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We introduce and analyze a mixed finite element method for the numerical discretization of a stationary
incompressible magnetohydrodynamics problem, in two and three dimensions. The velocity field is dis-
cretized using divergence-conforming Brezzi–Douglas–Marini (BDM) elements and the magnetic field is
approximated by curl-conforming Nédélec elements. The H1-continuity of the velocity field is enforced by
a DG approach. A central feature of the method is that it produces exactly divergence-free velocity
approximations, and captures the strongest magnetic singularities. We prove that the energy norm error
is convergent in the mesh size in general Lipschitz polyhedra under minimal regularity assumptions, and
derive nearly optimal a priori error estimates for the two-dimensional case. We present a comprehensive
set of numerical experiments, which indicate optimal convergence of the proposed method for two-
dimensional as well as three-dimensional problems.
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1. Introduction

The field of magnetohydrodynamics (MHD) studies the behav-
ior of electrically conducting fluids (such as liquid metals, plasmas,
salt water, etc.) in electromagnetic fields [19,26,41]. The equations
of electromagnetics and fluid dynamics are coupled through two
fundamental effects: first, the motion of a conducting material in
the presence of a magnetic field induces an electric current that
modifies the existing electromagnetic field. Second, the current
and the magnetic field generate the Lorentz force, which acceler-
ates the fluid particles in the direction normal to both the magnetic
field and the electric current. Our focus is on incompressible vis-
cous fluids whose electric resistivity is non-negligible. The corre-
sponding incompressible MHD model is a system of PDEs, where
the Navier–Stokes equations are coupled with the Maxwell equa-
tions. Incompressible MHD has a number of technological and
industrial applications such as metallurgical engineering, electro-
magnetic pumping, stirring of liquid metals, and measuring flow
quantities based on induction; cf. [17,26].

We consider a standard form of the incompressible MHD equa-
tions as derived in [2, Section 2]; see also [25,26,31]. That is, we ne-
glect phenomena involving high frequency as well as the
convection current, and consider a non-polarizable, non-magnetiz-
able and homogeneous medium. In addition, to make the curl–curl
ll rights reserved.

cs.ubc.ca (D. Li), schoetzau@
. Wei).
operator arising in the Maxwell equations amenable to discretiza-
tion with Nédélec elements, we use the mixed formulation pro-
posed in [46]. The governing equations are then of the form

� mDuþ ðu � rÞuþrp� j ðr � bÞ � b ¼ f in X; ð1:1aÞ
jmmr� ðr� bÞ þ rr � jr� ðu� bÞ ¼ g in X; ð1:1bÞ
r � u ¼ 0 in X; ð1:1cÞ
r � b ¼ 0 in X: ð1:1dÞ

Here, u is the velocity, b the magnetic field, p the hydrodynamic
pressure, and r is a Lagrange multiplier associated with the diver-
gence constraint on the magnetic field b. The functions f and g rep-
resent external force terms.

The above equations are characterized by three dimensionless
parameters: the hydrodynamic Reynolds number Re = m�1, the
magnetic Reynolds number Rm ¼ m�1

m , and the coupling number
j. For further discussion of these parameters and their typical val-
ues, we refer the reader to [2,26,45]. We assume X is a bounded
simply-connected Lipschitz polytope in Rd (d = 2 or 3), with a con-
nected boundary @X. In the two-dimensional case, the curl opera-
torr� applied to a vector b = (b1,b2) is defined asr� b ¼ @b2

@x �
@b1
@y ,

while the curl of a scalar function r is determined by

r� r ¼ @r
@y ;� @r

@x

� �
. Similarly, the cross product of two vectors

u = (u1,u2) and b = (b1,b2) is given by u � b = u1b2 � u2b1.
We consider the following homogeneous Dirichlet boundary

conditions:
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u ¼ 0 on @X; ð1:2aÞ
n� b ¼ 0 on @X; ð1:2bÞ
r ¼ 0 on @X ð1:2cÞ

with n being the unit outward normal on @X. By taking the diver-
gence of the magnetostatic equation (1.1b), we obtain the Poisson
problem

Dr ¼ r � g in X; r ¼ 0 on @X: ð1:3Þ

Since g is typically divergence-free in physical applications, the
multiplier r is typically zero and its primary purpose is to ensure
stability; see [21, Section 3].

Various finite element methods for discretizing linear and non-
linear MHD systems can be found in the literature. The magnetic
field is often approximated by standard nodal (i.e., H1-conforming)
finite elements [2,25,29–31]. However, since the strongest mag-
netic singularities have regularity below H1, straightforwardly ap-
plied nodal elements may fail to resolve them in non-convex
polyhedral domains; see [15] and the references therein. A number
of remedies have been proposed for electromagnetic problems, for
example the weighted regularization approach in [16] or the ap-
proach in [5], whereby the divergence of the electric field is stabi-
lized in H�a with 1

2 < a < 1. In [33], weighted regularization has
been applied to a full incompressible MHD system.

In the mixed formulation of [46] the above mentioned difficulties
associated with nodal elements are seamlessly avoided without the
need for stabilizing the divergence. This approach amounts to intro-
ducing the Lagrange multiplier r, and yields the PDE system (1.1). As
a result, it is possible to use curl-conforming Nédélec elements for
approximating the magnetic field. For these elements, only tangen-
tial continuity is enforced across inter-elemental faces. This makes
this approach feasible in situations of highly singular magnetic fields
[34,40,42]. In the context of incompressible magnetohydrodynam-
ics, a related mixed approach for the discretization of the magnetic
unknowns was presented in [22].

We are interested in discretizations for incompressible MHD
problems that are based on discontinuous Galerkin (DG) methods;
see, e.g., the surveys [12,13,20], and the references therein. In [29],
an interior penalty technique is applied to enforce continuity of the
magnetic variable across domains with different electromagnetic
properties, while nodal elements are employed in the interior. A
full DG method is proposed in [36] for a linearized variant of the
system (1.1), whereby all the variables are approximated in discon-
tinuous finite element spaces, based on existing discretizations for
the Oseen and Maxwell equations [9,10,35]. However, this
approach requires a large number of degrees of freedom. Further-
more, a straightforward extension to the non-linear setting in a lo-
cally conservative fashion would require a post-processing
procedure for smoothing the DG velocity approximations through-
out the non-linear iteration [10].

In this paper we design a new finite element discretization, in
an attempt to overcome the above mentioned difficulties. Instead
of discontinuous elements for all unknowns, we use divergence-
conforming Brezzi–Douglas–Marini (BDM) elements [7,11] for
the approximation of the velocity field, and curl-conforming Nédé-
lec elements [42] for the magnetic field, thereby substantially
reducing the total number of the coupled degrees of freedom.
The H1-continuity of the velocity field is again enforced by a DG
technique. A central feature of this discretization is that it yields
exactly divergence-free velocity approximations, guaranteeing sta-
bility of the linearized system within each Picard iteration, without
any other modifications. We note that divergence-conforming dis-
cretizations have been analyzed for the incompressible Navier–
Stokes equations in [11]. For the magnetic approximation we have
a discrete version of the desirable property (1.3) in contrast to the
method presented in [36].
We prove well-posedness of our discretization, and show con-
vergence under minimal regularity assumptions. Thus, our method
captures the strongest magnetic singularities in non-convex poly-
hedra. Our numerical results clearly indicate optimal convergence
rates in two and three dimensions, but we manage to show
(nearly) optimal estimates only for the two-dimensional case. Spe-
cific details on this are given in Section 4 and are summarized in
the conclusions in Section 6. We note that our method converges
optimally for the linearized version of (1.1), as follows from the
arguments in [36, Remark 3.3].

The rest of the paper is structured as follows. In Section 2 we
state the well-posedness of the variational formulation of (1.1).
Section 3 is devoted to the finite element discretization; the exis-
tence and uniqueness of approximate solutions are proved. In Sec-
tion 4 we present and prove the main results—convergence and a
priori error estimates. In Section 5 we present a series of numerical
experiments validating the theoretical results. In Section 6 we end
with some concluding remarks.

2. Variational formulation of an MHD problem

To write (1.1) in weak form, we denote by (�, �)X the inner prod-
uct in L2(X) or L2(X)d. Upon setting

V ¼ H1
0ðXÞ

d ¼ u 2 H1ðXÞd : u ¼ 0 on @X
n o

;

C ¼ H0ðcurl; XÞ

¼ b 2 L2ðXÞd : r� b 2 L2ðXÞd;n� b ¼ 0 on @X
n o

;

Q ¼ L2
0ðXÞ ¼ p 2 L2ðXÞ : ðp ;1ÞX ¼ 0

n o
;

S ¼ H1
0ðXÞ ¼ r 2 H1ðXÞ : r ¼ 0 on @X

n o
;

the variational formulation of the incompressible MHD system (1.1)
and (1.2) amounts to finding (u,b,p, r) 2 V � C � Q � S such that

Aðu;vÞ þ Oðu;u;vÞ þ Cðb;v;bÞ þ Bðv; pÞ ¼ ðf;vÞX; ð2:1aÞ
Mðb; cÞ � Cðb;u; cÞ þ Dðc; rÞ ¼ ðg; cÞX; ð2:1bÞ
Bðu; qÞ ¼ 0; ð2:1cÞ
Dðb; sÞ ¼ 0 ð2:1dÞ

for all (v,c,q,s) 2 V � C � Q � S. The variational forms are given by

Aðu;vÞ ¼
Z

X
mru : rv dx; Oðw;u;vÞ ¼

Z
X
ðw � rÞu � v dx;

Mðb; cÞ ¼
Z

X
jmmðr � bÞ � ðr � cÞdx;

Cðd;v;bÞ ¼
Z

X
jðv � dÞ � ðr � bÞdx;

Bðu; qÞ ¼ �
Z

X
ðr � uÞqdx; Dðb; sÞ ¼

Z
X

b � rsdx:

To discuss the well-posedness of the mixed formulation (2.1),
we introduce the product norms

kðu;bÞkV�C ¼ mkuk2
H1ðXÞ þ jmmkbk2

Hðcurl;XÞ

� �1
2
; ðu;bÞ 2 V � C;

kðp; rÞkQ�S ¼
1
m
kpk2

L2ðXÞ þ
1

jmm
krk2

H1ðXÞ

� �1
2

; ðp; rÞ 2 Q � S:

Here, the curl-norm is defined by

kbkHðcurl;XÞ ¼ kbk2
L2ðXÞ þ kr � bk2

L2ðXÞ

� �1
2
:
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Furthermore, we define the norm of the source terms by

jjjðf; gÞjjj ¼ kfk2
L2ðXÞ þ kgk

2
L2ðXÞ

� �1
2
:

Finally, we introduce the parameters

�m ¼minfm;jmmg;
�j ¼maxf1;jg:

The following result can be found in [46, Corollary 2.18 and Re-
mark 2.14].

