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SYM-ILDL is a numerical software package that computes incomplete LDLT (ILDL) factorizations of sym-
metric indefinite and real skew-symmetric matrices. The core of the algorithm is a Crout variant of incomplete
LU (ILU), originally introduced and implemented for symmetric matrices by Li and Saad [2005]. Our code is
economical in terms of storage, and it deals with real skew-symmetric matrices as well as symmetric ones.
The package is written in C++ and is templated, is open source, and includes a MATLABTM interface. The
code includes built-in RCM and AMD reordering, two equilibration strategies, threshold Bunch-Kaufman
pivoting, and rook pivoting, as well as a wrapper to MC64, a popular matching-based equilibration and
reordering algorithm. We also include two built-in iterative solvers: SQMR, preconditioned with ILDL, and
MINRES, preconditioned with a symmetric positive definite preconditioner based on the ILDL factorization.
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1. INTRODUCTION

For the numerical solution of symmetric and real skew-symmetric linear systems of
the form

Ax = b,

stable (skew-)symmetry-preserving decompositions of A often have the form

PAPT = LDLT
,

where L is a (possibly dense) lower triangular matrix and D is a block-diagonal matrix
with 1-by-1 and 2-by-2 blocks [Bunch 1982; Bunch and Kaufman 1977]. The matrix
P is a permutation matrix, satisfying PPT = I, and the right-hand side vector b is
permuted accordingly: in practice, we solve (PAPT )(Px) = Pb.

In the context of incomplete LDLT (ILDL) decompositions of sparse and large matri-
ces for preconditioned iterative solvers, various element-dropping strategies are com-
monly used to impose sparsity of the factor, L. Fill-reducing reordering strategies
are also used to encourage the sparsity of L, and various scaling methods are ap-
plied to improve conditioning. For a symmetric linear system, several methods have
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been developed. Approaches have been proposed that perturb or partition A so that
incomplete Cholesky may be used [Lin and Moré 1999; Orban 2014; Scott and Tuma
2014a]. Whereas Lin and Moré [1999] is designed for positive definite matrices, the
works of Orban [2014] and Scott and Tuma [2014a] are applicable to a large set of 2×2
block structured indefinite systems.

We present SYM-ILDL—a software package based on a left-looking Crout version
of LU, which is stabilized by pivoting strategies such as Bunch-Kaufman and rook
pivoting. The algorithmic principles underlying our software are based on (and extend)
an ILDL factorization approach proposed by Li and Saad [2005], which itself extends
work by Li et al. [2003] and Jones and Plassmann [1995]. We offer the following new
contributions:

—A Crout-based ILDL factorization for real skew-symmetric matrices is introduced
in this article for the first time. It features a similar mechanism to the one for
symmetric indefinite matrices, but there are notable differences. Most importantly,
for real skew-symmetric matrices, the diagonal elements of D are zero and the pivots
are always 2 × 2 blocks.

—We offer two integrated preconditioned solvers. The first solver is a preconditioned
MINRES solver, specialized to our ILDL code. The main challenge here is to design a
positive definite preconditioner, even though ILDL produces an indefinite (or skew-
symmetric) factorization. To that end, for the symmetric case, we implement the
technique presented in Gill et al. [1992]. For the skew-symmetric case, we introduce
a positive definite preconditioner based on exploiting the simple 2 × 2 structure of
the pivots. The second solver is a preconditioned SQMR solver based on the work of
Freund and Nachtigal [1994]. For SQMR, we use ILDL to precondition it directly.

—The code is written in C++, and it is templated and easily extensible. As such, it
can be easily modified to work in other fields of numbers, such as C. SYM-ILDL
is self-contained and includes implementations of reordering methods (AMD and
RCM), equilibration methods (in the max-norm, 1-norm, and 2-norm), and pivoting
methods (Bunch-Kaufman and rook pivoting). Additionally, we provide a wrapper
that allows the user to use the popular HSL_MC64 library to reorder and equilibrate
the matrix. To facilitate ease of use, a MATLABTM MEX file is provided that offers the
same performance as the C++ version. The MEX file simply bundles the C++ library
with the MATLABTM interface (i.e., the main computations are still done in C++).

Incomplete factorizations of symmetric indefinite matrices have received much atten-
tion recently, and a few numerical packages have been developed in the past few years.
Scott and Tuma [2014a] have developed a numerical software package based on signed
incomplete Cholesky factorization preconditioners due to Lin and Moré [1999]. For
saddle-point systems, Scott and Tuma [2014a] have extended their limited-memory in-
complete Cholesky algorithm [Scott and Tuma 2014b] to a signed incomplete Cholesky
factorization. Their approach builds on the ideas of Tismenetsky [1991] and Kaporin
[1998]. In the case of breakdown (a zero pivot), a global shift is applied (see also Lin
and Moré [1999]).

In Section 6.4 of their work, Scott and Tuma [2014a] have made comparisons with our
code, finding that in general, the two codes are comparable in performance for several
of the test problems; however, for some of the problems, each code outperforms the
other. But the package they compared was an earlier release of SYM-ILDL. Given the
numerous improvements made on the code since then, we repeat their comprehensive
comparisons and show that SYM-ILDL now performs better than the preconditioner
of Scott and Tuma [2014a].

Orban [2014] has developed LLDL, a generalization of the limited-memory Cholesky
factorization of Lin and Moré [1999] to the symmetric indefinite case with special
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interest in symmetric quasidefinite matrices. The code generates a factorization of the
form LDLT with D diagonal. We are currently engaged in a comparison of our code to
LLDL.

The remainder of this article is structured as follows. In Section 2, we outline a Crout-
based factorization for symmetric and skew-symmetric matrices, symmetry-preserving
pivoting strategies, equilibration approaches, and reordering strategies. In Section 3,
we discuss how to modify the output of SYM-ILDL to produce a positive definite precon-
ditioner for MINRES. In Section 4, we discuss the implementation of SYM-ILDL and
how the pivoting strategies of Section 2 may be efficiently implemented within SYM-
ILDL’s data structures. Finally, we compare SYM-ILDL to other software packages and
show the performance of SYM-ILDL on some general (skew-)symmetric matrices and
some saddle-point matrices in Section 5. In Section 6, we provide information on how
to contribute to SYM-ILDL, and in the Appendix we provide full information on the
numerical experiments.

2. LDL AND ILDL FACTORIZATIONS

SYM-ILDL uses a Crout variant of LU factorization. To maintain stability, SYM-ILDL
allows the user to choose one of two symmetry-preserving pivoting strategies: Bunch-
Kaufman partial pivoting [Bunch and Kaufman 1977] (Bunch in the skew-symmetric
case [Bunch 1982]) and rook pivoting. The details of the factorization and pivoting
procedures, as well as simplifications for the skew-symmetric case, are provided in the
following sections. See also [Duff 2009] for more details on the use of direct solvers for
solving skew-symmetric matrices.

2.1. Crout-Based Factorizations

The Crout order is an attractive way for computing an ILDL factorization of symmetric
or skew-symmetric matrices, because it naturally preserves structural symmetry, es-
pecially when dropping rules for the incomplete factorization are applied. As opposed
to the IKJ-based approach [Li and Saad 2005], Crout relies on computing and applying
dropping rules to a column of L and a row of U simultaneously. The Crout procedure for
a symmetric matrix is outlined later in Algorithm 2, using a delayed update procedure
for the factors that is laid out in Algorithm 1. (As shown in Algorithm 2, the procedure
in Algorithm 1 may be called multiple times when various pivoting procedures are
employed.)

