literature, and we state now observations that
can be concluded from existing results, e.g., (Rusten and Winther, 1992, section 2).

The following result readily follows from Theorem 4.2, but can in fact be directly
obtained from (Rusten and Winther, 1992, Lemma 2.1).

Corollary 5.2 (bounds for K2). If H is positive semidefinite, J has full row rank
and Assumptions 2.1 (convexity) and 2.2 (positivity) are satisfied, then

γ+ ≥ λmin(H +X−1Z),

γ+ ≤ 1
2

(
λmax(H +X−1Z) +

√
λmax(H +X−1Z)2 + 4σ2

1

)

for any positive eigenvalue γ+ of K2, and

γ− ≥ 1
2

(
λmin(H +X−1Z)−

√
λmin(H +X−1Z)2 + 4σ2

1

)
,

γ− ≤ 1
2

(
λmax(H +X−1Z)−

√
λmax(H +X−1Z)2 + 4σ2

m

)

for any negative eigenvalue γ− of K2.

From Corollary 5.2 we see that the lower bound on the negative eigenvalues of K2

is finite and bounded away from zero unless J = 0. It is the other three bounds that
are responsible for the ill-conditioning of K2. Using again the situation of Example 2.1
where the extremal eigenvalues of H +X−1Z are approximated by (5.1), we obtain
the asymptotic estimates

λn + μ � γ+ � 1/μ and 1
2

(
λn −

√
λ2
n + 4σ2

1

)
� γ− � −μσ2

m,

where the upper bound on the negative eigenvalues is obtained via the Taylor expan-
sion

√
1 + x ≈ 1 + 1

2x for x � 1. These estimates yield the asymptotic condition
number

κ(K2) = O

(
1/μ

min(μσ2
m, λn + μ)

)
= O

(
1

μ2

)
.

Several authors, including Fourer and Mehrotra (1993) and Korzak (1999) suggest
scalings of K2 that alleviate this ill-conditioning.

The above asymptotic estimates must be considered cautiously, as they do not
always fully capture the actual value of the condition number. Nevertheless, they
illustrate the ill-conditioning of the 1× 1 and 2× 2 formulations in the unregularized
case.
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5.2. Bounds for the unregularized 3× 3 block system. We now perform a
similar eigenvalue analysis for the matrix K̂3. Here again, our results can be obtained
as special cases of the analysis of section 4. Moulding (2012) provides detailed and
direct proofs that are derived independently of the regularized case.

Corollary 5.3 (bounds on the positive eigenvalues of K̂3). Suppose Assump-
tion 2.1 (convexity) holds. For as long as Assumption 2.2 (positivity) holds and J
has full rank, the positive eigenvalues of K̂3 are bounded in

I+ :=

[
min
j

1
2

(
λn − xj +

√
(λn + xj)2 + 4zj

)
, 1

2

(
λ1 +

√
λ2
1 + 4(σ2

1 + zmax)

)]
,

where zmax := maxi zi. When Assumption 2.3 (complementarity) holds, the lower
bound reduces to λn ≥ 0.

The proof follows from Theorem 4.3 with δ = ρ = 0, but observe that we see
a significant simplification here for the upper bound. This is because for δ = 0 the
cubic equation at the statement of Theorem 4.3 simplifies to the quadratic equation

θ2 − λ1θ − (σ2
1 + zmax) = 0.

Note that the lower bound on positive eigenvalues in Corollary 5.3 is strictly
larger than λn as long as Assumption 2.2 (positivity) holds. In a sufficiently small
neighborhood of an isolated minimizer, the minimum term in the lower bound will be
attained for some j ∈ I. This lower bound is strictly positive as long as (x, z) > 0
but in the limit, by definition of I, it reduces to λn. If λn = 0, this limiting bound is
overly pessimistic and is not tight if the LICQ is satisfied since K̂3 is nonsingular by
the results in section 3.3.

Next, we consider bounds on the negative eigenvalues. We are only able to find
an effective lower bound; the upper bound that we find is zero and is not particularly
meaningful. The corollary below follows from Theorem 4.6, which applies also to zero
values of the regularization parameters, namely, δ = ρ = 0.