Theorem 2.1. There is a constant c1 > 0 only depending on X such
that for small data with c1 �j�m�2jjjðf;gÞjjj < 1, the MHD problem (2.1)
has a unique solution (u,b,p, r) in V � C � Q � S. Moreover, we have
the stability bound

kðu;bÞkV�C 6 c2
jjjðf; gÞjjj

�m1
2

for a constant c2 > 0 only depending on X.
3. Mixed finite element discretization

In this section, we introduce a mixed finite element method
that employs divergence-conforming elements for the approxima-
tion of the velocity field and curl-conforming elements for the
magnetic field. The H1-continuity of the velocity is enforced by a
DG technique.

3.1. Meshes and traces

We consider a family of regular and quasi-uniform triangula-
tions T h of mesh size h that partition the domain X into simplices
{K} (i.e., triangles for d = 2 and tetrahedra for d = 3). We denote by
F h the set of all edges (d = 2) or faces (d = 3) of T h. In the following,
we generically refer to elements in F h as faces. As usual, hK denotes
the diameter of the element K, and hF is the diameter of the face F.
Finally, we write nK for the unit outward normal vector on the
boundary @K of K.

The average and jump operators are defined as follows. Let F =
@K \ @K0 be an interior face shared by K and K0, and let x 2 F. Let
/ be a generic piecewise smooth function and denote by / and
/0 the traces of / on F taken from within the interior of K and K0,
respectively. Then, we define the mean value {{�}} at x 2 F as

ff/gg ¼ 1
2
ð/þ /0Þ:

Furthermore, for a piecewise smooth vector-valued function /, we
define the jump:

s/t ¼ /� nK þ /0 � nK 0 ;

where / � n = (/inj)16i,j6d. On a boundary face F = @K \ oX, we set
accordingly

ff/gg ¼ /; s/t ¼ /� n:
3.2. Mixed discretization

For k P 1, we wish to approximate the solution of (1.1) and
(1.2) by finite element functions (uh,bh,ph,rh) 2 Vh � Ch � Qh � Sh,
where
Vh ¼ u 2 H0ðdiv; XÞ : ujK 2 PkðKÞd; K 2 T h

n o
;

Ch ¼ b 2 H0ðcurl; XÞ : bjK 2 Pk�1ðKÞd � RkðKÞ; K 2 T h

n o
;

Q h ¼ p 2 L2
0ðXÞ : pjK 2 Pk�1ðKÞ; K 2 T h

n o
;

Sh ¼ r 2 H1
0ðXÞ : rjK 2 PkðKÞ; K 2 T h

n o
:

ð3:1Þ

Here, we denote by H0(div;X) the space

H0ðdiv; XÞ ¼ u 2 L2ðXÞd : r � u 2 L2ðXÞ;u � n ¼ 0 on @X
n o

by PkðKÞ the space of polynomials of total degree at most k on ele-
ment K, and by Rk(K) the space of homogeneous vector polynomials
of total degree k that are orthogonal to x.

The space Vh is the divergence-conforming Brezzi–Douglas–
Marini (BDM) space (see [7, Section III.3] for details); it has degrees
of freedom specified for the normal components of functions along
faces. The space Ch represents the first family of curl-conforming
Nédélec elements (cf. [42, Chapter 5]); its degrees of freedom are
defined for the tangential components of functions along faces.
We notice that the finite element spaces Ch, Qh and Sh are conform-
ing in C, Q and S, respectively, while Vh is non-conforming in V.

Now we consider the following finite element method: find
(uh,bh,ph,rh) 2 Vh � Ch � Qh � Sh such that

Ahðuh;vÞ þ Ohðuh;uh;vÞ þ Cðbh;v;bhÞ þ Bðv;phÞ ¼ ðf;vÞX; ð3:2aÞ
Mðbh; cÞ � Cðbh;uh; cÞ þ Dðc; rhÞ ¼ ðg; cÞX; ð3:2bÞ
Bðuh; qÞ ¼ 0; ð3:2cÞ
Dðbh; sÞ ¼ 0 ð3:2dÞ

for all (v,c,q,s) 2 Vh � Ch � Qh � Sh.
The form Ah associated with the Laplacian is chosen as the stan-

dard interior penalty form [3,4]:

Ahðu;vÞ ¼
Z

X
mrhu : rhv dx�

X
F2Fh

Z
F
ffmrhugg : svtds

�
X
F2Fh

Z
F
ffmrhvgg : sutdsþ

X
F2Fh

a0m
hF

Z
F

sut : svtds:

Here, rh is the elementwise gradient operator, and a0 > 0 is the
interior penalty stabilization parameter; it has to be chosen larger
than a threshold value which is independent of h, m, j and mm. For
the convection form, we take the standard upwind form [39]:

Ohðw;u;vÞ¼
X
K2T h

Z
K
ðw �rÞu �vdx

þ
X
K2T h

Z
@Kn@X

1
2
ðw �nK �jw �nK jÞðue�uÞ �vds

�
Z
@X

1
2
ðw �n�jw �njÞu �vds:

ð3:3Þ

Here, ue is the trace of u taken from the exterior of K. The remaining
forms are the same as in the continuous case. Notice that due to the
presence of the upwind terms the form Oh(w,u,v) is not linear in
the first argument; see also Lemma 4.6 and (3.6).

By choosing the divergence-conforming BDM elements as the
approximating space for the velocity, the method gives exactly
divergence-free velocity approximations; cf. [11]. Moreover, the
Lagrange multiplier rh vanishes identically for divergence-free
source terms, thereby mimicking the continuous property in (1.3).

Proposition 3.1. Let (uh,bh,ph, rh) solve (3.2). Then we have:

(i) r � uh = 0 in X.
(ii) the Lagrange multiplier rh is the solution of
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ðrrh;rsÞX ¼ ðg;rsÞX 8 s 2 Sh:
In particular, if g is solenoidal, then rh � 0.
Proof. To prove item (i), we proceed as in [11]. We note thatr � uh

has vanishing mean value on X, and is a discontinuous polynomial
of degree k � 1. Thus, we have r � uh 2 Qh. Eq. (3.2c) then implies
that r � uh is orthogonal to all functions q 2 Qh. Therefore, it is
equal to zero.

To prove item (ii), we take c =rs in Eq. (3.2b) (noting that
rSh � Ch) and obtain

ðg;rsÞX ¼ Mðbh;rsÞ � Cðbh;uh;rsÞ þ Dðrs; rhÞ ¼ Dðrs; rhÞ:

Here, we have used the fact that r�rs = 0. Therefore, rh

satisfies

ðrrh;rsÞX ¼ ðg;rsÞX 8 s 2 Sh:

Since (g,rs)X = (r � g,s)X, we have rh � 0 provided that
r � g = 0. h

For our analysis, it will be convenient to introduce the following
product forms:

Ahðu;b; v; cÞ ¼ Ahðu;vÞ þMðb; cÞ;

Ohðw;d; u;b; v; cÞ ¼ Ohðw;u;vÞ þ Cðd;v;bÞ � Cðd;u; cÞ;

Bðu;b; q; sÞ ¼ Bðu; qÞ þ Dðb; sÞ;

Lðv; cÞ ¼ ðf;vÞX þ ðg; cÞX:

Then, the mixed discretization (3.2) is equivalent to the following
saddle-point system: find (uh,bh,ph,rh) 2 Vh � Ch � Qh � Sh such that

Ahðuh;bh; v; cÞ þ Ohðuh;bh; uh;bh; v; cÞ þ Bðv; c; ph; rhÞ ¼ Lðv; cÞ;
Bðuh;bh; q; sÞ ¼ 0

for all (v,c,q,s) 2 Vh � Ch � Qh � Sh.
Table 3.1
Discrete inf–sup constants for Vh � Qh.

Dofs in uh/
ph

112/32 416/128 1600/512 6272/
2048

24,832/
8192

kh 1.273e�1 1.251e�1 1.241e�1 1.236e�1 1.233e�1
3.3. Stability properties

To discuss the stability properties of the finite element formula-
tion (3.2), we introduce the discrete H1-norm for the hydrody-
namic velocity:

kuk1;h ¼
X
K2T h

kruk2
L2ðKÞ þ

X
F2Fh

h�1
F ksutk2

L2ðFÞ

 !1
2

:

We further define

kðu;bÞkVh�Ch
¼ mkuk2

1;h þ jmmkbk2
Hðcurl;XÞ

� �1
2
:

First, we note that the forms Ah and B are continuous over the
finite element spaces:

jAhðu;b; v; cÞj 6 CAkðu;bÞkVh�Ch
kðv; cÞkVh�Ch

; ð3:4Þ
jBðv; c; q; sÞj 6 CBkðv; cÞkVh�Ch

kðq; sÞkQ�S ð3:5Þ

for all u, v 2 Vh, b, c 2 Ch, q 2 Qh, s 2 Sh, with constants CA;CB > 0
independent of h, m, j and mm.

