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BLOCK PRECONDITIONERS FOR THE MARKER-AND-CELL
DISCRETIZATION OF THE STOKES--DARCY EQUATIONS\ast 

CHEN GREIF\dagger AND YUNHUI HE\dagger \ddagger 

Abstract. We consider the problem of iteratively solving large and sparse double saddle-point
systems arising from the stationary Stokes--Darcy equations in two dimensions, discretized by the
marker-and-cell finite difference method. We analyze the eigenvalue distribution of a few ideal block
preconditioners. We then derive practical preconditioners that are based on approximations of Schur
complements that arise in a block decomposition of the double saddle-point matrix. We show that
including the interface conditions in the preconditioners is key in the pursuit of scalability. Numer-
ical results show good convergence behavior of our preconditioned GMRES solver and demonstrate
robustness of the proposed preconditioner with respect to the physical parameters of the problem.

Key words. Stokes--Darcy equations, marker-and-cell, double saddle-point systems, iterative
solution, preconditioning, eigenvalues
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1. Introduction. The numerical solution of coupled fluid problems has at-
tracted considerable attention from researchers and practitioners in the past few
decades, in large part due to the importance of these problems and the computa-
tional challenges that they pose. The Stokes--Darcy model is an example of such a
problem and is the topic of this paper. The equations describe the flow of fluid across
two subdomains: in one subdomain the fluid flows freely, and in the other it flows
through a porous medium. The interface between the subdomains couples the two
flow regimes and plays a central physical, mathematical, and computational role. It
poses a challenge because the flow behaves significantly differently in terms of scale
and other properties in each of the subdomains, and an abrupt change of scale may
occur at the interface. There are several relevant applications of interest here: flow
of water through sand and rock, flow of blood through arterial vessels, problems in
hydrology, environment and climate science, and other applications; see, e.g., the
comprehensive survey [14].

As far as the numerical solution of the equations is concerned, methods that solve
the problem for the entire domain at once have been developed, as well as domain de-
composition methods or iteration-by-subdomain methods, which solve separately the
Stokes and the Darcy problems in an iterative fashion [15, 40, 29, 10, 9, 2, 36, 22, 27].
Different types of discretizations have been applied: finite element methods [26, 48, 12,
33, 5], finite difference/volume methods [41, 43, 31], and other methods [47, 18].

The marker-and-cell (MAC) scheme belongs to the class of finite difference meth-
ods and is our focus in this work. MAC was proposed in [21] for the Stokes and
Navier--Stokes equations. To achieve numerical stability, the scheme uses staggered
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PRECONDITIONERS FOR MAC STOKES--DARCY 1541

grids in which the velocity and pressure are discretized at different locations of a grid
cell. MAC has been used extensively for fluid flow problems, and a significant effort
has been devoted to studying this scheme for Stokes--Darcy, the coupled Navier--Stokes
and Darcy flows [28], Stokes--Darcy--Brinkman equations [45], the compressible Stokes
equations [17], and other multiphysics applications [30, 16]. A review of the MAC
method can be found in [35].

As shown in [37, 34, 41] and several other references, the MAC scheme has a few
advantages. It is well tested and well understood for standard fluid flow problems, and
it allows for a relatively simple implementation. For the Stokes problem, it has been
shown that the MAC scheme can be derived directly from a finite element method [20].
For the Navier--Stokes problem, MAC can be interpreted as a mixed finite element
method of the velocity-vorticity variational formulation [19]. Recent papers prove
numerical stability and convergence of the Stokes--Darcy equations [43, 45]. In this
paper we use the discretization introduced in [43].

Preconditioners for GMRES for the Stokes--Darcy model discretized by the mixed
finite element method have been proposed in [8]. In [13] an indefinite constraint
preconditioner is studied. In [4] an augmented Lagrangian approach is used and a
field-of-values analysis is performed. For multigrid solvers, the main challenge lies
in designing effective smoothers for the coupled discrete systems. In [31], the au-
thors develop an Uzawa smoother for the Stokes--Darcy problem discretized by finite
volumes on staggered grids. The recent paper [32] provides an interesting descrip-
tion of some challenges that arise with various formuations of the problem. The
authors show that standard preconditioning approaches based on natural norms are
not parameter-robust, and they propose preconditioners that utilize nonstandard and
nonlocal operators, which are based on fractional derivatives. For additional useful
references on solution approaches for solving the problem, see [42, 4].