Corollary 5.4 (bounds on the negative eigenvalues of K̂3). Suppose Assump-
tion 2.1 (convexity) holds. Suppose the matrix θI +X is nonsingular for all θ < 0
in the spectrum of K̂3. The negative eigenvalues of K̂3 are bounded in I− = [ζ, 0),
where

ζ := min

{
1
2

(
λn −

√
λ2
n + 4σ2

1

)
, min
{j|θ+xj<0}

θ∗j

}

and θ∗j is the smallest root of the cubic equation

θ3 + (xj − λn)θ
2 − (σ2

1 + zj + xjλn)θ − σ2
1xj = 0.

We are not able to find here an upper bound on the negative eigenvalues that is
strictly smaller than zero. Under our regularity and strict complementarity assump-
tions, as stated in section 3, K̂3 is nonsingular and converges to a well-defined limit as
μ → 0. Therefore, its condition number is asymptotically uniformly bounded, which
is not reflected by the bounds on the eigenvalues in this case. This is where using reg-
ularization pays off, since we are able to remove our regularity assumptions and reach
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more definitive conclusions regarding the upper bound on the negative eigenvalues
and asymptotic condition number estimates.

From Corollary 5.4, the lower bound on negative eigenvalues remains finite asymp-
totically, while Corollary 5.3 shows that the asymptotic bounds on the positive eigen-
values essentially reduce to those of K2. In practice, however, we have observed that
the condition number of K̂3 is typically substantially better than that of K1 or K2

and slightly, but consistently, better than that of K3.

6. Numerical experiments. We offer a few examples to validate the analysis of
the previous sections using a basic MATLAB implementation of Mehrotra’s predictor-
corrector procedure with an initial point computed as proposed by Friedlander and
Orban (2012). The linear systems are solved using MATLAB’s backslash operator
which performs a factorization. Eigenvalues, singular values, and condition numbers
are computed with MATLAB’s built-in functions. Our code is not intended to rival
state-of-the-art solvers, but simply to illustrate the analysis in previous sections.

We illustrate the eigenvalue bounds for the regularized systems of section 4 and
the traditional systems considered in section 5. We use two small convex QPs from the
TOMLAB1 optimization software package, problems number 6 and 21, both converted
to standard form. Problem 6 has 10 variables, 7 constraints, is strictly convex, and its
solution satisfies strict complementarity and the LICQ. Problem 21 has 51 variables
and 27 constraints, and the Hessian is positive semidefinite with rank 3. The solution
identified by our interior-point method satisfies strict complementarity but not the
LICQ. Those two problems are very small but are nonetheless representative of the
situation for several other problems we have tested. The bounds for the regularized
systems are illustrated using ρ = δ = 10−4 throughout the interior-point iterations.

We begin with Problem 21. Figure 6.1 shows the eigenvalues of K1,reg and K1

on a semilogarithmic scale. The bounds for K1,reg become nearly fixed after a few
initial iterations. On the other hand, for K1, we note that because H is singular, the
large eigenvalues grow without bound and the small eigenvalues converge to zero, in
accordance with the bounds of Corollary 5.1.
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(b) ρ = δ = 0

Fig. 6.1. TOMLAB problem 21: eigenvalues of K1,reg and K1 and their bounds.

1Available at tomopt.com/tomlab.
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(a) Positive, ρ = δ = 10−4
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(b) Positive, ρ = δ = 0
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(c) Negative (absolute values), ρ = δ =
10−4

0 5 10 15
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

ei
g

en
va

lu
es

 

 

negative upper bound
negative lower bound

(d) Negative (absolute values), ρ = δ = 0

Fig. 6.2. TOMLAB problem 21: eigenvalues of K2,reg and K2 and their bounds.

Figure 6.2 shows the positive and negative eigenvalues of K2,reg and K2 on sepa-
rate semilogarithmic plots. Note that the absolute value of the negative eigenvalues
is represented. As evident from the formulas in Theorem 4.2 and Corollary 5.2, as
we approach the solution and xi or zi become smaller due to the complementarity
condition, the formulas for the bounds on the negative eigenvalues are increasingly
prone to cancelation errors. To avoid harmful cancellation errors, we use the mathe-
matically equivalent but more numerically appropriate formulas (which apply to K2

as well with δ = ρ = 0)

γ− ≥ − 2
(
σ2
1 + δλmin(Hρ)

)
λmin(Hρ)− δ +

√
(λmin(Hρ)− δ)2 + 4(σ2

1 + δλmin(Hρ))
,

γ− ≤ − 2
(
σ2
m + δλmax(Hρ)

)
λmax(Hρ)− δ +

√
(λmax(Hρ)− δ)2 + 4(σ2

m + δλmax(Hρ))
.