Next, we introduce the following spaces of (discretely) diver-
gence-free functions:

Jh ¼ u 2 Vh : Bðu; qÞ ¼ 0 8 q 2 Qhf g;
Xh ¼ b 2 Ch : Dðb; sÞ ¼ 0 8 s 2 Shf g:
For the form Oh, we then have the following continuity result: there
exists a constant CO > 0 independent of h, m, j and mm such that, for
any w1, w2 2 Vh, u, v 2 Vh, d1, d2 2 Xh, and b, c 2 Ch, we have

jOhðw1;d1; u;b; v; cÞ � Ohðw2;d2; u;b; v; cÞj

6
CO �j
�m3

2
kðw1 �w2;d1 � d2ÞkVh�Ch

kðu;bÞkVh�Ch
kðv; cÞkVh�Ch

; ð3:6Þ

see also Proposition 4.8 for a more detailed discussion.
Furthermore, the following stability properties of Ah and Oh

hold; cf. [4,9,34, Theorem 4.7], and the references therein:

Ahðu;b; u;bÞP CCkðu;bÞk2
Vh�Ch

8 ðu;bÞ 2 Vh � Xh; ð3:7Þ
Ohðw;d; u;b; u;bÞ ¼ Ohðw;u;uÞP 0 8 w 2 Jh; u 2 Vh; b;d 2 Ch

ð3:8Þ

with a constant CC > 0 independent of h, m, j and mm.
Finally, let us address the inf–sup stability of the forms B and D.

For the form B we have the following result [32, Proposition 10]:

inf
q2Qh

sup
v2Vh

Bðv; qÞ
kvk1;hkqkL2ðXÞ

¼ kh P C > 0; ð3:9Þ

where C is independent of h, m, j and mm. Moreover, since rSh � Ch,
there holds [35, Lemma 5.3]:

inf
s2Sh

sup
c2Ch

Dðc; sÞ
kckHðcurl;XÞkskH1ðXÞ

¼ lh P C > 0 ð3:10Þ

for a constant C independent of h, m, j and mm.
An immediate consequence of (3.9) and (3.10) is the following

inf–sup condition for the product form B:

inf
ðq;sÞ2Qh�Sh

sup
ðv;cÞ2Vh�Ch

Bðv; c; q; sÞ
kðv; cÞkVh�Ch

kðq; sÞkQ�S
P CS > 0; ð3:11Þ

where the stability constant CS is independent of h, m, j and mm.
In Table 3.1, we show the discrete inf–sup constants kh in (3.9)

for the velocity–pressure pair Vh � Qh defined in (3.1). We use the
lowest order BDM elements on X = (�1,1)2 and compute the dis-
crete inf–sup constants kh for a sequence of successively refined
uniform triangular meshes. The inf–sup constants are obtained
by solving a generalized eigenvalue problem related to the matrix
representation of the bilinear form B and the norms in (3.9); cf. [7,
p. 75]. Table 3.1 illustrates that the discrete inf–sup constants are
approaching a positive lower bound as the mesh is refined.

3.4. Existence and uniqueness of discrete solutions

In the following theorem, we state the unique solvability of the
method (3.2) under a discrete version of the smallness assumption
in Theorem 2.1. The proof of this result follows along the same
lines as [46, Theorem 2.12], using the stability properties outlined
in Section 3.3.

Theorem 3.2. There is a constant C1 > 0 independent of h, m, j and mm

such that for small data with C1 �j�m�2jjjðf;gÞjjj < 1, the mixed finite
element discretization (3.2) has a unique solution (uh,bh,ph, rh) 2
Vh � Ch � Qh � Sh. Moreover, there is a constant C2 > 0 independent of
h, m, j and mm such that
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kðuh;bhÞkVh�Ch
6 C2

jjjðf; gÞjjj
�m1

2
:

The solution of (3.2) can be found by employing the following
Picard-type iteration: given un�1

h ;bn�1
h

� �
2 Vh � Ch, let un

h;b
n
h;

�
pn

h; r
n
hÞ in Vh � Ch � Qh � Sh be the solution of the linearized

Oseen-type problem

Ahðun
h;vÞ þ Ohðun�1

h ;un
h;vÞ þ Cðbn�1

h ;v;bn
hÞ þ Bðv;pn

hÞ ¼ ðf;vÞX;

Mðbn
h; cÞ � Cðbn�1

h ;un
h; cÞ þ Dðc; rn

hÞ ¼ ðg; cÞX;

Bðun
h; qÞ ¼ 0;

Dðbn
h; sÞ ¼ 0

for all (v,c,q,s) 2 Vh � Ch � Qh � Sh.
Theorem 3.2 guarantees the convergence of the iterates un

h;
��

bn
h; p

n
h; r

n
hÞgnP0 to the solution (uh,bh,ph,rh) of (3.2) for any initial

guess u0
h;b

0
h

� �
2 Vh � Ch with exactly divergence-free u0

h, provided

that the small data assumption in Theorem 3.2 is satisfied. How-
ever, the scheme is only linearly convergent, as we illustrate in Sec-
tion 5.

Remark 3.3. A more efficient non-linear solver such as Newton’s
method can also be used for solving (3.2); see, e.g., [24,26,31].
When upwinding is not incorporated, Newton’s method can be
straightforwardly applied. However, when upwind terms are
included, adapting the non-linear iteration to our discretization is
more delicate, since it requires additional linearization of the
convection form Oh(w,u,v) in the first argument. This remains an
item for future investigation.
4. Error analysis

In this section, we present the main results of this paper, namely
the convergence of finite element approximations and a priori
error estimates for the two-dimensional version of our MHD
problem. We provide detailed proofs in Sections 4.2 through 4.5.

4.1. Main results

Our first result is a convergence result. To state it, we suppose
the solution (u,b,p,r) of (1.1) and (1.2) possesses the smoothness

ðu; pÞ 2 Hrþ1ðXÞd � HrðXÞ; ð4:1aÞ
ðb;r� b; rÞ 2 HsðXÞd � HsðXÞd � Hsþ1ðXÞ ð4:1bÞ

for r; s > 1
2.

Remark 4.1. The regularity assumption (4.1b) is minimal in the
sense that it is satisfied by the strongest singularities of the
Maxwell operator in polyhedral domains; cf. [15,16]. Similarly,
the regularity (4.1a) holds true for the strongest singularities of the
Stokes operator in polyhedral domains; see [1,18]. In view of these
results, we expect (4.1) to be the minimal smoothness of solutions
to the MHD system (1.1) and (1.2) in general Lipschitz polyhedra.
However, we do not have a full proof of this conjecture.
Theorem 4.2. Let (u,b,p,r) and (uh,bh,ph, rh) be the solutions of (1.1),
(1.2) and (3.2), respectively, obtained on a sequence of quasi-uniform
meshes fT hgh>0 of mesh size h. Assume (4.1) and that �j�m�2jjjðf;gÞjjj is
sufficiently small. Then we have

lim
h!0
kðu� uh;b� bhÞkVh�Ch

¼ 0; lim
h!0
kðp� ph; r � rhÞkQ�S ¼ 0:
Theorem 4.2 guarantees that the method (3.2) gives correct
solutions provided that the (minimal) smoothness assumption
(4.1) is satisfied and the data is sufficiently small. In particular, it
ensures convergence in situations where straightforwardly applied
nodal elements for the approximation of b are not capable of cor-
rectly capturing the singular solution components.

Next, we present a priori error estimates for the two-dimen-
sional version of the MHD problem (3.2).

Theorem 4.3. Let X � R2 be a simply-connected Lipschitz polygon
with a connected boundary oX. Under the same assumption as in
Theorem 4.2, we have the following error estimates for any e > 0:

k u� uh;b� bhð ÞkVh�Ch

6 Ceh
minfr;s;kg�e m1

2kukHrþ1ðXÞ þ ðjmmÞ
1
2kbkHsðXÞ

�
þðjmmÞ

1
2kr � bkHsðXÞ

�
þ Chminfr;s;kg m�1

2kpkHrðXÞ þ ðjmmÞ�
1
2krkHsþ1ðXÞ

� �
and

kðp�ph;r� rhÞkQ�S

6Ceh
minfr;s;kg�2e m1

2kukHrþ1ðXÞ þðjmmÞ
1
2kbkHsðXÞ þðjmmÞ

1
2kr�bkHsðXÞ

� �
þCeh

minfr;s;kg�e m�1
2kpkHrðXÞ þðjmmÞ�

1
2krkHsþ1ðXÞ

� �
:

Here, the constants C and Ce are independent of h, m, j and mm. While Ce
depends on e, the constant C does not.

The convergence rates in Theorem 4.3 are optimal in the mesh
size, up to a loss ofOðheÞ for e arbitrarily small. This loss stems from
the use of the Sobolev embedding of H1(X) into Lp(X), for all p P 1,
but not into L1(X); cf. [27]. To bridge this gap, we use inverse esti-
mates to establish the continuity of the non-linear coupling form;
see the proof of Lemma 4.7. In addition, the constant Ce might be-
come unbounded as e tends to zero. However, in our numerical
experiments this constant is observed to stay bounded. In fact, we
observe optimal rates of convergence in all our tests, for both smooth
and non-smooth solutions. Full details are given in Section 5.

Remark 4.4. Our technique of proof is applicable to three-dimen-
sional problems. However, since in three dimensions the Sobolev
embeddings are more restrictive, the use of the inverse estimates
leads to convergence rates that fall short half a power of h for the
error in u and b, and a full power of h for the error in p and r (i.e.,
Theorem 4.3 holds with e ¼ 1

2). To see this, we carry out the proof of
Theorem 4.3 simultaneously for d = 2 and d = 3. We emphasize,
however, that in our numerical tests, optimal convergence rates are
observed for three-dimensional problems with smooth solutions.
Remark 4.5. For the linearized variant of the MHD system (1.1),
our method converges optimally in the mesh size h, as follows
from [36, Remark 3.3]. That is, the estimates of Theorem 4.3 hold
true without any loss, both in two and three dimensions. However,
there we make stronger smoothness assumptions on the linearized
magnetic field. Therefore, this optimality cannot be straightfor-
wardly carried over to the non-linear setting.