In this work, we focus on preconditioning for the stationary Stokes--Darcy prob-
lem discretized by the MAC scheme. We propose block-structured preconditioners,
perform a spectral analysis of the preconditioned operators, and show that they are
suitable for preconditioned GMRES. Taking advantage of the sparsity structure of
the matrix and using the coupling equations, we develop inexact approximations of
the Schur complements and show that the iterative scheme is robust for a large range
of the physical parameters.

In section 2 we review the continuous Stokes--Darcy equations, and in section 3
we describe the MAC scheme for discretizing them. We develop block preconditioners
and their inexact versions in section 4. In section 5 numerical results are presented.
Finally, we draw some conclusions in section 6.

2. Governing equations. We consider the coupled Stokes--Darcy problem in a
two-dimensional domain comprised of two nonoverlapping subdomains, \Omega =\Omega d

\bigcup 
\Omega s;

see Figure 1. In the bounded domain \Omega s we have a free fluid flow, and in \Omega d the flow
is in a porous region. The flows are coupled across the interface \Gamma .

The Darcy equations in two dimensions for porous medium flow are given by

K - 1\bfitu d +\nabla pd = 0 in \Omega d,(2.1a)

\nabla \cdot \bfitu d = fd in \Omega d,(2.1b)

where \bfitu d = (ud, vd) is the velocity and pd is the fluid pressure inside the porous
medium. K is the hydraulic (or permeability) tensor, representing the properties of
the porous medium and the fluid. Throughout this paper we will assume K = \kappa I,
where \kappa > 0 and I is the identity matrix. This amounts to treating the porous medium
as homogeneous and isotropic, and we call \kappa the permeability constant.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1542 CHEN GREIF AND YUNHUI HE

Γ

Ωs

Ωd

Fig. 1. Two-dimensional domain for the Stokes--Darcy problem. The interface is marked by \Gamma .

Denoting \phi = pd, we combine (2.1a) and (2.1b) into

 - \nabla \cdot (\kappa \nabla \phi ) = fd in \Omega d.(2.2)

The free-flow problem is described by the Stokes equations

 - \nu \bigtriangleup \bfitu s +\nabla ps = \bfitf s in \Omega s,(2.3a)

\nabla \cdot \bfitu s = 0 in \Omega s,(2.3b)

where \bfitu s = (us, vs) is the fluid velocity vector, ps is the fluid pressure, and \nu is the
fluid viscosity.

Denoting (\phi ,\bfitu , p) = (pd,\bfitu s, ps), equations (2.2)--(2.3) give us the Stokes--Darcy
problem in primal form:

 - \kappa \bigtriangleup \phi = fd in \Omega d,(2.4a)

 - \nu \bigtriangleup u+\nabla p= \bfitf s in \Omega s,(2.4b)

\nabla \cdot u= 0 in \Omega s.(2.4c)

This is an alternative formulation to the one given by (2.1) and (2.3), and we will
focus from this point onward on this primal form. The problem is completed by
setting interface conditions and imposing boundary conditions.

The interface conditions can be thought of as a boundary layer through which
the velocity changes rapidly. The following three interface conditions are often used
to couple the Darcy and Stokes equations at the interface \Gamma :

v= - \kappa 
\partial \phi 

\partial y
,(2.5a)

p - \phi = 2\nu 
\partial v

\partial y
,(2.5b)

u=
\nu 

\alpha 

\biggl( 
\partial u

\partial y
+

\partial v

\partial x

\biggr) 
.(2.5c)

Equation (2.5a) is a mass conservation condition, and it guarantees continuity of
normal velocity components. Equation (2.5b) is a condition on the balance of normal
forces, and it allows the pressure to be discontinuous across the interface. Finally,
(2.5c), the Beavers--Joseph--Saffman condition, provides a suitable slip condition on
the tangential velocity.