ALGORITHM 1: k-th Column Update Procedure
Input: A symmetric matrix A, partial factors L and D, matrix size n, current column index k
Output: Updated factors L and D

1 Lk:n,k ← Ak:n,k
2 i ← 1
3 while i < k do
4 si ← size of the diagonal block with Di,i as its top left corner
5 Lk:n,k ← Lk:n,k − Lk:n,i:i+si−1 D−1

i:i+si−1,i:i+si−1LT
k,i:i+si−1

6 i ← i + si

7 end

For computing the ILDL factorization, we apply dropping rules (see line 10 of
Algorithm 2). These are the standard rules: we drop all entries below a prespecified
tolerance (referred to as drop_tol throughout the article), multiplied by the norm of
a column of L, keeping up to a prespecified maximum number of the largest nonzero
entries in every column. Here we use the term fill_factor to signify the maximum

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 1, Publication date: April 2017.



1:4 C. Greif et al.

ALGORITHM 2: Crout Factorization, LDLTC
Input: A symmetric matrix A
Output: Matrices P, L, and D such that PAP ≈ LDLT

1 k ← 1
2 L ← 0
3 D ← 0
4 while k < n do
5 Call Algorithm 1 to update L
6 Find a pivoting matrix in Ak:n,k:n and permute A and L accordingly
7 s ← size of the pivoting matrix
8 Dk:k+s−1,k:k+s−1 ← Lk:k+s−1,k:k+s−1

9 Lk:n,k:k+s−1 ← Lk:n,k:k+s−1 D−1
k:k+s−1,k:k+s−1

10 Apply dropping rules to Lk+s:n,k:k+s−1
11 k ← k + s
12 end

allowed ratio between the number of nonzeros in any column of L and the average
number of nonzeros per column of A.

In Algorithm 2, the s × s pivot is typically 1 × 1 or 2 × 2, as per the strategy devised
by Bunch and Kaufman [1977], which we briefly describe next.

2.2. Symmetric Partial Pivoting

Pivoting in the symmetric or skew-symmetric setting is challenging, as we seek to
preserve the (skew-)symmetry and it is not sufficient to use 1 × 1 pivots to maintain
stability. Much work has been done in this front (e.g., see Duff et al. [1989, 1991] and
Hogg and Scott [2014] and the references therein).

Bunch and Kaufman [1977] proposed a partial pivoting strategy for symmetric ma-
trices, which relies on finding 1 × 1 and 2 × 2 pivots. The cost of finding a pivot is
O(n), as it only involves searching up to two columns. We provide this procedure in
Algorithm 3. For all pivoting algorithms that follow, we assume that we are pivoting
on the Schur complement (i.e., column 1 is the k-th column if we are on the k-th step of
Algorithm 2).

ALGORITHM 3: Bunch-Kaufman LDLT Using the Partial Pivoting Strategy

1 α ← (1 + √
17)/8 (≈0.64)

2 ω1 ← maximum magnitude of any subdiagonal entry in column 1
3 if |a11| ≥ αω1 then
4 Use a11 as a 1 × 1 pivot (s = 1)
5 else
6 r ← row index of first (subdiagonal) entry of maximum magnitude in column 1
7 ωr ← maximum magnitude of any off-diagonal entry in column r
8 if |a11|ωr ≥ αω2

1 then
9 Use a11 as a 1 × 1 pivot (s = 1)

10 else if |arr | ≥ αωr then
11 Use arr as a 1 × 1 pivot (s = 1, swap rows and columns 1, r)
12 else

13 Use
(

a11 ar1
ar1 arr

)
as a 2 × 2 pivot (s = 2, swap rows and columns 2, r)

14 end
15 end

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 1, Publication date: April 2017.



Incomplete LDLT Factorization of Symmetric Indefinite and Skew-Symmetric Matrices 1:5

The constant α = (1+√
17)/8 in line 1 of the algorithm controls the growth factor, and

aij is the i j-th entry of the matrix Aafter computing all delayed updates in Algorithm 1
on column i. Although the partial pivoting strategy is backward stable [Higham 2002],
the possibly large elements in the unit lower triangular matrix L may cause numerical
difficulty. Rook pivoting provides an alternative that in practice proves to be more
stable, at a modest additional cost. This procedure is presented in Algorithm 4. The
algorithm searches the pivots of the matrix in spiral order until it finds an element that
is largest in absolute value in both its row and its column, or terminates if it finds a
relatively large diagonal element. Although theoretically rook pivoting could traverse
many columns, we found that it is as fast as Bunch-Kaufman in practice, and we use
it as the default pivoting scheme of SYM-ILDL.

ALGORITHM 4: LDLT Using the Rook Pivoting Strategy

1 α ← (1 + √
17)/8 (≈0.64)

2 ω1 ← maximum magnitude of any subdiagonal entry in column 1
3 if |a11| ≥ αω1 then
4 Use a11 as a 1 × 1 pivot (s = 1)
5 else
6 i ← 1
7 while a pivot is not yet chosen do
8 r ← row index of first (subdiagonal) entry of maximum magnitude in column i
9 ωr ← maximum magnitude of any off-diagonal entry in column r

10 if |arr | ≥ αωr then
11 Use arr as a 1×1 pivot (s = 1, swap rows and columns 1 and r)
12 else if ωi = ωr then

13 Use
(

aii ari
ari arr

)
as a 2×2 pivot (s = 2, swap rows and columns 1 and i, and 2 and r)

14 else
15 i ← r
16 ωi ← ωr

17 end
18 end
19 end

2.3. Equilibration and Reordering Strategies

In many cases of practical interest, the input matrix is ill conditioned. For these cases,
equilibration schemes have been shown to be effective in lowering the condition num-
ber of the matrix. Symmetric equilibration schemes rescale entries of the matrix by
computing a diagonal matrix D such that DAD has equal row norms and column
norms.

SYM-ILDL offers three equilibration schemes. Two of the equilibration schemes are
built in: Bunch’s equilibration in the max-norm [Bunch 1971] and Ruiz’s iterative
equilibration in any Lp-norm [Ruiz 2001]. Additionally, a wrapper is provided so that
one can use MC64, a matching-based reordering and equilibration algorithm.

2.3.1. Bunch’s Equilibration. Bunch’s equilibration allows the user to scale the max-norm
of every row and column to 1 before factorization. Let T be the lower triangular part of A
in absolute value (diagonal included)—that is, Tij = |Aij |, 1 ≤ j ≤ i ≤ n. Then Bunch’s
algorithm runs in O(nnz(A)) time and is based on the following greedy procedure:
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For 1 ≤ i ≤ n, set

Dii :=
(

max
{√

Tii, max
1≤ j≤i−1

DjjTij

})−1

.