The proofs of Theorems 4.2 and 4.3 are presented in the next
four subsections.

4.2. Continuity

We begin by revisiting the continuity properties of the forms in
a more general setting. To that end, we introduce the space

VðhÞ ¼ V þ Vh
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and endow it with the norm k � k1,h. We then make use of an auxil-
iary form eAhðu;vÞ constructed as in [10,47] via the use of suitable
lifting operators. It is defined as

eAhðu;vÞ ¼
Z

X
m rhu : rhv � LðvÞ : rhu� LðuÞ : rhvð Þdx

þ
X
F2Fh

a0m
hF

Z
F

sut : svtds;

where L : VðhÞ ! Rh ¼ r 2 L2ðXÞd�d : rjK 2 PkðKÞd�d
; K 2 T h

n o
is

the lifting operator given byZ
X
LðuÞ : rdx ¼

X
F2Fh

Z
F
ffrgg : sutds 8r 2 Rh:

By construction, the form eAhðu;vÞ satisfieseAhðu;vÞ ¼ Aðu;vÞ 8 u;v 2 V;eAhðu;vÞ ¼ Ahðu;vÞ 8 u;v 2 Vh:
ð4:2Þ

Furthermore, using arguments similar to those in [10,47], the formeAhðu;vÞ can be shown to be bounded on V(h) � V(h). Then, by
settingeAhðu;b; v; cÞ ¼ eAhðu;vÞ þMðb; cÞ;

we readily obtain

j eAhðu;b; v; cÞj 6 Ckðu;bÞkVh�Ch
kðv; cÞkVh�Ch

ð4:3Þ

for u, v 2 V(h) and b, c 2 C. Moreover, we have

jBðv; c; q; sÞj 6 Ckðv; cÞkVh�Ch
kðq; sÞkQ�S ð4:4Þ

for (v,c,q,s) 2 V(h) � C � Q � S.
In (4.3) and (4.4) and in the following, we denote by C a generic

(positive) constant that is independent of the mesh size h and the
parameters m, j and mm.

Next, we state the continuity of the convection term. The proof
of this result follows similarly to the ones in [37, Proposition 4.15]
and [10, Proposition 4.2].

Lemma 4.6. There holds:

jOhðw1;u;vÞ � Ohðw2;u;vÞj 6 Ckw1 �w2k1;hkuk1;hkvk1;h

for all w1, w2 2 V(h), and u, v 2 V(h).
In the sequel, we shall analyze the two- and three-dimensional

cases simultaneously (see also Remark 4.4). To do so, we introduce
the function ‘(d) given by

‘ðdÞ ¼
h�e

; d ¼ 2;

h�
1
2; d ¼ 3:

(
ð4:5Þ

Here, e > 0 is a fixed number. The function ‘(d) will indicate the loss
of convergence rates for both the two-dimensional and three-
dimensional cases. We also denote by Cd > 0 a generic constant
independent of h, m, j and mm, but dependent on the dimension d.
In particular, for d = 2 it depends on e and might be unbounded as
e ? 0.

By introducing the kernel

X ¼ b 2 C : Dðb; sÞ ¼ 0 8 s 2 Sf g; ð4:6Þ

we state and prove the continuity of the coupling form C(d,u,c) for
several cases.

Lemma 4.7. There holds:

(i) for d 2 X [ Xh, u 2 Vh and c 2 C:
jCðd;u; cÞj 6 CjkdkHðcurl;XÞkuk1;hkckHðcurl;XÞ:
(ii) for d 2 X [ Xh, u 2 V(h) and c 2 Ch:
jCðd;u; cÞj 6 CjkdkHðcurl;XÞkuk1;hkckHðcurl;XÞ:
(iii) for d 2 C, u 2 V and c 2 Ch:
jCðd;u; cÞj 6 Cd‘ðdÞjkdkL2ðXÞkukH1ðXÞkckHðcurl;XÞ:
(iv) for d 2 C, u 2 Vh and c 2 C:
jCðd;u; cÞj 6 Cd‘ðdÞjkdkL2ðXÞkuk1;hkckHðcurl;XÞ:
Proof. We proceed in two steps.

Step 1. We first discuss preliminary results that will be used in the
proof. From the Poincaré inequality in [34, Corollary 4.4], there
holds
kbkL2ðXÞ 6 Ckr � bkL2ðXÞ 8 b 2 X: ð4:7Þ
Next, we recall the inverse inequality (cf. [6, Lemma 4.5.3]): for
any u 2 PkðKÞ, there holds

kukLn1 ðKÞ 6 Ch
d 1

n1
� 1

n2

� �
K kukLn2 ðKÞ 8 1 6 n1;n2 61: ð4:8Þ

Further, let H: Xh ? X be the Hodge operator that maps dis-
cretely divergence-free functions into exactly divergence-free
functions in such a way that

r�Hd ¼ r� d: ð4:9Þ

It satisfies the following approximation property (cf. [34, Lemma
4.5]): there exists s > 1

2 such that

kd�HdkL2ðXÞ 6 Chskr � dkL2ðXÞ 8 d 2 Xh: ð4:10Þ

Finally, we present the following Sobolev embeddings:

kukLmðdÞðXÞ 6 CdkukH1ðXÞ 8 u 2 H1ðXÞd; ð4:11aÞ
kukLmðdÞðXÞ 6 Cd kuk1;h 8 u 2 VðhÞ; ð4:11bÞ
kdkL3ðXÞ 6 CkdkHðcurl;XÞ 8 d 2 X: ð4:11cÞ

Here, m(2) = 2/e and m(3) = 6. The embedding (4.11a) is a standard
result, while the embedding (4.11b) follows similarly to [28,38]. The
inequality in (4.11c) follows from [1, Proposition 3.7].

Step 2. We are now ready to prove the bounds in the lemma. The
proof of inequality (i) can be found in [46, Proposition 3.2].

To establish the second inequality, we follow [46, Lemma 2.6]
and first show it for d 2 X, u 2 V(h) and c 2 Ch. This is done by
applying Hölder’s inequality and the Sobolev embeddings (4.11b)
and (4.11c). We obtain

jCðd;u; cÞj 6 jkdkL3ðXÞkukL6ðXÞkr � ckL2ðXÞ

6 CjkdkHðcurl;XÞkuk1;hkckHðcurl;XÞ: ð4:12Þ

Second, if d 2 Xh, we decompose it into

d ¼ ðd�HdÞ þHd;

where H is the Hodge operator in (4.9). We then rewrite C(d,u,c) as

Cðd;u; cÞ ¼ Cðd�Hd;u; cÞ þ CðHd;u; cÞ: ð4:13Þ

Because Hd 2 X, we can apply the previous argument (4.12), and
bound the last term of (4.13) by

jCðHd;u; cÞj 6 CjkHdkHðcurl;XÞkuk1;hkckHðcurl;XÞ

6 CjkdkHðcurl;XÞkuk1;hkckHðcurl;XÞ: ð4:14Þ
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In (4.14), we have used the Poincaré inequality (4.7) and property
(4.9) of the Hodge operator.

For the first term on the right-hand side of (4.13), we obtain
from Hölder’s inequality, the Sobolev embedding (4.11b) and the
approximation property (4.10) that

jCðd�Hd;u; cÞj 6 jkd�HdkL2ðXÞkukL6ðXÞkr � ckL3ðXÞ

6 Cjhskr � dkL2ðXÞkuk1;hkr � ckL3ðXÞ

for s > 1
2. Finally, we apply the inverse estimate (4.8) to achieve

jCðd�Hd;u; cÞj 6 CjkdkHðcurl;XÞkuk1;hkr � ckL2ðXÞ ð4:15Þ

for both d = 2 and d = 3. Referring to (4.13)–(4.15) proves the asser-
tion of item (ii).

To verify item (iii), we define m*(d) such that

1
mðdÞ þ

1
m	ðdÞ ¼

1
2
:

Then we apply Hölder’s inequality, the Sobolev embedding (4.11a)
and the inverse estimate (4.8) to conclude that

jCðd;u; cÞj 6 jkdkL2ðXÞkukLmðdÞðXÞkr � ckLm	ðdÞðXÞ

6 CdjkdkL2ðXÞkukH1ðXÞ‘ðdÞkr � ckL2ðXÞ:

The proof of item (iv) is similar to that of item (iii):

jCðd;u; cÞj 6 jkdkL2ðXÞkukL1ðXÞkr � ckL2ðXÞ

6 CdjkdkL2ðXÞ‘ðdÞkukLmðdÞðXÞkckHðcurl;XÞ:

Applying (4.11b) finishes the proof. h

As an immediate consequence of Lemmas 4.6 and 4.7, the form
Oh satisfies the following continuity properties.

Proposition 4.8. There is a constant CO > 0 independent of h, m, j
and mm such that there holds:

(i) for w1,w2 2 V(h), d1, d2 2 X [ Xh, (u,b) 2 V(h) � C, and
(v,c) 2 Vh � Ch:
jOhðw1;d1; u;b; v; cÞ � Ohðw2;d2; u;b; v; cÞj

6
CO �j

�m3
2
kðw1 �w2;d1 � d2ÞkVh�Ch

kðu;bÞkVh�Ch
kðv; cÞkVh�Ch

:

(ii) for w1,w2 2 V(h), d1, d2 2 C, (u,b) 2 V � C, and (v,c) 2 Vh � Ch:
:

jOhðw1;d1;u;b;v;cÞ�Ohðw2;d2;u;b;v;cÞj

6Cd‘ðdÞ
CO �j
�m3

2
kðw1�w2;d1�d2ÞkVh�Ch

kðu;bÞkV�C kðv;cÞkVh�Ch
4.3. Preliminary error estimates

In this subsection, we present two lemmas for estimating the
errors. Let (u,b,p,r) and (uh,bh,ph,rh) be the solutions of (1.1),
(1.2) and (3.2), respectively.