The physical and mathematical properties associated with the interface conditions
have been extensively studied in the literature; see, e.g., [46, 24]. A central challenge
in the solution of the Stokes--Darcy equations is that the equations governing each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1543

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◻ ◻ ◻ ◻ ◻

◻ ◻ ◻ ◻ ◻

◻ ◻ ◻ ◻ ◻

◯ ◯ ◯ ◯

◯ ◯ ◯ ◯

◯ ◯ ◯ ◯

△ △ △ △

△ △ △ △

△ △ △ △

Fig. 2. The locations of the unknowns on the staggered grids. Left: the Stokes variables: 2 --
u, \lozenge -- v, \bigcirc -- p in \Omega S ; Right: the Darcy variable: \bigtriangleup -- \phi in \Omega D.

domain are fundamentally different. This difficulty is manifested especially when the
parameters involved, specifically the viscosity coefficient \nu and permeability constant
\kappa , differ from each other by a few orders of magnitude.

3. Discretization. The MAC scheme [35, 17] is an established and popular
discretization technique that has been extensively used in the solution of fluid flow
problems [45, 41, 43]. The components of the velocity and the pressure are discretized
at different locations on the grid in a way that aims at accomplishing numerical
stability. Figure 2 shows the location of the discrete variables for (2.2)--(2.3).

The stability and convergence order of the MAC discretization for the Stokes--
Darcy equations have been established in the literature. In [43], a MAC scheme is
developed and a stability analysis is performed for the velocity and the pressure, and
error estimates are given for uniform grids. Let the two subdomains have the same
length, L, in the y direction. By [43, Theorem 4.1], if the mesh size h satisfies

h\leq min

\biggl\{ 
\nu \kappa 

2L
,
2\alpha 

L

\biggr\} 
,(3.1)

then first-order convergence is guaranteed. In some of the tests in that paper, second-
order convergence was in fact experimentally observed. Our discretization follows the
discretization of [43]. In section 5 we provide a brief experimental study of convergence
order. We note that in [41] the authors use a finite volume technique for the tensor
format of the fluid operator near the interface and prove that under the assumption
that the solution is sufficiently smooth, second-order convergence is obtained in the
L2-norm for both velocity and pressure of the Stokes and Darcy flows.

3.1. Discretization at interior gridpoints for Stokes. Suppose the Stokes
domain is given by [xs

min, x
s
max] \times [ysmin, y

s
max] with xs

max  - xs
min = ysmax  - ysmin. We

consider a uniform mesh with n+ 1 gridpoints in each direction, yielding mesh size

h=
xs
max  - xs

min

n
=

ysmax  - ysmin

n
.

For simplicity, throughout we assume that the Stokes and the Darcy domains are
both square and are of the same size. We assign double subscripts to the gridpoints,
which mark their locations on the grid. Throughout we will assume that, for a function
f(x, y), for example, a value written as fi,j corresponds to an approximation or an
exact evaluation of the function at x = ih and y = jh. The same applies for a
``half index."" Here, let us highlight the different locations of the grid where the
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1544 CHEN GREIF AND YUNHUI HE

pi, jq

ui,j` 3
2

ui,j` 1
2

ui,j´ 1
2

ui`1,j` 1
2

ui´1,j` 1
2

vi` 3
2 ,j

vi` 1
2 ,j`1

vi` 1
2 ,j´1

vi` 1
2 ,j

vi´ 1
2 ,j

pi` 1
2 ,j` 1

2

pi` 1
2 ,j´ 1

2

pi´ 1
2 ,j` 1

2

Fig. 3. Discretization of interior gridpoints for the Stokes equations. The gridpoints about
which the discretizations are given are marked with bigger circles. The red circles mark u variables,
and the blue circles mark v variables. The black circles denote pressure.

discretization takes place. Given a double index (i, j), in the MAC configuration
the discrete solution for the corresponding u variable is denoted as ui,j+ 1

2
, and for

the corresponding v variable it is denoted as vi+ 1
2 ,j

. Figure 3 provides a schematic
illustration of the discretization for the interior variables.