2.3.2. Ruiz’s Equilibration. Ruiz’s equilibration allows the user to scale every row and
column of the matrix to 1 in any Lp norm, provided that p ≥ 1 and the matrix has
support [Ruiz 2001]. For the max-norm, Ruiz’s algorithm scales each column’s norm
to within ε of 1 in O(nnz(A) log 1

ε
) time for any given tolerance ε. We use a variant of

Ruiz’s algorithm that is similar in spirit but produces different scaling factors.
Let r(A, i) and c(A, i) denote the i-th row and column of A, respectively, and let D(i, α)

to be the diagonal matrix with Djj = 1 for all j �= i and Dii = α. Using this notation,
our variant of Ruiz’s algorithm is shown in Algorithm 5.

ALGORITHM 5: Equilibrating General Matrices in the Max-Norm
Input: A general matrix A
Output: Diagonal matrices R and C such that RAC has max-norm 1 in every row and

column
1 R ← I
2 C ← I
3 Ã ← A
4 while R and C have not yet converged do
5 for i := 1 to n do
6 αr ← 1√

||r(Ã,i)||∞
7 αc ← 1√

||c(Ã,i)||∞
8 R ← R · D(i, αr)
9 C ← C · D(i, αc)

10 Ã ← D(i, αr)ÃD(i, αc)
11 end
12 end

Our presentation differs from Ruiz’s original algorithm in that it operates on one row
and column at a time as opposed to operating on the entire matrix in each iteration.
We implemented the algorithm this way because it naturally adapts to our storage
structures; our code is more easily amenable to single-column operations rather than
matrix-vector products. Hence, Ruiz’s original implementation and ours produce quite
different scaling matrices. However, a proof of correctness similar to that of of Ruiz’s
algorithm applies, with the same guarantee for the running time.

2.3.3. Matching-Based Equilibration. The use of weighted matchings provides an effec-
tive technique to improve the stability of computing factorizations. In many cases,
reorderings based on weighted matchings provided an effective form of static pivot-
ing for tough indefinite symmetric problems [Hagemann and Schenk 2006]. Our code
provides a wrapper to the well-known HSL_MC64 software package, which implements
a matching-based equilibration algorithm. When MC64 is installed, our code will use
a symmetrized variant of it to generate a scaling matrix that scales the max-norm of
every row and column to 1. More details regarding the functionality of MC64 can be
found in Duff and Koster [2001] and Duff and Pralet [2005], as well as in the manual
of the HSL Mathematical Software Library.
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2.3.4. Comparison of Equilibration Strategies. Ruiz’s strategy seems to perform well in
terms of preserving diagonal dominance when no reordering strategy is used. In fact,
we observed that for certain skew-symmetric systems, Ruiz’s equilibration leads to con-
vergence of the iterative solver, whereas Bunch’s approach does not. However, Bunch’s
equilibration strategy is faster, being a one-pass procedure. When MC64 is available,
its speed and scaling are comparable with Bunch’s algorithm. However, there are some
matrices in our test suite for which MC64 provides a suboptimal equilibration. In our
experiments, we use Bunch’s algorithm as the default.

2.3.5. Fill-Reducing Reorderings. After equilibration, we carry out a reordering strategy.
The user is given the option of choosing from approximate minimum degree (AMD)
[Amestoy et al. 1996], reverse Cuthill-McKee (RCM) [George and Liu 1981], and MC64.
AMD and RCM are built into SYM-ILDL, but MC64 requires the installation of an
external library. Whereas RCM and AMD are meant to reduce fill, MC64 computes
a symmetric reordering of the matrix so that larger elements are placed near the
diagonal. This has the effect of improving stability during the factorization but may
increase fill. Although there are matrices in our tests for which MC64 reordering is
effective, we found reducing fill to be more important, as our pivoting procedures deal
with stability issues already. For the purpose of improving diagonal dominance while
reducing fill, a common strategy is to combine MC64 with a fill-reducing reordering
such as AMD or METIS [Schenk and Gärtner 2006; Hagemann and Schenk 2006]. We
use the procedure described in Hagemann and Schenk [2006], which first preprocesses
the matrix with MC64 and then compresses 2×2 pivots identified during the matching.
The rows/columns corresponding to the pivots have their zero patterns merged and are
replaced by a single row/column. Then AMD is run on the condensed matrix, after
which the pivots are expanded back into two rows and columns. This procedure is
implemented in HSL_MC80. Although MC80 is not built into our package, the results
obtained by MC80 are comparable to those obtained by AMD and MC64. These results
can be found in the appendix. For reducing fill, we found both MC80 and AMD to be
effective for our test cases. As MC80 requires an external library, AMD is set as the
default in the code.

2.4. LDL and ILDL Factorizations for Skew-Symmetric Matrices

The real skew-symmetric case is different from the symmetric indefinite case in the
sense that here we must always use 2 × 2 pivots because diagonal elements of real
skew-symmetric matrices are zero. This simplifies both the Bunch-Kaufman and Rook
pivoting procedures: we have only one case in both scenarios. Algorithm 6 illustrates the
simplification for rook pivoting (the simplification for Bunch is similar). Furthermore,
as opposed to a typical 2 × 2 symmetric matrix, which is defined by three parameters,
the analogous real skew-symmetric matrix is defined by one parameter only. As a
result, at the k-th step, the computation of the multiplier and the subsequent update
of pair of columns associated with the pivoting operation can be expressed as follows:

Ak+2:n,k:k+1 A−1
k:k+1,k:k+1 = Ak+2:n,k:k+1

(
0 −ak+1,k

ak+1,k 0

)−1

= 1
ak+1,k

Ak+2:n,k:k+1

(
0 1

−1 0

)
,

which can be trivially computed by swapping columns k and k + 1 and scaling.
The ILDL factorization for skew-symmetric matrices can thus be carried out similarly

to the manner in which it is developed for symmetric indefinite matrices, but the even-
tual algorithm gives rise to the simplifications described previously. Skew-symmetric

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 1, Publication date: April 2017.



1:8 C. Greif et al.

ALGORITHM 6: LDLT Using the Rook Pivoting Strategy for Skew-Symmetric Matrices
1 ω1 ← maximum magnitude of any subdiagonal entry in column 1
2 i ← 1
3 while a pivot is not yet chosen do
4 r ← row index of first (subdiagonal) entry of maximum magnitude in column i
5 ωr ← maximum magnitude of any off-diagonal entry in column r
6 if ωi = ωr then

7 Use
(

0 −ari
ari 0

)
as a 2 × 2 pivot (swap rows and columns 1 and i, and 2 and r)

8 else
9 i ← r

10 ωi ← ωr

11 end
12 end

matrices are often ill conditioned, and we experimentally found that computing a nu-
merical solution effectively for those systems is challenging. More details are provided
in Section 5.

3. ITERATIVE SOLVERS FOR SYM-ILDL

In SYM-ILDL, we implement two preconditioned iterative solvers: SQMR and MIN-
RES. For SQMR, we can use the ILDL factorization as a preconditioner directly. For
MINRES, we require the preconditioner to be positive definite and modify our LDLT

as described in Section 3.
In our experiments, SQMR usually took fewer iterations to converge, with the same

arithmetic cost per iteration. However, we found MINRES to be useful and more sta-
ble in difficult problems where SQMR stagnates (see Section 5). In these problems,
MINRES returns a solution vector with a much smaller residual than SQMR in fewer
iterations.