We begin by defining the residual

RAðvÞ ¼ eAhðu;vÞ þ Ohðu;u;vÞ þ Cðb;v;bÞ þ Bðv;pÞ � ðf;vÞX
ð4:16Þ

for any v 2 Vh. It measures how well the exact solution satisfies the
finite element formulation expressed in terms of the auxiliary formeAh in (4.2). We have the following upper bound for the residual (cf.
[47]):

RAðvÞ 6 m1
2kvk1;hEðuÞ with EðuÞ 6 Chminfr;kgm1

2kukHrþ1ðXÞ: ð4:17Þ

In the following, we shall denote the errors by
eu ¼ u� uh; eb ¼ b� bh; ep ¼ p� ph; er ¼ r � rh:

We shall also decompose the errors into

eu ¼ gu þ nu ¼ ðu� vÞ þ ðv � uhÞ;
eb ¼ gb þ nb ¼ ðb� cÞ þ ðc� bhÞ;
ep ¼ gp þ np ¼ ðp� qÞ þ ðq� phÞ;
er ¼ gr þ nr ¼ ðr � sÞ þ ðs� rhÞ

ð4:18Þ

for a discrete function (v,c,q,s) 2 Vh � Ch � Qh � Sh to be specified
later.

Lemma 4.9. Assume that

maxfc2;C2g
CO
CC

�jjjjðf;gÞjjj
�m2 <

1
2
: ð4:19Þ

Then there holds

kðu� uh;b� bhÞkVh�Ch
6 Cd‘ðdÞ inf

ðv;cÞ2Vh�Ch

kðu� v;b� cÞkVh�Ch

þ C EðuÞ þ inf
ðq;sÞ2Qh�Sh

kðp� q; r � sÞkQ�S

� �
:

Proof. We proceed in two steps.

Step 1. In the error decomposition (4.18), we first consider
(v,c) 2 Jh � Xh. Clearly, we also have (nu,nb) 2 Jh � Xh. In view of
the residual defined in Eq. (4.16), we obtain
RAðnuÞ ¼ eAh eu; eb; nu; nbð Þ þ Oh u;b; u;b; nu; nbð Þ
� Oh uh;bh; uh;bh; nu; nbð Þ þ B nu; nb; ep; er

� �
¼ eAh eu; eb; nu; nbð Þ þ Ohðu;b; u;b; nu; nbÞ
� Oh uh;bh; u;b; nu; nbð Þ þ Ohðuh;bh; eu; eb; nu; nbÞ
þ B nu; nb; ep; er

� �
:

Because uh 2 Jh (see Proposition 3.1), the stability of Oh in (3.8)
guarantees that

Oh uh;bh; nu; nb; nu; nbð ÞP 0:

Therefore, we haveeAhðnu; nb; nu; nbÞ þ Oh v; c; u;b; nu; nbð Þ
� Oh uh;bh; u;b; nu; nbð Þ

6 RAðnuÞ � eAh gu;gb; nu; nbð Þ � Bðnu; nb; ep; erÞ
þ Ohðv; c; u;b; nu; nbÞ � Oh u;b; u;b; nu; nbð Þ
� Oh uh;bh;gu;gb; nu; nbð Þ:

ð4:20Þ

From the coercivity of Ah in (3.7) and the continuity of Oh in Prop-
osition 4.8(i), the left-hand side of Eq. (4.20) can be bounded by

l:h:s: of ð4:20ÞP CC ðnu; nbÞk k2
Vh�Ch

� CO �j
�m3

2
kðu;bÞkVh�Ch

kðnu; nbÞk
2
Vh�Ch

:

Next, we estimate kðu;bÞkVh�Ch
using the stability bound in Theorem

2.1 (noting that kðu;bÞkVh�Ch
6 kðu;bÞkV�C). We obtain

l:h:s: of ð4:20ÞP CC �
c2CO �jjjjðf;gÞjjj

�m2

� �
k nu; nbð Þk2

Vh�Ch
:

In view of assumption (4.19), we then have

l:h:s: of ð4:20ÞP 1
2

CC k nu; nbð Þk2
Vh�Ch

:
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For the right-hand side of (4.20), we note that (since nu and nb are in
the kernels Jh and Xh, respectively)

B nu; nb; ep; er
� �

¼ B nu; nb;gp;gr

� �
:

Then, to bound the right-hand side of (4.20), we use the continuity
properties of eAh; B and Oh in (4.3), (4.4) and Proposition 4.8,
respectively, as well as the estimate for RAðnuÞ in (4.17). We readily
obtain

r:h:s: of ð4:20Þ 6 kðnu; nbÞkVh�Ch
EðuÞ þ Ckðgu;gbÞkVh�Ch

�
þkðgp;grÞkQ�S þ Cd ‘ðdÞ

CO �j
�m3

2
kðgu;gbÞkVh�Ch

kðu;bÞkV�C

þCO �j
�m3

2
kðuh;bhÞkVh�Ch

kðgu;gbÞkVh�Ch

�
:

Next, we employ the stability bounds in Theorems 2.1 and 3.2 for
k(u,b)kV�C and kðuh;bhÞkVh�Ch

, respectively, apply the small data
assumption (4.19), and combine the lower and upper bounds of
(4.20) into the estimate

kðnu; nbÞkVh�Ch
6 Cd ‘ðdÞkðgu;gbÞkVh�Ch

þ C EðuÞ þ kðgp;grÞkQ�S

� �
:

From the triangle inequality, we thus obtain the error bound

kðu� uh; b� bhÞkVh�Ch
6 Cd ‘ðdÞkðu� v;b� cÞkVh�Ch

þ C EðuÞ þ kðp� q; r � sÞkQ�S

� �
ð4:21Þ

for any (v,c) 2 Jh � Xh, (q,s) 2 Qh � Sh.

Step 2. Next, we replace (v,c) 2 Jh � Xh in (4.18) by (v,c) 2 Vh � Ch.
To that end, let (v,c) 2 Vh � Ch, and we look for (w,d) 2 Vh � Ch

such that
Bðw;d; q; sÞ ¼ Bðu� v;b� c; q; sÞ 8 ðq; sÞ 2 Qh � Sh:

Since the right-hand side is a continuous functional on Qh � Sh, we
conclude from the inf–sup condition of B in (3.11) that there exists
at least one non-trivial solution (w,d) of this problem satisfying the
bound

kðw;dÞkVh�Ch
6 Ckðu� v;b� cÞkVh�Ch

:

By construction (w + v,d + c) 2 Jh � Xh. Therefore, it can be inserted
into (4.21). With the help of the triangle inequality, we readily see
that

kðu� uh;b� bhÞkVh�Ch
6 kðu� v;b� cÞkVh�Ch

þ kðwþ v � uh;dþ c� bhÞkVh�Ch

þ kðw;dÞkVh�Ch

6 Cd ‘ðdÞkðu� v;b� cÞkVh�Ch

þ C EðuÞ þ kðp� q; r � sÞkQ�S

� �
:

This completes the proof. h

Next, we present the following result for the multipliers.

Lemma 4.10. Assume (4.19). Then there holds

kðp� ph; r � rhÞkQ�S 6 C EðuÞ þ inf
ðq;sÞ2Qh�Sh

kðp� q; r � sÞkQ�S

�
þ kðu� uh;b� bhÞkVh�Ch

þ sup
ðv;cÞ2Vh�Ch

jCðb� bh;v;bÞ � Cðb� bh;u; cÞj
kðv; cÞkVh�Ch

!
:

Proof. For any (q,s) 2 Qh � Sh, we recall from (4.18) that

ep ¼ np þ gp; er ¼ nr þ gr:
The inf–sup condition for B in (3.11) and the triangle inequality
guarantee that

kðnp; nrÞkQ�S 6 C sup
ðv;cÞ2Vh�Ch

Bðv; c; np; nrÞ
kðv; cÞkVh�Ch

6 CðT1 þ T2Þ;

where

T1 ¼ sup
ðv;cÞ2Vh�Ch

Bðv; c; gp;grÞ
kðv; cÞkVh�Ch

;

T2 ¼ sup
ðv;cÞ2Vh�Ch

Bðv; c; ep; erÞ
kðv; cÞkVh�Ch

:

Using the continuity of B in (4.4), T1 can be easily bounded by

T1 6 Ckðgp;grÞkQ�S:

For T2, we make use of the weak formulation and the residual
Eq. (4.16) and write out the form Oh into its individual parts. We
obtain

Bðv; c; ep; erÞ ¼ RAðvÞ � eAhðeu; eb; v; cÞ � Ohðuh;bh; eu; eb; v; cÞ
� Ohðu;b; u;b; v; cÞ þ Ohðuh;bh; u;b; v; cÞ

¼ RAðvÞ � eAhðeu; eb; v; cÞ � Ohðuh;bh; eu; eb; v; cÞ
� Ohðu;u;vÞ þ Ohðuh;u;vÞ � Cðeb;v;bÞ
þ Cðeb;u; cÞ:

Applying the bound (4.17) and the continuity properties of eAh; Oh

and Oh in (4.3), Proposition 4.8(i) and Lemma 4.6, respectively, we
conclude that

T2 6 EðuÞ þ Ckðeu; ebÞkVh�Ch
þ CO�j

�m3
2
kðeu; ebÞkVh�Ch

kðuh;bhÞkVh�Ch

þ CO�j
�m3

2
kðeu;0ÞkVh�Ch

kðu;0ÞkVh�Ch

þ sup
ðv;cÞ2Vh�Ch

jCðeb;v;bÞ � Cðeb;u; cÞj
kðv; cÞkVh�Ch

:

Using the small data assumption (4.19), the assertion follows. h
4.4. Proof of Theorem 4.2

In this subsection, we prove the convergence result stated in
Theorem 4.2.