To further describe the discretization, it is useful to write the Stokes momentum
equation (2.4b) in scalar form:\left\{       

 - \nu 

\biggl( 
\partial 2u

\partial x2
+

\partial 2u

\partial y2

\biggr) 
+

\partial p

\partial x
= fs

1 ,

 - \nu 

\biggl( 
\partial 2v

\partial x2
+

\partial 2v

\partial y2

\biggr) 
+

\partial p

\partial y
= fs

2 ,

(3.2)

where fs
i , i = 1,2 denote the vector-components of \bfitf s corresponding to the velocity

components u and v. Using centered differences for the first and second derivatives,
the corresponding discretization for the first equation in (3.2) at gridpoint (ih, (j+ 1

2 )h)
is given by

 - \nu 

\biggl( 
ui+1,j+ 1

2
+ ui - 1,j+ 1

2
+ ui,j+ 3

2
+ ui,j - 1

2
 - 4ui,j+ 1

2

h2

\biggr) 
+

pi+ 1
2 ,j+

1
2
 - pi - 1

2 ,j+
1
2

h
= (fs

1 )i,j+ 1
2
,

whereas the discretization for the second equation in (3.2) at gridpoint ((i+ 1
2 )h, jh)

is

 - \nu 

\biggl( 
vi+ 1

2 ,j+1 + vi+ 1
2 ,j - 1 + vi+ 3

2 ,j
+ vi - 1

2 ,j
 - 4vi+ 1

2 ,j

h2

\biggr) 
+

pi+ 1
2 ,j+

1
2
 - pi+ 1

2 ,j - 
1
2

h
= (fs

2 )i+ 1
2 ,j

.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1545

Given the staggered grid configuration, we have n(n  - 1) gridpoints for u and the
same number for v, but the internal indexing is different between those two velocity
components. For the u variables, the interior gridpoints correspond to (xi, yj+ 1

2
),1\leq 

i\leq n - 1,0\leq j \leq n - 1, and for the v variables the interior gridpoints correspond to
(xi+ 1

2
, yj),0\leq i\leq n - 1,1\leq j \leq n - 1.

Boundary conditions. If Dirichlet boundary conditions are given, the values for
the u gridpoints are prescribed for the vertical boundary points corresponding to i= 0
and i= n. For the horizontal boundary values corresponding to the u variables, since
the discrete values closest to the top boundary, i.e., with respect to j = n, appear as
ui,n - 1

2
,1 \leq i \leq n  - 1, and are not right on the boundary, we define ghost variables

ui,n+ 1
2
,1\leq i\leq n - 1, and use an average

ui,n =
ui,n - 1

2
+ ui,n+ 1

2

2

to assign the boundary conditions. It follows that ui,n+ 1
2
= 2ui,n  - ui,n - 1

2
, which is

used in the discrete Stokes equations for ui,n - 1
2
. This follows a standard approach;

see, for example, [11]. The points near j = 0 are treated separately as part of the
interface conditions; see section 3.3.

As for the v variables, for j = 0 see section 3.3, which describes the interface
conditions. For j = n the Dirichlet boundary conditions are prescribed directly. For
the discrete values v 1

2 ,j
and vn - 1

2 ,j
,1\leq j \leq n - 1, we use averages

v0,j =
v - 1

2 ,j
+ v 1

2 ,j

2
and vn,j =

vn - 1
2 ,j

+ vn+ 1
2 ,j

2
,

respectively, from which we extract the ghost variables v - 1
2 ,j

and vn+ 1
2 ,j

and substi-
tute them in the discrete Stokes equations, analogously to the u variables.