3.1. A Specialized Preconditioner for MINRES

In the following, we describe techniques for generating MINRES preconditioned itera-
tions using positive definite versions of the incomplete factorization. For the symmetric
indefinite case, we apply the method presented in Gill et al. [1992]. Given M = LDLT ,
let us focus our attention on the various options for the blocks of D. Our ultimate goal
is to modify D and L such that D is diagonal with only 1 or −1 as its diagonal entries.
If a block of the matrix D from the original LDLT factorization was 2 × 2, then the
corresponding modified (diagonal) block would become( ±1 0

0 ∓1

)
.

For a diagonal entry of D that appears as a 1 × 1 block, say, di,i, we rescale the i-th row
of L: L(i, :) → L(i, :)

√|di,i|. We can then set the new value of di,i as sgn(di,i). In practice,
there is no need to perform a multiplication of a row of L by

√|di,i|; instead, this scalar
is stored separately, and its multiplicative effect is computed as an O(1) operation for
every matrix vector product.

Now consider a 2 × 2 block of D, say Dj . For this case, we compute the eigendecom-
position

Dj = Qj� j QT
j ,
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Fig. 1. Eigenvalues of a preconditioned symmetric random 300 × 300 matrix (in red). Note the clustering
at 1 and –1. Entries in the matrix are drawn from the standard normal distribution. The unpreconditioned
eigenvalues are in blue.

and similarly to the case of a 1×1 block, we implicitly rescale two rows of L by Qj
√|� j |.

This means that L is no longer triangular; it is in fact lower Hessenberg, as some values
above the main diagonal may become nonzero. But the solve is just as straightforward,
as the decomposition is explicitly given.

Since L was originally a unit lower triangular matrix that was scaled by positive
scalars, LLT is symmetric positive definite and we use it as a preconditioner for
MINRES. Note that if we were to compute the full LDLT decomposition and scale
L as described earlier, then MINERS would converge within two iterations (in the
absence of round-off errors), thanks to the two eigenvalues of D, namely 1 and −1.

In the skew-symmetric case, we may use a specialized version of MINRES [Greif and
Varah 2009]. We only have 2 × 2 blocks, and for those we know that(

0 aj, j
−aj, j 0

)
=

( √|aj, j | 0
0

√|aj, j |
)(

0 ±1
∓1 0

)( √|aj, j | 0
0

√|aj, j |
)

.

Therefore, we do not need an eigendecomposition (as in the symmetric case), and
instead we just scale the two affected rows of L by

√|aj, j |I2.
Figure 1 shows the clustering effect that the proposed preconditioning approach has.

We generate a random real symmetric 300×300 matrix A (with entries drawn from the
standard normal distribution) and compute the eigenvalues of (LDLT )−1 A, where L and
D are the matrices generated in the preconditioning procedure described previously.
Our fill factor is 2.0, and the drop tolerance was 10−4. We note that the eigenvalue
distribution in the figure is typical for other cases tested.

4. IMPLEMENTATION

4.1. Matrix Storage in SYM-ILDL

Since we are dealing with symmetric or skew-symmetric matrices, one of our goals
is to avoid duplicating data. At the same time, it is necessary for SYM-ILDL to have
both fast column access and fast row access. In terms of storage, we deal with these
requirements by generating a format similar to standard compressed sparse column

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 1, Publication date: April 2017.
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Fig. 2. Graphical representation of the data structures of SYM-ILDL. col_first and row_first are shown
during the third iteration of the factorization. Hence, col_first holds the values of indices in col_list for
the first element under or on the third row of the matrix. Similarly, row_first holds the values of indices in
row_list for the last element not exceeding the third column of the matrix.

form, along with compressed sparse row form without the nonzero floating point matrix
values. Matrices are stored in a list-of-arrays format. Each column is represented
internally as two dynamically sized arrays, storing both its nonzero values col_val
and row indices (col_list). These arrays facilitate fast random accesses and removals
from the middle of the array (by simply swapping the value to be deleted to the end
of the array and decrementing its size by 1). Meanwhile, another array holds pairs of
pointers to the two column arrays of each column. One advantage of this format is that
swapping columns and deallocating their memory is much easier, as we only need to
operate on the array holding column pointers. Additionally, a row-major data structure
(row_list) is used to maintain fast access across the nonzeros of each row (Figure 2).
This is obtained by representing each row internally as a single array, storing the
column indices of each row in an array (the nonzero values are already stored in the
column-major representation).

Our format is an improvement over storing the full matrix in standard CSC, as used
in Li and Saad [2005]. Assuming that the row and column indices are stored in 32-bit
integers and the nonzero values are stored in 64-bit doubles, this gives us an overall
33% saving in storage if we were to store the factorization in-place. This is an easy
modification of Algorithm 3. In the default implementation, we find it more useful to
store an equilibrated and permuted copy of the original matrix so that we may use
it for MINRES after the preconditioner is computed. An in-place version that returns
only the preconditioner is included as part of our package.

4.2. Data Structures for Matrix Access

In ILUC [Li and Saad 2005], a bi-index data structure was developed to address
two implementation difficulties in sparse matrix operations, following earlier work by
Eisenstat et al. [1981] in the context of the Yale Sparse Matrix Package (YSMP) and
Jones and Plassmann [1995]. Our implementation uses a similar bi-index data struc-
ture, which we briefly describe in the following.

Internally, the column and row indices in the matrix are stored in partial order, with
one array per column and row. On the k-th iteration, elements are partially sorted so
that all row indices less than k are stored in a contiguous segment per column, and
all row indices greater or equal to k are stored in another contiguous segment. Within
each segment, the elements are unsorted. This avoids the cost of sorting whenever
we need to pivot. Since elements are partially sorted, accessing specific elements of
the matrix is difficult and requires a slow linear search. Luckily, because Algorithm 3
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Table I. Variable Names with Data Structure Types

Variable Name Data Structure Type Purpose
col_first n length array Speeds up access to Lk+1:n,i (i.e., row_list)
row_first n length array Speeds up access to Ai,1:k (i.e., col_list)
row_list n dynamic arrays (row-major) Stores indices of A across the rows
col_list n dynamic arrays (col-major) Stores indices of A across the columns
col_val n dynamic arrays (col-major) Stores nonzero coefficients of A

accesses elements in a predictable fashion, we can speed up access to subcolumns
required during the factorization to O(1) amortized time. The strategy we use to speed
up matrix access is similar to that of Jones and Plassmann [1995]. To ensure fast access
to the submatrix Lk+1:n,1:k and the row Lk,: during factorization, we use one additional
length n array: col_first. On the k-th iteration, the i-th element of col_first holds an
offset that stores the dividing index between indices less than k and greater or equal
to k. In effect, col_first gives us fast access to the start of the submatrix Lk+1:n,i in
col_list and speeds up Algorithm 1, allowing us access to the submatrix in O(1) time.
To get fast access to the list of columns that contribute to the update of the (k + 1)-
st column, we use the row structure row_list discussed in Section 4.1. To speed up
access to row_list, we maintain a row_first array that is implemented similarly to
col_first. Overall, this reduces the access time of the submatrix Lk+1:n,1:k and row Lk
down to a cost proportional to the number of nonzeros in these submatrices.