For K2,reg, while the “inner” bounds (namely, the lower positive and upper neg-
ative bounds) are well away from zero, the upper bound on the positive eigenvalues



EIGENVALUES OF MATRICES IN INTERIOR METHODS 77

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

iteration

ei
g

en
va

lu
es

 

 
positive upper bound
positive lower bound

(a) Positive, ρ = δ = 10−4
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(b) Positive, ρ = δ = 0
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(c) Negative (absolute values), ρ = δ =
10−4
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Fig. 6.3. TOMLAB problem 21: eigenvalues of K3,reg and K3 and their bounds. Note that the
upper bound on the negative eigenvalues is zero for K3 and is thus not visible in graph (d).

still increases without bound, as predicted by Theorem 4.2, and all bounds are tight.
For K2, the upper bound on the negative eigenvalues also decays, but the lower bound
on the negative eigenvalues is fixed. This is in accordance with Corollary 5.2 and we
see that the bounds are relatively tight in this example.

Next, we show results for the 3 × 3 block system. We choose to show results
for the nonsymmetric versions; the eigenvalues for the symmetrized versions were
indistinguishable in our computations. Figure 6.3 shows the eigenvalues of K3,reg and
K3 on separate semilogarithmic plots. For K3,reg, the lower bound on the positive
eigenvalues is well away from zero despite the smallest eigenvalue of the Hessian being
zero, and the bound seems to converge fairly quickly to ρ = 10−4 as iterations progress;
this is in line with the results in Theorem 4.3. For K3, since ρ = 0 and we have λn = 0
in this example, the lower bound on the positive eigenvalues in Corollary 5.3 is prone to

cancellation errors, since this bound simplifies to γ+ ≥ minj
1
2 (−xj +

√
x2
j + 4zj). To

avoid cancellation, in our numerical experiments we use the mathematically equivalent
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Fig. 6.4. TOMLAB problem 21: condition numbers for regularized and unregularized systems.

formula

γ+ ≥ min
j

2zj

xj +
√
x2
j + 4zj

with the convention that the bound is zero if strict complementarity fails to hold.
For the negative eigenvalues, we have an upper bound at −δ as per Theorem 4.4.

Interestingly, at iteration 9 the magnitude of the smallest negative eigenvalues drops
below δ, illustrating the “gray zone” when the conditions of Theorem 4.4 no longer
hold but Theorem 4.5 does not yet apply. In fact, the assumptions of Theorem 4.5 are
not satisfied for this problem. Despite these eigenvalues dropping below the bound,
they remain away from zero. For K3, the two “outer” bounds (that is, the upper
positive and lower negative bounds) are fixed and tight. On the other hand, the
upper bound on the negative eigenvalues is zero and the lower bound on the positive
eigenvalues decays toward zero. The eigenvalues also decay toward zero from both
sides. This is in accordance with Corollaries 5.3 and 5.4.

Next, we consider the condition numbers for all formulations and examine the
regularized problem with ρ = δ = 10−4 and the unregularized problem. Figure 6.4
shows the condition numbers of the different formulations. With regularization,K1,reg

and both the nonsymmetric and the symmetrized 3 × 3 formulations have bounded
condition numbers, while K2,reg is still numerically singular. For the unregularized
problem, all formulations are numerically singular at the end of the iterations, though
K3 and K̂3 have the best condition number—their curves are nearly superposed. The
singularity in this case is due to the fact that this problem does not satisfy the LICQ.

We now consider the condition numbers for all formulations applied to Problem 6.
Figure 6.5 shows the condition numbers. The condition number of K1,reg remains
essentially fixed after the initial iterations because of the use of fixed regularization
parameters, in accordance with Theorem 4.1. Note that in theory, this condition
number could be as large as 108 but it stabilizes around 105 in this instance. The
condition number of K2,reg goes unbounded with the iterations, as predicted by the

asymptotic analysis. For the unregularized problem, K3 and K̂3 are well-conditioned
throughout, while the reduced forms have exponentially increasing condition numbers.
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Fig. 6.5. TOMLAB problem 6: condition numbers for regularized and unregularized systems.

Since strict complementarity and LICQ are satisfied for this problem, regularization
has little effect on the 3× 3 formulations.

7. Other formulations. In this section, we briefly mention alternative linear
systems that were not covered in the previous sections but to which our techniques
appear to generalize. In particular, we examine a formulation adapted to problems
that do not satisfy strict complementarity at a solution. We refer below to the unreg-
ularized formulation, (1.1a)–(1.1b).