In view of Lemma 4.9, the convergence of uh and bh is obtained
under the smoothness assumption (4.1) by using the standard
approximation properties of the finite element spaces Vh, Ch, Qh

and Sh, respectively. This proves the first statement of Theorem 4.2.
Next, we show the convergence of the multipliers in the energy

norm k�kQ�S. From Lemmas 4.10 and 4.9, it only remains to show
that

sup
ðv;cÞ2Vh�Ch

jCðb� bh;v;bÞ � Cðb� bh;u; cÞj
kðv; cÞkVh�Ch

! 0 as h! 0: ð4:22Þ

Recalling the Hodge operator H from (4.9), we write

Cðb� bh;v;bÞ ¼ Cðb�Hbh;v;bÞ þ CðHbh � bh;v;bÞ: ð4:23Þ

The first term on the right-hand side of (4.23) tends to zero due to
Lemma 4.7(i) and the fact that

kb�HbhkHðcurl;XÞ 6 kb� bhkHðcurl;XÞ þ kbh �HbhkHðcurl;XÞ ! 0

as h ? 0. Here, we have applied the triangle inequality, the prop-
erties of the Hodge operator (4.9) and (4.10), and the stability
bound in Theorem 3.2. For the last term of (4.23), we first utilize
item (iv) of Lemma 4.7 and then the approximation result (4.10),
to get



Table 5.1
Example 1. Convergence of ku� uhkL2 ðXÞ; ku� uhk1;h , and kp� phkL2ðXÞ .

Dofs in uh/
ph

ku� uhkL2ðXÞ l ku � uhk1,h l kp� phkL2ðXÞ l

112/32 3.893e�2 – 8.297e�1 – 1.297 –
416/128 1.016e�2 1.94 4.105e�1 1.01 3.734e�1 1.78
1600/512 2.707e�3 1.91 2.045e�1 1.01 1.293e�1 1.53
6272/2048 7.087e�4 1.93 1.021e�1 1.00 5.475e�2 1.24
24,832/

8192
1.813e�4 1.97 5.104e�2 1.00 2.597e�2 1.08

98,816/
32,768

4.578e�5 1.99 2.552e�2 1.00 1.281e�2 1.02

2848 C. Greif et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2840–2855
jCðHbh � bh;v;bÞj 6 Ch�
1
2jkHbh � bhkL2ðXÞkvk1;hkbkHðcurl;XÞ

6 Chs�1
2jkr � bhkL2ðXÞkvk1;hkbkHðcurl;XÞ

6 Chs�1
2
j
�m3

2
kð0;bhÞkVh�Ch

kðv;0ÞkVh�Ch
kð0;bÞkV�C

6 Chs�1
2kðv;0ÞkVh�Ch

jjjðf;gÞjjj
�m1

2
:

In the last step, we have applied the stability bounds in Theorems
2.1 and 3.2, as well as the small data assumption (4.19). Since
�m�1

2jjjðf;gÞjjj 6 �j�m�2jjjðf;gÞjjj and s > 1
2, we obtain

sup
ðv;cÞ2Vh�Ch

jCðb� bh;v;bÞj
kðv; cÞkVh�Ch

! 0 as h! 0:

A similar argument shows that

sup
ðv;cÞ2Vh�Ch

jCðb� bh;u; cÞj
kðv; cÞkVh�Ch

! 0 as h! 0:

Therefore (4.22) holds true, and the convergence of the multipliers
is obtained.

4.5. Proof of Theorem 4.3

In this subsection we prove the a priori error estimates in
Theorem 4.3. As before, we consider the cases d = 2 and d = 3
simultaneously.

Based on Lemma 4.9, we choose v as the BDM projection of u, c
the Nédélec projection of b, q and s the L2-projections of p and r,
respectively. We then apply the approximation properties of these
projections in [7, Proposition III.3.6], [40, Theorem 5.41] and [8],
and the estimates for the errors in the velocity and magnetic fields
are readily obtained.

To prove the error estimate for the multipliers, we first apply
Proposition 4.8 (ii) to bound the supremum in the estimate of Lem-
ma 4.10:

sup
ðv;cÞ2Vh�Ch

jCðb� bh;v;bÞ � Cðb� bh;u; cÞj
kðv; cÞkVh�Ch

6 Cd ‘ðdÞ
CO �j

�m3
2
kð0;b� bhÞkVh�Ch

kðu;bÞkV�C :

Utilizing the stability bound in Theorem 2.1, we obtain

kðp� ph; r � rhÞkQ�S 6 C EðuÞ þ inf
ðq;sÞ2Qh�Sh

kðp� q; r � sÞkQ�S

� �
þ Cd‘ðdÞkðu� uh;b� bhÞkVh�Ch

6 Cd‘ðdÞ2 inf
ðv;cÞ2Vh�Ch

kðu� v;b� cÞkVh�Ch

þ Cd‘ðdÞ EðuÞ þ inf
ðq;sÞ2Qh�Sh

kðp� q; r � sÞkQ�S

� �
:

Again, we choose v as the BDM projection of u, c the Nédélec pro-
jection of b, q and s the L2-projections of p and r, respectively. As be-
fore, the approximation properties of these projections finish the
proof.
Table 5.2
Example 1. Convergence of kb� bhkL2 ðXÞ and kb � bhkH(curl;X).

Dofs in bh/rh kb� bhkL2ðXÞ l kb � bhkH(curl;X) l

56/25 4.720e�1 – 9.431e�1 –
208/81 2.358e�1 1.00 4.714e�1 1.00
800/289 1.179e�1 1.00 2.357e�1 1.00
3136/1089 5.893e�2 1.00 1.179e�1 1.00
12,416/4225 2.946e�2 1.00 5.893e�2 1.00
49,408/16,641 1.473e�2 1.00 2.946e�2 1.00
5. Numerical results

In this section we present a series of numerical experiments.
Our computations have been carried out using MATLAB, with direct
linear solvers. The primary purpose of our experiments is to con-
firm optimal convergence rates of our method. We start by consid-
ering one problem with a smooth solution and a second one with a
singular solution. Then, we consider the numerical approximations
of two- and three-dimensional Hartmann channel flow and driven
cavity flow problems. Finally, we present results for another
benchmark problem: MHD flow over a step in two dimensions.

Throughout this section, the lowest order BDM and Nédélec ele-
ments are employed and the interior penalty stabilization param-
eter is a0 = 10. The Picard iteration described in Section 4.5 is
used to solve the non-linear systems. For all the examples, we
solve a Stokes problem and the Maxwell equations, decoupled, to
obtain an initial guess. The tolerance for the Picard iterations is
chosen as 1e�5.

We test our method on problems with mixed Dirichlet and
Neumann boundary conditions in the hydrodynamic variables,
even though the analysis has been carried out solely for the Dirich-
let case. Throughout this section, CN denotes the Neumann bound-
ary, and CD the Dirichlet boundary. On Neumann boundaries, we
specify the value of (pI � mru)n, where I is the identity matrix.

5.1. Example 1: two-dimensional problem with a smooth solution

First, we verify the theoretical results stated in Theorems 4.2
and 4.3 for a problem with a smooth analytical solution.

We consider the following two-dimensional problem. We set
X = (�1,1)2 with CN = {(1,y): y 2 (�1,1)}, CD = oXnCN, m = j = 1,
mm = 1e4, and choose the source terms f, g and the boundary condi-
tions so that the analytical solution is of the form

uðx; yÞ ¼ ðy2; x2Þ; pðx; yÞ ¼ x;

bðx; yÞ ¼ ð1� y2;1� x2Þ; rðx; yÞ ¼ ð1� x2Þð1� y2Þ:

We construct this example with r – 0 to show the convergence rate
in rh; later examples will feature a divergence-free g and a vanish-
ing r; cf. Proposition 3.1.

In Tables 5.1–5.3, we investigate the asymptotic rates of
convergence of the errors in the approximations of the hydrody-
namic and magnetic variables; here, l denotes the experimental
rate of convergence. We observe that ku� uhk1;h; kp� phkL2ðXÞ;

kb� bhkHðcurl;XÞ and krðr � rhÞkL2ðXÞ converge to zero as the mesh
is refined, in accordance with Theorem 4.2. The rate of convergence
is OðhÞ. Notice that we obtain the optimal rate in this numerical
experiment, even though Theorem 4.3 predicts a sub-optimal rate
with a loss of OðheÞ. Additionally, ku� uhkL2ðXÞ and kr � rhkL2ðXÞ con-
verge at rate Oðh2Þ as h tends to zero, which is also optimal.



Table 5.3
Example 1. Convergence of kr � rhkL2 ðXÞ and krðr � rhÞkL2ðXÞ .

Dofs in bh/rh kr � rhkL2ðXÞ l krðr � rhÞkL2ðXÞ l

56/25 1.673e�1 – 9.391e�1 –
208/81 4.433e�2 1.92 4.824e�1 0.96
800/289 1.125e�2 1.98 2.429e�1 0.99
3136/1089 2.822e�3 1.99 1.216e�1 1.00
12,416/4225 7.062e�4 2.00 6.085e�2 1.00
49,408/16,641 1.766e�4 2.00 3.043e�2 1.00
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Fig. 5.1. Example 1. Convergence history of the Picard iteration for the grid
sequence defined in Tables 5.1–5.3.

Table 5.4
Example 2. Convergence of ku� uhkL2 ðXÞ; ku� uhk1;h , and kp� phkL2ðXÞ .

Dofs in uh/
ph

ku� uhkL2ðXÞ l ku � uhk1,h l kp� phkL2ðXÞ l

88/24 2.159e�1 – 2.468 – 15.91 –
320/96 1.781e�1 0.28 1.880 0.39 9.328 0.77
1216/384 1.204e�1 0.56 1.368 0.46 5.387 0.79
4736/1536 6.816e�1 0.82 0.9588 0.51 3.301 0.71
18,688/

6144
3.490e�2 0.97 0.6627 0.53 2.124 0.64

74,240/
24,576

1.705e�2 1.03 0.4559 0.54 1.408 0.59
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In Fig. 5.1 we show the convergence history of the Picard itera-
tions for the grid sequence considered in this example. The plot de-
picts the number of iterations against the differences between
consecutive iterates corresponding to the approximated vector
coefficients, measured in a normalized discrete 2-norm and labeled
as ‘Tolerance’ in the plot. As expected, convergence is linear and
the iteration count is fairly insensitive to the size of the grid. A very
similar behavior has been observed in all of our other experiments,
in 2D as well as in 3D.