Before the first iteration, col_first(i) is initialized to an array of all zeros. To
ensure that col_first(i) stores the correct offset to the start of the subcolumn Lk+1:n,i
on step k, we increment the offset for col_first(i) (if needed) at the end of processing
the k-th column. Since the column indices in col_list are unsorted, this step requires
a linear search to find the smallest element in col_list. Once this element is found,
we swap it to the correct spot so that the column indices for Lk+1:n,i are in a contiguous
segment of memory. We found it helpful to speed up the linear search by ensuring that
the indices of A are sorted before beginning the factorization. This has the effect that
A remains roughly sorted when there are few pivot steps.

Similarly, we will also need to access the subrows Ak,1:k and Ar,1:k during the pivoting
stage (lines 11 through 15 in Algorithms 3 and 4). This is sped up by an analogous
row_first(i) structure that stores offsets to the end of the subrow Ai,1:k (Ai,1:k is the
memory region that encompasses everything from the start of memory for that row
to row_first(i)). At the end of step k, we also increment the offsets for row_first if
needed.

A summary of data structures can be found in Table I.

5. NUMERICAL EXPERIMENTS

All of our experiments were run single threaded on a machine with a 2.1GHz Intel
Xeon CPU and 128GB of RAM. In our experiments, we follow the conventions of Li and
Saad [2005] and Li et al. [2003], and we define the fill of a factorization as nnz(L +
D + LT )/nnz(A). Recall that fill_factor is the maximum allowed ratio between the
number of nonzeros in any column of L and the average number of nonzeros per
column of A. Therefore, the fill of our preconditioner is bounded by approximately
2 · fill factor; the factor of 2 arises from the symmetry.

5.1. Results for Symmetric Matrices

5.1.1. Tests on General Symmetric Indefinite Matrices. For testing our code, we use the Uni-
versity of Florida (UF) collection [Davis and Hu 2011] as well as our own matrices. The
UF collection provides a variety of symmetric matrices, which we specify in Tables II
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Table II. Factorization Timings and SQMR Iterations for Test Matrices

Matrix n nnz(A) Fill Time (s) Type Iterations
aug3dcqp 35,543 128,115 1.9 0.05+0.15 ILDL(B+AMD) 24

7.3 2.66+0.20 ILUTP(B+AMD) 6
bloweya 30,004 150,009 1.0 0.07+0.02 ILDL(MC64+MC64R) 3

3.2 7.86+0.10 ILUTP(B+MC64R) 3
bratu3d 27,792 173,796 3.8 0.25+0.11 ILDL(B+MC64R) 18

8.1 8.50+0.54 ILUTP(B+MC64R) 11
tuma1 22,967 87,760 3.0 0.05+0.13 ILDL(MC64+MC64R) 35

7.8 2.68+0.58 ILUTP(B+AMD) 14
tuma2 12,992 49,365 3.0 0.03+0.09 ILDL(MC64+MC64R) 28

6.9 0.72+0.23 ILUTP(B+AMD) 13
boyd1 93,279 1,211,231 1.0 0.10+0.50 ILDL(B+AMD) 3

0.8 0.26+0.86 ILUTP(B+MC64R) 10
brainpc2 27,607 179,395 1.0 0.31+0.10 ILDL(MC64+MC64R) 31

0.6 0.54+38.7 ILUTP(B+AMD) NC
mario001 38,434 204,912 3.7 0.13+0.56 ILDL(B+MC64R) 52

8.0 2.47+0.54 ILUTP(B+AMD) 8
qpband 20,000 45,000 1.1 0.008+0.004 ILDL(B+AMD) 1

1.1 0.008+0.021 ILUTP(B+AMD) 1
nlpkkt80 1,062,400 28,192,672 8.0 153+53 ILDL(B+MC64R) 34

4.1 6,803+2,502 ILUTP(B+AMD) NC
nlpkkt120 3,542,400 95,117,792 8.0 525+334 ILDL(B+MC64R) 58

— — ILUTP —
The experiments were run with fill_factor = 2.0 for the smaller matrices and fill_factor = 4.0 for
matrices larger than 1 million in dimension. The tolerance was drop_tol = 10−4, and we used rook pivoting
to maintain stability. The iteration was terminated when the norm of the relative residual went below 10−6.
The time is reported as x + y, where x is the preconditioning time and y is the iterative solver time. Times
labeled with a dash (—) took more than 10 hours to run and were terminated before completion. Iteration
counts labeled with NC indicate that the problem did not converge within 1,000 iterations.

Table III. Comparison of MATLAB’s ILUTP and SYM-ILDL for Helmholtz Matrices

Matrix n nnz(A)
ILU
Fill

ILU GEMRES
Iterations

ILDL
Fill

ILDL GMRES
Iterations

α = 0.3/h2, Extra memory for ILUTP
helmholtz80 6,400 31,680 7.7 11 7.6 8
helmholtz120 14,400 71,520 10.6 13 10.3 8
helmholtz160 25,600 127,360 12.3 17 12.3 8
helmholtz200 40,000 199,200 14.1 24 14.0 11

α = 0.7/h2, Extra memory for ILUTP
helmholtz80 6,400 31,680 7.4 5 7.5 8
helmholtz120 14,400 71,520 13.4 10 14.0 18
helmholtz160 25,600 127,360 16.4 15 16.7 43
helmholtz200 40,000 199,200 19.5 20 20.8 86

α = 0.7/h2, Equal memory for ILDL and ILUTP
helmholtz80 6,400 31,680 7.4 5 11.0 6
helmholtz120 14,400 71,520 13.4 10 18.6 6
helmholtz160 25,600 127,360 16.4 15 22.8 8
helmholtz200 40,000 199,200 19.5 20 33.0 11

The parameter α in Equation (1) is indicated above. GMRES was terminated when the relative residual
decreased below 10−6.

and IV. We used some of the same matrices used in the work of Li and Saad [2005], Li
et al. [2003], and Scott and Tuma [2014a].

In Table II, we show the results of experiments with a set of matrices from Davis
and Hu [2011] and comparisons with MATLAB’s ILUTP. The matrix dimensions go up
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Fig. 3. Number of SQMR iterations and total precondition+solve time as a function of tolerance. Tests were
performed on the tuma1 matrix with Bunch equilibration, AMD reordering, and fill_factor set to ∞ (to
measure only the tolerance dropping rule).

to approximately 4 million, with the number of nonzeros going up to approximately
100 million. We show timings for constructing the ILDL factorization and an iterative
solution, applying preconditioned SQMR for SYM-ILDL and GMRES(20) for ILUTP
with drop tolerance 10−3 for a maximum of 1,000 iterations. We apply either Bunch’s
equilibration or MC64 scaling and either AMD or MC64 reordering (MC64R) before
generating the ILDL factorization. Preconditioned SQMR is run with SYM-ILDL for
a maximum of 1,000 iterations. We show the best results in Table II out of the four
possible reordering and equilibration combinations for both ILUTP and ILDL. We also
tested the ILDL preconditioner with HSL_MC80 reordering and equilibration and found
it to be comparable with the best of the four preceding combinations. The full test
data for all four combinations and tests with MC80 can be found later in Tables VI
and VII in the appendix. For the incomplete factorization, we apply rook pivoting. We
observe that ILDL achieves similar iteration counts with a far sparser preconditioner.
Furthermore, even for cases where ILDL was beaten on iteration count, we see that
the denser factor of ILUTP causes the overall solve time to be much slower than ILDL.
When ILDL and ILUTP have similar fill, ILDL converges in fewer iterations.