When H = 0, the Goldman and Tucker (1956) theorem guarantees that a strictly
complementary solution always exists provided there exists at least one solution. More-
over, widely applicable interior-point frameworks guarantee that any limit point of
the sequence of iterates determines a strictly complementary solution under mild
assumptions—see, e.g., (Wright, 1997, Theorem 6.8). When H �= 0, this desirable
result no longer holds in general, i.e., not all problems of the form (1.1a) possess a
solution satisfying strict complementarity. A typical counterexample is

minimize
x∈R

1
2x

2 subject to x ≥ 0

for which it is easy to verify that the only primal-dual solution is (x, z) = (0, 0). A
difficulty with such problems is that, in the limit, K3 is singular while K2 and K1

do not even appear to be well defined. Our test scenario of Example 2.1 no longer
describes the general situation because there is a subset of A for which xi = Θ(

√
μ)

and zi = Θ(
√
μ)—see, e.g., (Coulibaly, Gould, and Orban, 2012; Monteiro and Wright,

1994; Wright and Orban, 2002).
It is common to study the iterates generated by an interior-point method in the

vicinity of a strictly complementary solution. Consider the typical situation where
(1.1a) possesses a solution with at least one zero variable to which a positive multi-
plier is associated. An immediate difficulty is that K2 does not converge to a well-
defined limit and appears to become arbitrarily ill-conditioned—an observation that
is confirmed by the results of section 5. The same holds for K1. We now outline a
strategy to salvage the situation in the case of K2, and that may be applied to K3

as well. In the vicinity of a strictly complementary solution of (1.1)—assuming one
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exists—partition the variables according to A and I and consider the induced parti-
tioning of the matrices H , J , X , and Z. The system (2.2) may be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

HAA HT
AI JT

A −I

HAI HII JT
I −I

JA JI
−ZAA −XAA

−ZII −XII

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ΔxA
ΔxI
Δy
ΔzA
ΔzI

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

rc,A
rc,I
rb
rτ,A
rτ,I

⎤
⎥⎥⎥⎥⎦ .

Note that X−1
IIZII approaches zero. Gould (1986) then proposes to eliminate ΔzI

and reformulate the above system as

⎡
⎢⎢⎢⎣
HAA HT

AI JT
A −I

HAI HII +X−1
IIZII JT

I
JA JI

−ZAA −XAA

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
ΔxA
ΔxI
Δy
ΔzA

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rc,A
rc,I −X−1

II rτ,I
rb
rτ,A

⎤
⎥⎥⎦ .

In addition, Gould (1986) symmetrizes the matrix by multiplying the last block row
by Z−1

AA. Since XAAZ
−1
AA also approaches zero, the resulting matrix then possesses a

well-defined limit as long as J has full row rank, and therefore we should expect its
condition number to be uniformly bounded, at least in a neighborhood of a strictly
complementary solution.

This partial elimination requires accurate identification of the index sets A and
I. In practice, this can be done by using the predictive index set {i | xi/zi < zi/xi}
as an approximation to A.

Some of our results rely on strict complementarity being satisfied in the limit. We
now outline a similar partitioning by which our results will apply to problems failing
to satisfy strict complementarity.

A possible approach with such problems is to use indicator sets to distinguish
between indices i = 1, . . . , n that are weakly active, strongly active, and inactive. Let
(x, y, z) be a local approximation to a solution. The set of strongly active constraints
at x is AS := {i = 1, . . . , n | xi = 0 < zi}. The set of weakly active constraints at
x is AW := {i = 1, . . . , n | xi = zi = 0} and the set of inactive constraints at x is
I := {i = 1, . . . , n | zi = 0 < xi}. Suppose at each iteration k of an interior-point
method, we have a mechanism to identify approximations Ak

S , Ak
W , and Ik to AS ,

AW , and I, respectively. Such indicator sets can resolve the singular limit difficulty
provided they ensure that zki /x

k
i → 0 as k → ∞ for i ∈ Ak

W ∪ Ik while xk
i /z

k
i → 0

as k → ∞ for i ∈ Ak
S . Indeed if this were the case, upon partitioning x, z, H , and J

according to Bk := Ak
W ∪ Ik and Sk := Ak

S , (2.2) could be partially eliminated to

⎡
⎢⎢⎢⎣
HSS HT

SB JT
S −I

HSB HBB +X−1
BBZBB JT

B
JS JB

−ZSS −XSS

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
ΔxS
ΔxB
Δy
ΔzS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rc,S
rc,B +X−1

BBrτ,B
rb
rτ,S

⎤
⎥⎥⎦ .