5.2. Example 2: two-dimensional problem with a singular solution

In order to verify the capability of the proposed method to cap-
ture singularities in two dimensions, we consider a problem in the
L-shaped domain X = (�1,1)2n([0,1) � (�1,0]) with CN = {(1,y):
y 2 (0,1)}, CD = oX nCN, and set m = j = 1, mm1e4. We choose the
forcing terms and the boundary conditions such that the analytic
solution is given by the strongest corner singularities for the
underlying elliptic operators. In polar coordinates (q,/), the hydro-
dynamic solution components u and p are then given by

uðq;/Þ ¼ qkðð1þ kÞ sinð/Þwð/Þ þ cosð/Þw0ð/ÞÞ
qkð�ð1þ kÞ cosð/Þwð/Þ þ sinð/Þw0ð/ÞÞ

	 

;

pðq;/Þ ¼ �qk�1 ð1þ kÞ2w0ð/Þ þ w000ð/Þ
� �

=ð1� kÞ;

where

wð/Þ ¼ sinðð1þ kÞ/Þ cosðkxÞ=ð1þ kÞ � cosðð1þ kÞ/Þ
� sinðð1� kÞ/Þ cosðkxÞ=ð1� kÞ þ cosðð1� kÞ/Þ;

x ¼ 3
2 p and k 
 0.54448373678246. The magnetic pair (b, r) is given

by

bðq;/Þ ¼ rðq2=3 sinð2=3/ÞÞ; rðq;/Þ � 0:
For this example, we have that (u,p) 2 H1 +k(X)2 � Hk(X) and
b 2 H2/3(X)2. Note that straightforwardly applied nodal elements
cannot correctly resolve the magnetic field. In Tables 5.4 and 5.5,
we investigate the asymptotic rates of convergence of the errors
in the approximations of the hydrodynamic and magnetic variables.
Again, we observe that the discrete solution converges to the exact
one as the mesh size h approaches zero, in accordance with Theo-
rem 4.2. The results show full agreement with the optimal rates
for ku � uhk1,h and kb � bhkH(curl;X). For the pressure, we also see
that the rate for kp� phkL2ðXÞ is approaching the optimal rate, albeit
more slowly. Additionally, we observe the L2-norm of r is zero be-
cause g is divergence-free, in accordance with Proposition 3.1.

In Figs. 5.2 and 5.3, we show the solution computed on the fin-
est mesh with 24,576 elements; the total number of degrees of
freedom employed in the finite element space Vh � Ch � Qh � Sh

is 148,481. The results show that our solution captures the stron-
gest corner singularities and are comparable to the results in [36].

5.3. Hartmann channel flow

Next, we consider Hartmann channel flow problems in two and
three dimensions; cf. [26]. In these examples, we denote by Ha the
Hartmann number, which is defined as Ha ¼

ffiffiffiffiffiffi
j

mmm

q
.

5.3.1. Example 3: two-dimensional Hartmann flow
Consider the two-dimensional Hartmann flow problem, which

involves a steady unidirectional flow in the channel X = (0,10) �
(�1,1) under the influence of the constant transverse magnetic
field bD = (0,1). The MHD solution then takes the form:

uðx; yÞ ¼ ðuðyÞ;0Þ; pðx; yÞ ¼ �Gxþ p0ðyÞ;
bðx; yÞ ¼ ðbðyÞ;1Þ; rðx; yÞ � 0:

ð5:1Þ

We impose the following boundary conditions:

u ¼ 0 on y ¼ �1;
ðpI� mruÞn ¼ pNn on x ¼ 0 and x ¼ 10;
n� b ¼ n� bD on @X;

r ¼ 0 on @X;

where

pNðx; yÞ ¼ pðx; yÞ ¼ �Gx� G2

2j
sinhðyHaÞ
sinhðHaÞ � y

� �2

:

The exact solution is given by (5.1) with

uðyÞ ¼ G
mHa tanhðHaÞ 1� coshðyHaÞ

coshðHaÞ

� �
;

bðyÞ ¼ G
j

sinhðyHaÞ
sinhðHaÞ � y

� �
;

p0ðyÞ ¼ �
G2

2j
sinhðyHaÞ
sinhðHaÞ � y

� �2

:



Table 5.5
Example 2. Convergence of kb� bhkL2 ðXÞ; kb� bhkHðcurl;XÞ , and krhkL2 ðXÞ .

Dofs in bh/rh kb� bhkL2ðXÞ l kb � bhkH(curl;X) l krhkL2ðXÞ

44/21 2.796e�1 – 2.796 – 2.162e�12
160/65 1.814e�1 0.62 1.814e�1 0.62 6.188e�12
608/225 1.169e�1 0.63 1.169e�1 0.63 2.289e�11
2368/833 7.473e�2 0.65 7.473e�2 0.65 4.260e�11
9344/3201 4.754e�2 0.65 4.754e�2 0.65 1.406e�10
37,120/12,545 3.013e�2 0.66 3.013e�2 0.66 3.018e�10

Table 5.6
Example 3. Convergence of ku� uhkL2 ðXÞ; ku� uhk1;h , and kp� phkL2ðXÞ .

Dofs in uh/
ph

ku� uhkL2ðXÞ l ku � uhk1,h l kp� phkL2ðXÞ l

416/128 2.028e�1 – 3.215 – 13.97 –
1600/512 5.169e�2 1.97 1.611 1.00 6.986 1.00
6272/2048 1.306e�2 1.99 0.8061 1.00 3.493 1.00
24,832/

8192
3.282e�3 1.99 0.4033 1.00 1.747 1.00

98,816/
32,768

8.227e�4 2.00 0.2017 1.00 0.8734 1.00
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We note that p0(y) and � jbðyÞ2
2 are the same up to an additive

constant.
In Tables 5.6, 5.7 and Figs. 5.4, 5.5, we set m = j = 1, mm = 1e4, and

G = 10. We observe that rh � 0, as predicted in Proposition 3.1, and
ku� uhk1;h; kp� phkL2ðXÞ and kb � bhkH(curl;X) converge to zero at
the optimal rate OðhÞ as the mesh is refined. Moreover, we note
that the L2-norms of the errors in the approximations of u, b and
p tend to zero optimally as well.

In Figs. 5.4, 5.5 we show the solution computed on the mesh
with 32,768 elements; the total number of degrees of freedom em-
ployed in the finite element space Vh � Ch � Qh � Sh is 197,633. In
order to show the directions of vectors, in Fig. 5.5(b) and later fig-
ures, b is normalized such that the largest magnitude of each com-
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Fig. 5.3. Example 2. Numerical approximations of (a) magnetic field; (b) contours of the
the magnetic field.
ponent is 1 in the computational domain. The computed and
analytical solutions of the first components in the velocity and
magnetic fields are virtually indistinguishable; see Fig. 5.4.

5.3.2. Example 4: three-dimensional Hartmann flow
In this example, we consider the three-dimensional unidirec-

tional flow in the rectangular duct given by X = (0,L) � (�y0,y0) �
(�z0,z0) with y0,z0� L under the influence of the constant trans-
verse magnetic field bD = (0,1,0). We take f = g = 0 and consider
solutions of the form

uðx; y; zÞ ¼ ðuðy; zÞ;0;0Þ; pðx; y; zÞ ¼ �Gxþ p0ðy; zÞ;
bðx; y; zÞ ¼ ðbðy; zÞ;1;0Þ; rðx; y; zÞ � 0:
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ns of (a) velocity; (b) pressure contours.
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first component of the magnetic field and (c) contours of the second component of



Table 5.7
Example 3. Convergence of kb� bhkL2 ðXÞ; kb� bhkHðcurl;XÞ , and krhkL2 ðXÞ .

Dofs in bh/rh kb� bhkL2ðXÞ l kb � bhkH(curl;X) l krhkL2ðXÞ

208/81 1.679e�4 – 2.259e�4 – 3.868e�12
800/289 8.605e�5 0.96 1.148e�4 0.98 1.746e�11
3136/1089 4.328e�5 0.99 5.761e�4 0.99 3.627e�11
12,416/4225 2.167e�5 1.00 2.883e�5 1.00 9.424e�11
49,408/16,641 1.084e�5 1.00 1.442e�5 1.00 2.401e�10

Fig. 5.5. Example 3. Numerical approximations of (a) velocity and (b) normalized
magnetic field.
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We enforce the boundary conditions

u ¼ 0 for y ¼ �y0 and z ¼ �z0;

ðpI� mruÞn ¼ pNn for x ¼ 0 and x ¼ L;

n� b ¼ n� bD on @X;

r ¼ 0 on @X

with pNðx; y; zÞ ¼ �Gx� jbðy;zÞ2
2 þ 10. The function b(y,z) is given by

the Fourier series

bðy; zÞ ¼
X1
n¼0

bnðyÞ cosðknzÞ;

where

kn ¼
ð2nþ 1Þp

2z0
;

bnðyÞ ¼
m
j

An
k2

n � p2
1

p1
sinhðp1yÞ þ Bn

k2
n � p2

2

p2
sinhðp2yÞ

 !
;

p2
1;2 ¼ k2

n þHa2=2�Ha
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þHa2=4
q

;

An ¼
�p1ðk2

n � p2
2Þ

Dn
unðy0Þ sinhðp2y0Þ;

Bn ¼
p2ðk2

n � p2
1Þ

Dn
unðy0Þ sinhðp1y0Þ;

Dn ¼ p2ðk2
n � p2

1Þ sinhðp1y0Þ coshðp2y0Þ � p1ðk2
n � p2

2Þ sinhðp2y0Þ
� coshðp1y0Þ;

unðy0Þ ¼
�2G

mk3
nz0

sinðknz0Þ:
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Fig. 5.4. Example 3. Slices along x = 5, � 1 6 y 6 1: (a) veloc
The functions u(y,z) and p0(y,z) can be also expressed by Fourier
series; for details, see [24]. In fact, p0(y,z) and � jbðy;zÞ2

2 are identical
up to an additive constant. Note also that p(x,y,z) = pN(x,y,z).