In Figure 3, we examine the sensitivity of ILDL to input tolerance. We plot the num-
ber of iterations and the timings for a changing value of the tolerance. We observe the
expected behavior. As the tolerance decreases, there is a trade-off between precondi-
tioning time and iteration count. Thus, the total computational time is high at both
extremes. That said, there is a large range of values of tolerance for which both time
and iterations are modest. Altogether, ILDL works well for all test cases with fairly
generic parameters.

5.1.2. Further Comparisons with MATLAB’s ILUTP. To show the memory efficiency of our
code, we consider matrices associated with the discrete Helmholtz equation,

−�u − αu = f, (1)
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Table IV. GMRES Comparisons Between SYM-ILDL and HSL_MI30

Matrix MI30 SYM-ILDL
Name n nnz(A) FillMI30 Iterations Time (s) FillSYM-ILDL Iterations Time (s)
c-55 32,780 403,450 3.45 49 1.25+0.94 2.95 15 0.23+0.15
c-59 41,282 480,536 3.62 70 1.59+1.84 2.99 15 0.36+0.20
c-63 44,234 434,704 4.10 51 1.53+1.23 2.92 15 0.29+0.21
c-68 64,810 565,996 4.12 37 1.87+1.12 2.31 9 0.31+0.17
c-69 67,458 623,914 4.33 43 4.07+1.47 2.65 9 0.35+0.18
c-70 68,924 658,986 4.26 38 3.77+1.30 2.67 11 0.40+0.24
c-71 76,638 859,520 3.58 61 3.93+2.71 3.00 12 0.74+0.32
c-72 84,064 707,546 4.18 54 3.05+2.40 2.69 9 0.40+0.31
c-big 345,241 2,340,859 4.82 67 23.4+25.3 2.54 8 1.20+0.93

For each test case, we report the time it takes to compute the preconditioner, as well as the GMRES time
and the number of GMRES iterations. The time is reported as x + y, where x is the preconditioning time and
y is the GMRES time. GMRES was terminated when the relative residual decreased below 10−6.

subject to Dirichlet boundary conditions on the unit square, discretized using a uniform
mesh of size h. Here we choose a moderate value of α so that a symmetric indefinite
matrix is generated. The choice of α may have a significant impact on the conditioning
of the matrix. In particular, if α is an eigenvalue, then the shifted matrix is singular.
In SYM-ILDL, a singular matrix will trigger static pivoting and may add a significant
computational overhead. In our numerical experiments, we stayed away from choices
of α such that the shifted matrix is singular. Although we could have used the same
matrices as in Table II, additional tests using Helmholtz matrices provide a greater
degree of insight since we know its spectra and can easily control the dimension and
number of nonzeros.

In Table III, we present results for the Helmholtz model problem. We compare SYM-
ILDL to MATLAB’s ILUTP. For ILUTP, we used a drop tolerance of 10−3 in all test cases.
For ILDL, fill_factor was set to ∞ (since ILUTP does not limit its intermediate
memory by a fill factor), and the drop_tol parameter was then chosen to get roughly
the same fill as that of ILUTP. In the context of the ILUTP preconditioner, the fill is
defined as nnz(L + U )/nnz(A).

For both ILDL and ILUTP, GMRES(100) was used as the iterative solver and the
input matrix was scaled with Bunch equilibration and reordered with AMD. During
the computation of the preconditioner, the in-place version of ILDL uses only about 2/3
of the memory used by ILUTP. During the GMRES solve, the ILDL preconditioner only
uses about 1/2 of the memory used by ILUTP. We note that ILDL could also be used
with SQMR, which has a much smaller memory footprint than GMRES.

We observe that the performance of ILDL on the Helmholtz model problem is depen-
dent on the value of α chosen, but that if ILDL is given the same memory resources
as ILUTP, ILDL outperforms ILUTP. The memory usage of ILUTP and ILDL are mea-
sured through the MATLAB profiler. For α = 0.3/h2, the ILDL approach leads to lower
iteration counts even when approximately 1/2 of the memory is allocated (i.e., when
the same fill is allowed), whereas for α = 0.7/h2, ILUTP outperforms ILDL when the
fill is roughly the same. If we allow ILDL to have memory usage as large as ILUTP
(i.e., up to roughly 3/2 the fill), we see that ILDL clearly has lower iteration counts for
GMRES.

5.1.3. Comparisons with HSL_MI30. In Table IV, we compare our code to that of Scott and
Tuma [2014a], implemented in the package HSL_MI30. This comparison was already
done in Scott and Tuma [2014a] with an older version of SYM-ILDL. However, with
recent improvements, we see that SYM-ILDL generally takes two to six times fewer
iterations than HSL_MI30. The matrices with which we compare are a subset of the
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Fig. 4. Eigenvalues of an unpreconditioned (left) and preconditioned (right) skew-symmetric 1,000 × 1,000
matrix A arising from a convection-diffusion model problem.

Table V. Comparison of MATLAB’s ILUTP and SYM-ILDL for a Skew-Symmetric Matrix Arising
from a Model Convection-Diffusion Equation

n nnz(A) Method Drop Tolerance Fill GMRES(20) Time (s)
ILDL-rook 4 · 10−4 7.008 6 0.130+0.041

203 = 8,000 45,600 ILDL-partial 5 · 10−4 6.861 6 0.138+0.041
ILUTP 10−3 7.758 8 0.406+0.038
ILDL-rook 2 · 10−4 10.973 8 0.936+0.246

303 = 27,000 156,600 ILDL-partial 3 · 10−4 11.235 10 1.162+0.331
ILUTP 10−3 11.758 13 4.475+0.307
ILDL-rook 9 · 10−5 15.205 9 3.820+0.855

403 = 64,000 374,400 ILDL-partial 3 · 10−4 15.686 18 4.971+1.582
ILUTP 10−3 15.654 19 26.63+1.40
ILDL-rook 2 · 10−5 21.560 6 15.39+1.76

503 = 125,000 735,000 ILDL-partial 2 · 10−4 22.028 62 21.11+17.95
ILUTP 10−3 22.691 58 151.14+11.60
ILDL-rook 2 · 10−5 22.595 9 34.82+4.02

603 = 216,000 1,274,400 ILDL-partial 4 · 10−4 22.899 NC 36.17+NC
ILUTP 10−3 23.483 NC 356.60+NC
ILDL-rook 5 · 10−6 32.963 5 106.81+3.25

703 = 343,000 2,028,600 ILDL-partial 4 · 10−4 36.959 NC 156.52+NC
ILUTP 10−3 33.861 NC 876.33+NC

The parameters used were β = 20, γ = 2, δ = 1. The MATLAB ILUTP used a drop tolerance of 0.001. NC
stands for no convergence.

matrices used in the original comparison. In particular, these matrices were ones for
which SYM-ILDL performed the most poorly in the original comparison. The matrices
were obtained from the UF matrix collection [Davis and Hu 2011].