The matrix of the latter system has a well-defined limit whenever J has full row rank.
As above, the typical way to symmetrize the system is to multiply the last block row
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by Z−1
SS . Examples of indicator sets with the requisite properties along with pointers

to the literature are given by Coulibaly, Gould, and Orban (2012) and Monteiro and
Wright (1994).

In both cases of partial elimination above, should J not have full row rank, dual
regularization, as described in section 2, will ensure that the partially eliminated
matrix converges to a well-defined limit, provided the dual regularization parameter
remains bounded away from zero.

We also note that our results of section 3 can be extended to the appropriate
symmetrization of the two above partially eliminated systems with the benefit of
solving smaller systems with similar properties.

There are other formulations of the system that we have not covered in this
paper. Forsgren and Gill (1998) propose a doubly augmented formulation that has
the benefit of being positive definite on and near the central path, allowing the use of
more specialized linear solvers. Korzak (1999) and Fourer and Mehrotra (1993) both
use scalings of the systems to alleviate ill-conditioning. Gill et al. (1992) proceed
similarly to Gould (1986) and partition inequality constraints into active and inactive
constraints, and note that ill-conditioning is due to the varying sizes of constraint
values across the partition. Benzi, Haber, and Taralli (2010) discuss the conditioning
of the formulations that we cover, focusing on a specific application. They use iterative
methods with large-scale problems, where the ill-conditioning of the reduced forms
is problematic. In their experiments, they use the original unreduced form and a
partially eliminated formulation.

8. Concluding remarks. Our analysis indicates that 3×3 block linear systems
that arise throughout the iterations of primal-dual interior-point solvers have a favor-
able spectral structure. The matrix is nonsingular, whereas it tends to singularity
when it is reduced using commonly used partial elimination procedures. Regulariza-
tion is shown to be very effective at shifting the eigenvalues and the eigenvalue bounds
away from zero.

Our “outer” bounds, namely, the upper bound on the positive eigenvalues and the
lower bound on the negative eigenvalues, seem tight. On the other hand, the “inner”
bounds, namely, the lower bound on the positive eigenvalues and the upper bound on
the negative eigenvalues, are pessimistic in some cases. In the regularized case we have
found all bounds, and consequently were able to establish an asymptotic condition
number. Numerical experiments confirm that the largest eigenvalues in absolute value
of the unreduced 3× 3 block matrix are bounded away from zero and only modestly
grow throughout the iterations. Analysis for the upper negative bound is challenging,
and our results involve a region that we term the “gray zone,” which represents the
transition from the course of iterations to the limit. Our analysis does not provide an
effective bound for the gray zone, but we believe that by tightening our assumptions
we will be able to further shrink this zone.

By continuity of the eigenvalues, the analysis for the unregularized systems follows
as a special case of the regularized systems, simply by setting the regularization
parameters to zero. Here we have been able to find three effective bounds, but our
bound on the negative eigenvalues is zero, even though the matrix is analytically
known to be nonsingular.

It is important to note that convergence may be driven by several considerations
other than the eigenvalue distribution, especially when direct linear solvers are used.
The subspace where the right-hand side lies and the scaling of the problem are two
of several factors that affect convergence.
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We have not addressed the issue of the performance of iterative solvers, but our
work in this paper has been done with our eyes on this paradigm. As problems become
larger in scale, the importance of studying these solvers increases. For such solvers
the distribution of eigenvalues plays a central role, and the need to find effective
preconditioners is critical and challenging. The question of how to utilize inexact-
ness throughout the iterations is also important. Benzi, Haber, and Taralli (2010),
Bergamaschi et al. (2007), and Forsgren, Gill, and Griffin (2007) provide relevant and
important observations and results. The bounds given in this paper as well as pre-
liminary experimentation lead us to believe that the 3 × 3 formulation has a strong
potential to be very effective in the context of iterative solvers.

Matrices similar to K1, K2, and K3 occur in other branches of optimization, such
as cone optimization. The difference in this case is that X and Z may no longer
be diagonal but are instead restricted to being symmetric and positive definite. In
addition, they may be dense. Whether our results generalize to such a scenario may
be an interesting subject for future research.
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