In our tests, we set L = 10, y0 = 2, z0 = 1, m = j = 1, mm = 1e4 and
G = 0.5. In Tables 5.8 and 5.9, we investigate the asymptotic rates
of convergence of the errors in the approximations of the hydrody-
namic and magnetic variables. Again, we observe that the finite
element solution converges to the exact solution as the mesh size
h approaches zero, in accordance with Theorem 4.2. We observe
the results show good agreement with the optimal rates for
ku � uhk1,h and kb � bhkH(curl;X). For the pressure, we also see that
the rate for kp� phkL2ðXÞ is approaching the optimal rate, although
more slowly. Additionally, we observe the L2-norm of r is zero be-
cause g is divergence-free, in accordance with Proposition 3.1.

In Figs. 5.6 and 5.7 we show the solution computed on a uni-
form tetrahedral mesh of 24,576 elements; this results in a total
of 212,577 degrees of freedom in the finite element space
Vh � Ch � Qh � Sh. We observe that the computed and analytical
solutions are in good agreement on this relatively coarse mesh;
see Fig. 5.6.

5.4. Driven cavity flow

Let us consider a classic test problem used in fluid dynamics,
known as driven cavity flow. It is a model of the flow in a cavity
with the lid moving in one direction; cf. [23, Chapter 5.1.3] and
[43].
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ity component u(y) and (b) magnetic component b(y).



Table 5.8
Example 4. Convergence of ku� uhkL2 ðXÞ; ku� uhk1;h , and kp� phkL2ðXÞ .

Dofs in uh/
ph

ku� uhkL2ðXÞ l ku � uhk1,h l kp� phkL2ðXÞ l

360/48 3.959e�1 – 1.829 – 30.89 –
2592/384 1.320e�1 1.58 0.9561 0.94 8.194 1.91
19,584/

3072
3.609e�2 1.87 0.4903 0.96 2.837 1.53

152,064/
24,576

9.590e�3 1.91 0.2484 0.98 1.091 1.38

Table 5.9
Example 4. Convergence of kb� bhkL2 ðXÞ; kb� bhkHðcurl;XÞ , and krhkL2 ðXÞ .

Dofs in bh/rh kb� bhkL2ðXÞ l kb � bhkH(curl;X) l krhkL2ðXÞ

98/27 1.850e�5 – 3.219e�5 – 9.855e�12
604/125 1.565e�5 0.24 2.579e�5 0.32 1.013e�10
4184/729 8.592e�6 0.86 1.464e�5 0.82 4.098e�10
31,024/4913 4.411e�6 0.96 7.543e�6 0.96 1.795e�9

Fig. 5.7. Example 4. Numerical approximations of (a) velocity and (b) normalized
magnetic field.
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5.4.1. Example 5: two-dimensional driven cavity flow
In this example, we consider the two-dimensional domain

X = (�1,1) � (�1,1) with CD = oX, and set the source terms to be
zero. The boundary conditions are prescribed as follows:

u ¼ 0 on x ¼ �1 and y ¼ �1;
u ¼ ð1;0Þ on y ¼ 1;
n� b ¼ n� bD on @X;

r ¼ 0 on @X;

where bD = (1,0).
We set m = 1e�2, mm = 1e5, j = 1e5, which simulate liquid metal

type flows. Figs. 5.8 and 5.9 show the solution computed on a mesh
with 8192 elements and 49,665 degrees of freedom. Fig. 5.8(a)
shows that the circulation created by the moving lid; Fig. 5.8(b)
shows the magnetic field changes direction due to the coupling ef-
fect. Fig. 5.9(a) demonstrates the boundary layer formation in
terms of the first component of the velocity. Streamlines for the
velocity field are displayed in Fig. 5.9(b). The computed solution
agrees with the solution in the literature [43].

5.4.2. Example 6: three-dimensional driven cavity flow
The problem we consider is the three-dimensional driven cavity

flow in the domain X = (�1,1) � (�1,1) � (�1,1) with CD = oX.
The source terms are set to be zero. The boundary conditions are
prescribed as follows:
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2
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0.3

y

u(
y,
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FE Solution
Analytical Solution

Fig. 5.6. Example 4. Slices along x = 5, � 2 6 y 6 2, and z = 0: (a) ve
u ¼ 0 on x ¼ �1; y ¼ �1 and z ¼ �1;
u ¼ ð1;0;0Þ on z ¼ 1;
n� b ¼ n� bD on @X;

r ¼ 0 on @X;

where bD = (1,0,0).
We set m = 1e�2, mm = 1e5, j = 1e5 and obtain Fig. 5.10 on a uni-

form tetrahedral mesh comprising 24,576 elements; this results in
a total of 212,577 degrees of freedom. The flow vectors on slices
demonstrate a similar behavior to the two-dimensional scenario
in Section 5.4.1; see Fig. 5.8.
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locity component u(y,0) and (b) magnetic component b(y,0).
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Fig. 5.8. Example 5. Numerical approximations of (a) velocity and (b) normalized magnetic field.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.9. Example 5. Numerical approximations of (a) contours of first velocity components; (b) streamlines of velocity.

Fig. 5.10. Example 6. Numerical approximations of (a) velocity and (b) normalized magnetic field.
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Fig. 5.11. Example 7. Numerical approximations of (a) velocity and (b) normalized magnetic field; (c) pressure contours.
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Fig. 5.12. Example 7. Velocity flow vectors and streamlines zoomed in behind the step for (a) j = 2.5e4 and (b) j = 1e5.
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5.5. Example 7: two-dimensional MHD flow over a step

The example we present here is another classical problem of a
flow over a step under a transverse magnetic field; cf. [25]. The
magnetic field tends to damp the vortex of the fluid after the step.

The domain is X = (�0.25,0.75) � (�0.125,0.125)n(�0.25,0]
� (�0.125,0], with CN = {(0.75,y): y 2 (�0.125,0.125)} and
CD = oXnCN. We set f = g = 0, and choose m = 1e�2, mm = 1e5,
j = 2.5e4. The boundary data are given by

u¼0 on y¼0:125;fðx;0Þ : x2 ð�0:25;0Þg and y¼�0:125;
u¼0 on fð0;yÞ : y2 ð�0:125;0Þg;
u¼ð�25:6yðy�0:125Þ;0Þ on x¼�0:25;
ðpI�mruÞn¼ pNn on x¼0:75;
n�b¼n�bD on @X;
r¼0 on @X;

where pN = 0 and bD = (0,1).
Figs. 5.11 and 5.12 show the solution computed on a mesh with

7168 elements and 43,649 degrees of freedom. It is evident from
Fig. 5.11 that the flow field is correctly captured; the magnetic field
changes directions due to the coupling effect; the pressure drops
behind the step. Fig. 5.12 shows the velocity field in terms of
stream lines. The recirculation after the step decreases as the cou-
pling coefficient j increases. We observe that our numerical meth-
od reproduces this damping effect without any oscillation in the
numerical solution. The computed solutions agree with the solu-
tions in the literature [14,25].
6. Conclusions

We have introduced a new mixed finite element method for the
numerical discretization of a stationary incompressible magneto-
hydrodynamics problem, with divergence-conforming BDM ele-
ments and curl-conforming Nédélec elements for the velocity
and magnetic fields, respectively. The approximation of the veloc-
ity field is exactly mass conservative. We have shown the well-
posedness of the discrete formulation under a standard small data
assumption, and convergence of the approximations under mini-
mal regularity assumptions.

We have proved that the energy norm error is convergent in the
mesh size in general Lipschitz polyhedra, and have derived a priori
error estimates. As shown in detail in Section 4, in the two-dimen-
sional case there is a loss ofOðheÞ in the theoretical error estimates.
In the three-dimensional case our error estimates end up falling
short by half a power of h for the errors in u and b, and by a full
power in p and r. Nevertheless, the numerical experiments of Sec-
tion 5 show optimal convergence in all cases. This probably indi-
cates that the sub-optimality is a mere artifact of our technique of
proof, which relies on inverse estimates to establish the continuity
of the non-linear coupling form. Furthermore, the numerical exper-
iments indicate that the constant Ce in Theorem 4.3 stays bounded,
even though this is not guaranteed by the analysis. Altogether, the
computed results are in excellent agreement with results in the lit-
erature, and the method correctly resolves the strongest magnetic
singularities in non-convex domains. But there is a need to further
pursue the theoretical issue of sub-optimal convergence rates.
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Based on the theoretical results in [44], we expect the same
good performance of our discretization and solution techniques
to carry over to the dynamic problem, provided that the non-linear
terms are treated (semi) implicitly. We also mention the issue of
higher order elements. Here too, we do not expect any deviation
from our current computational results. In particular, we expect
to see optimal convergence rates for smooth solutions.

The scope of our work can be broadened in a number of addi-
tional directions. A very important issue is the investigation of
efficient linear solvers for large-scale problems. In such settings
iterative solvers are necessary, and this brings up the need for
deriving effective and scalable preconditioners. While there are
efficient solution techniques for the Navier–Stokes equations as
well as for the curl–curl operator, the primary challenge is how
to deal with the coupling term, especially when coupling is strong.
Preliminary work on this is currently underway.

Another item for future work is the derivation of a non-linear
solver that converges more rapidly than the Picard iteration used
in our experiments. As we have pointed out in Remark 3.3, devel-
oping the Newton iteration for our discretization is somewhat del-
icate and is subject of ongoing investigation.
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