The parameters used here are almost the same as in the original comparison. For
HSL_MI30, we used the built-in MATLAB interface, set lsize and rsize to 30, α(1 : 2)
both to 0.1, the drop tolerances τ1 and τ2 to 10−3 and 10−4, and used the built-in
MC77 equilibration (which performed the best out of all possible equilibration options,
including MC64). We also tried all possible reordering options for HSL_MI30 and found
that the natural ordering performed the best. For SYM-ILDL, we used fill_factor of
12.0, drop_tol of 0.003, as in the original comparison. The only difference between the
original comparison and this one is that rook pivoting is used for stability and MC80 is
used for equilibration and reordering. We also performed additional tests using MC64
for equilibration and AMD for reordering and found a comparable number of iterations
with higher fill. All tests can be found in Table VIII of the appendix.
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We note that although we set fill_factor to be 12.0 in all comparisons with
HSL_MI30, SYM-ILDL can have similar performance with a much smaller fill_factor.

5.2. Results for Skew-Symmetric Matrices

We test with a skew-symmetrized version of a model convection-diffusion equation,
which is a discrete version of

−�u + (σ, τ, μ)∇u = f, (2)

with Dirichlet boundary conditions on the unit square, discretized using a uniform
mesh of size h. We define the mesh Péclet numbers

β = σh/2, γ = τh/2, δ = μh/2.

We use the skew-symmetric part of this matrix (i.e., given A, form A−AT

2 ) for our skew-
symmetric experiments.

In our tests, we found that equilibration has not been particularly effective. We spec-
ulate that this might have to do with a property related to block diagonal dominance
that these matrices have for certain values of the convective coefficients. Specifically,
the norm of the tridiagonal part of the matrix is significantly larger than the norm
of the remaining part. Equilibration tends to adversely affect this property by scaling
down entries near the diagonal; as a result, the performance of an iterative solver often
degrades. We thus do not apply equilibration in our skew-symmetric solver.

In Table V, we manipulate the drop tolerance for ILDL to obtain a fill nearly equal
to that of ILUTP. For the latter, we fix the drop tolerance at 0.001. This is done for
the purpose of comparing the performance of the iterative solvers when the memory
requirements of ILUTP and ILDL are similar. Prior to preconditioning, we apply AMD
as a fill-reducing reordering. We apply preconditioned GMRES(100) to solve the linear
system until either a residual of 10−6 is reached or until 1,000 iterations are used. If
the linear system fails to converge after 1,000 iterations, we mark it as NC. We see that
the iteration counts are significantly better for ILDL, especially when rook pivoting is
used. Note that our ILDL still consumes only about 2/3 of the memory of ILUTP due
to the fact that the floating point entries of only half of the matrix are stored.

In Figure 4, we show the (complex) eigenvalues of the preconditioned matrix
(LDLT )−1 A, where A is the skew-symmetric part of 2 with convective coefficients
(β, γ, δ) = (0.4, 0.5, 0.6), and LDLT is the preconditioner generated by running SYM-
ILDL with a drop tolerance of 10−3 and a fill-in parameter of 20.

For the purpose of comparison, we also show the unpreconditioned eigenvalues. As
seen in the figure, most of the preconditioned eigenvalues are very strongly clustered
around 1, which indicates that a preconditioned iterative solver is expected to rapidly
converge. The unpreconditioned eigenvalues are pure imaginary and follow the for-
mula

2 (β cos ( jπh) + γ cos (kπh) + δ cos (πh)) ı,

where 1 ≤ j, k,  ≤ 1/h.

6. OBTAINING AND CONTRIBUTING TO SYM-ILDL

SYM-ILDL is open source, and documentation can be found at http://www.cs.ubc.ca/
∼greif/code/sym-ildl.html. We essentially allow free use of our software with no
restrictions. To this end, SYM-ILDL uses the MIT Software License.

We welcome any contributions to our code. Details on the contribution process can
be found using the preceding URL. Certainly, more code optimization is possible, such
as parallelization; such tasks remain as items for future work.
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APPENDIX

The following table uses HSL_MC80 on matrices from Tables I and III in this article. For
MC80, we chose AMD as the fill-reducing reordering after the matching stage. Only
matrices from these two tables were used, as all other matrices in our tests were well
scaled and block-diagonally dominant to begin with (e.g., the Helmholtz problem of
Table II).

Table VI. Factorization Timings and Iterative Solver Iterations for Test Matrices

Matrix n nnz(A) Fill Time (s) Type Iterations
1.9 0.051+0.148 ILDL(B+AMD) 24
3.3 0.063+0.442 ILDL(MC64+MC64R) 55

aug3dcqp 35, 543 128, 115 2.1 0.068+0.261 ILDL(MC64+AMD) 33
3.2 0.063+0.223 ILDL(B+MC64R) 33

7.3 2.655+0.198 ILUTP(B+AMD) 6
21.2 11.674+0.890 ILUTP(MC64+MC64R) 14
36.0 11.513+0.397 ILUTP(MC64+AMD) 6
7.4 1.753+0.215 ILUTP(B+MC64R) 7
0.9 0.030+0.081 ILDL(B+AMD) 18
1.0 0.071+0.014 ILDL(MC64+MC64R) 3

bloweya 30, 004 150, 009 1.0 0.023+0.019 ILDL(MC64+AMD) 5
0.9 0.152+0.126 ILDL(B+MC64R) 18

2.8 38.817+0.101 ILUTP(B+AMD) 4
6.1 2.726+0.109 ILUTP(MC64+MC64R) 4
2.9 39.537+0.104 ILUTP(MC64+AMD) 4
3.2 7.858+0.100 ILUTP(B+MC64R) 3
3.8 0.358+0.155 ILDL(B+AMD) 23
3.6 0.155+0.124 ILDL(MC64+MC64R) 24

bratu3d 27, 792 173, 796 3.6 0.231+0.272 ILDL(MC64+AMD) 36
3.8 0.245+0.105 ILDL(B+MC64R) 18

8.6 22.237+0.214 ILUTP(B+AMD) 9
10.3 13.114+0.962 ILUTP(MC64+MC64R) 18
9.8 32.717+0.500 ILUTP(MC64+AMD) 10
8.1 8.480+0.540 ILUTP(B+MC64R) 11
2.9 0.044+0.201 ILDL(B+AMD) 50
3.0 0.051+0.132 ILDL(MC64+MC64R) 35

tuma1 22, 967 87, 760 3.0 0.077+0.299 ILDL(MC64+AMD) 54
3.0 0.046+0.220 ILDL(B+MC64R) 59

7.8 2.686+0.582 ILUTP(B+AMD) 14
40.0 19.476+0.495 ILUTP(MC64+MC64R) 8
20.7 7.268+0.242 ILUTP(MC64+AMD) 6
17.7 7.750+51.991 ILUTP(B+MC64R) NC
2.8 0.023+0.084 ILDL(B+AMD) 41
3.0 0.029+0.087 ILDL(MC64+MC64R) 28

tuma2 12, 992 49, 365 3.0 0.045+0.104 ILDL(MC64+AMD) 34
3.0 0.041+0.218 ILDL(B+MC64R) 55
6.9 0.720+0.226 ILUTP(B+AMD) 13

33.8 4.140+0.192 ILUTP(MC64+MC64R) 7
19.0 1.936+0.106 ILUTP(MC64+AMD) 5
15.5 2.082+12.341 ILUTP(B+MC64R) 697

(Continued)
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Table VI. (Continued)

Matrix n nnz(A) Fill Time (s) Type Iterations
1.0 0.155+0.077 ILDL(B+AMD) 3
0.6 0.102+0.505 ILDL(MC64+MC64R) 42

boyd1 93, 279 1, 211, 231 1.0 0.123+0.088 ILDL(MC64+AMD) 6
0.6 0.144+0.437 ILDL(B+MC64R) 36

0.8 0.219+1.021 ILUTP(B+AMD) 10
0.8 0.257+0.875 ILUTP(MC64+MC64R) 12
0.8 0.233+1.656 ILUTP(MC64+AMD) 14
0.8 0.188+0.481 ILUTP(B+MC64R) 10
1.0 0.878+0.094 ILDL(B+AMD) 31
1.8 0.315+0.100 ILDL(MC64+MC64R) 31

brainpc2 27, 607 179, 395 1.5 1.661+0.085 ILDL(MC64+AMD) 28
1.8 0.481+0.983 ILDL(B+MC64R) 214

0.6 0.541+38.711 ILUTP(B+AMD) NC
961.5 373.210+1210.140 ILUTP(MC64+MC64R) NC
88.7 15.434+180.070 ILUTP(MC64+AMD) NC
0.6 0.925+38.263 ILUTP(B+MC64R) NC
3.7 0.163+0.541 ILDL(B+AMD) 54
3.6 0.234+0.629 ILDL(MC64+MC64R) 55

mario001 38, 434 204, 912 3.6 0.213+0.603 ILDL(MC64+AMD) 54
3.7 0.129+0.557 ILDL(B+MC64R) 52

8.0 2.474+0.542 ILUTP(B+AMD) 8
9.3 26.39+0.612 ILUTP(MC64+MC64R) 8
9.0 2.552+0.555 ILUTP(MC64R+AMD) 8
8.6 21.73+0.325 ILUTP(B+MC64) 9
1.1 0.008+0.004 ILDL(B+AMD) 1
1.1 0.007+0.004 ILDL(MC64+MC64R) 1

qpband 20, 000 45, 000 1.8 0.014+0.004 ILDL(MC64+AMD) 1
1.1 0.016+0.004 ILDL(B+MC64R) 1

1.1 0.008+0.026 ILUTP(B+AMD) 1
1.1 0.008+0.021 ILUTP(MC64+MC64R) 1
1.2 0.011+0.028 ILUTP(MC64+AMD) 1
1.1 0.010+0.013 ILUTP(B+MC64R) 1
9.5 113+1308 ILDL(B+AMD) 998*

14.5 176+1580 ILDL(MC64+MC64R) 854*
nlpkkt80 1, 062, 400 28, 192, 672 12.3 153+53 ILDL(MC64+AMD) 34

10.6 121+NC ILDL(B+MC64R) NC

4.1 6,803+2,502 ILUTP(B+AMD) NC
— — ILUTP(MC64+MC64R) —
— — ILUTP(MC64+AMD) —
— — ILUTP(B+MC64) —
9.8 401+NC ILDL(B+AMD) NC

14.5 533+NC ILDL(MC64+MC64R) NC
nlpkkt120 3, 542, 400 95, 117, 792 12.4 525+334 ILDL(MC64+AMD) 58

10.9 460+NC ILDL(B+MC64R) NC

— — ILUTP(B+AMD) —
— — ILUTP(MC64+MC64R) —
— — ILUTP(MC64+AMD) —
— — ILUTP(B+MC64) —

The experiments were run with fill_factor = 2.0 for the smaller matrices and fill_factor = 4.0 for
matrices larger than 1 million in dimension. The tolerance was drop_tol = 10−4, and we used rook pivoting
to maintain stability. The iteration was terminated when the norm of the relative residual went below 10−6.
For iteration counts labeled with an asterisk (*), MINRES was used (as SQMR failed to converge). Iteration
counts labeled with NC indicate nonconvergence for both MINRES and SQMR. Times labeled with a dash
(—) took more than 10 hours to run and were terminated before completion.
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Table VII. Results with HSL_MC80 for Matrices in Tables I and III

Matrix n nnz(A) Fill Time (s) Iterations
aug3dcqp 35,543 128,115 2.0 0.051+0.188 28
bloweya 30,004 150,009 0.9 0.036+0.023 4
bratu3d 27,792 173,796 2.9 0.118+0.106 26
tuma1 22,967 87,760 3.0 0.063+0.227 44
tuma2 12,992 49,365 2.9 0.033+0.094 35
boyd1 93,279 1,211,231 1.0 0.120+0.062 4
brainpc2 27,607 179,395 1.5 0.086+0.119 26
mario001 38,434 204,912 3.6 0.110+0.501 59
qpband 20,000 45,000 1.1 0.015+0.004 1
nlpkkt80 1,062,400 28,192,672 7.1 133+86 49
nlpkkt120 3,542,400 95,117,792 — — —
c-55 32,780 403,450 2.95 0.28+0.15 15
c-59 41,282 480,536 2.99 0.36+0.20 15
c-63 44,234 434,704 2.92 0.29+0.21 15
c-68 64,810 565,996 2.31 0.31+0.17 9
c-69 67,458 623,914 2.65 0.35+0.18 9
c-70 68,924 658,986 2.67 0.40+0.24 11
c-71 76,638 859,520 3.00 0.74+0.32 12
c-72 84,064 707,546 2.69 0.40+0.21 9
c-big 345,241 2,340,859 2.54 1.2+0.93 8
Matrices in the first section (delimited by horizontal lines) were run with fill_factor =
2.0 and drop_tol = 10−4. Matrices in the second section were run with fill_factor = 4.0
and drop_tol = 10−4. Matrices in the third section were run with fill_factor = 12.0 and
drop_tol = 0.003. Rook pivoting was used to maintain stability. The iterative solver used
for the first two sections was SQMR, and GMRES was used for the third section. These
settings maintain consistency with Tables I and III. The iteration was terminated when the
norm of the relative residual went below 10−6. Iteration counts labeled with NC indicate
nonconvergence.

Table VIII. GMRES Comparisons Between SYM-ILDL and AMD with MC64 Equilibration

Matrix
Name n nnz(A) FillMI30

MI30
Iterations Time (s) FillSYM-ILDL

SYM-ILDL
Iterations Time (s)

c-55 32,780 403,450 3.45 49 1.25+0.94 3.85 12 0.49+0.15
c-59 41,282 480,536 3.62 70 1.59+1.84 3.70 13 0.59+0.27
c-63 44,234 434,704 4.10 51 1.53+1.23 4.12 13 0.48+0.25
c-68 64,810 565,996 4.12 37 1.87+1.12 4.00 9 0.69+0.26
c-69 67,458 623,914 4.33 43 4.07+1.47 3.93 11 0.64+0.34
c-70 68,924 658,986 4.26 38 3.77+1.30 3.46 13 0.58+0.42
c-71 76,638 859,520 3.58 61 3.93+2.71 4.09 10 1.13+0.40
c-72 84,064 707,546 4.18 54 3.05+2.40 5.33 14 1.15+0.59
c-big 345,241 2,340,859 4.82 67 23.4+25.3 2.92 11 1.89+1.62

For each test case, we report the time it takes to compute the preconditioner, as well as the GMRES time
and the number of GMRES iterations. The time is reported as x + y, where x is the preconditioning time and
y is the GMRES time. GMRES was terminated when the relative residual decreased below 10−6.
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