For example, the discretization of the second equation in (3.2) at gridpoint ( 12h,h)
is given by

 - \nu 
v - 1

2 ,1
+ v 3

2 ,1
+ v 1

2 ,0
+ v 1

2 ,2
 - 4v 1

2 ,1

h2
+

p 1
2 ,

3
2
 - p 1

2 ,
1
2

h
= (fs

2 ) 1
2 ,1

,

where v - 1
2 ,1

is a ghost variable, which can be eliminated by the linear extrapolation
(v - 1

2 ,1
+ v 1

2 ,1
)/2 = v0,1 \equiv vD(0, h), the given Dirichlet boundary condition. Using this

equation to eliminate the ghost variable, we obtain

 - \nu 
v 3

2 ,1
+ v 1

2 ,0
+ v 1

2 ,2
 - 5v 1

2 ,1

h2
+

p 1
2 ,

3
2
 - p 1

2 ,
1
2

h
= (fs

2 ) 1
2 ,1

+
2\nu v0,1
h2

.(3.3)

3.2. Discretization at interior gridpoints for Darcy. The discretization
for the Darcy variable, \phi , is simpler than the discretization for Stokes. Here we
work on \Omega d. The Darcy domain is given by [xd

min, x
d
max] \times [ydmin, y

d
max]. We assume

xd
max - xd

min = ydmax - ydmin and consider a uniform mesh with mesh size h, similarly to
the Stokes subdomain (for simplicity we will assume throughout that the Stokes and
the Darcy mesh sizes are equal):

h=
xd
max  - xd

min

n
=

ydmax  - ydmin

n
.

We assign negative grid indices for the y variables:  - n\leq j \leq 0. At the gridpoint
((i+ 1

2 )h, (j +
1
2 )h), the discretization for (2.4a) is given by

 - \kappa 

\biggl( 
\phi i+ 1

2 ,j - 
1
2
+ \phi i+ 1

2 ,j+
3
2
+ \phi i+ 3

2 ,j+
1
2
+ \phi i - 1

2 ,j+
1
2
 - 4\phi i+ 1

2 ,j+
1
2

h2

\biggr) 
= (fd)i+ 1

2 ,j+
1
2
.
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Γ

Ωs

Ωd

vi` 1
2 ,0

vi` 1
2 ,1

ui, 12

ui,´ 1
2

vi´ 1
2 ,0

tp, φui` 1
2 ,

1
2

φi` 1
2 ,´

1
2

Fig. 4. Discretization of the variables near the interface. The ghost variables that are to be
eliminated are marked in red.

3.3. Discretization of interface conditions. The interface conditions (2.5)
present a few challenges. We use ghost variables to discretize our variables, as illus-
trated in Figure 4. There is a significant difference between the way the u variables
and the v variables are handled on the interface. This is because the discrete v vari-
ables lie precisely on the interface, whereas the discrete u variables do not.

Following [43], the interface conditions are discretized as follows. For 1\leq i\leq n - 1,
\bullet mass conservation, v= - \kappa \partial \phi 

\partial y :

vi+ 1
2 ,0

= - \kappa 
\phi i+ 1

2 ,
1
2
 - \phi i+ 1

2 , - 
1
2

h
;(3.4)

\bullet balance of normal forces, p - \phi = 2\nu \partial v
\partial y :

pi+ 1
2 ,

1
2
 - \phi i+ 1

2 , - 
1
2
= 2\nu 

vi+ 1
2 ,1

 - vi+ 1
2 ,0

h
;(3.5)

\bullet Beavers--Joseph--Saffman condition, u= \nu 
\alpha 

\Bigl( 
\partial u
\partial y + \partial v

\partial x

\Bigr) 
:

ui, 12
+ ui, - 1

2

2
=

\nu 

\alpha 

\biggl( 
ui, 12

 - ui, - 1
2

h
+

vi+ 1
2 ,0

 - vi - 1
2 ,0

h

\biggr) 
.(3.6)

Equations (3.4)--(3.6) are coupled with the discretized Stokes and Darcy equa-
tions. The discretized Darcy equations for \phi i+ 1

2 , - 
1
2
involve the ghost values \phi i+ 1

2 ,
1
2
,

which can be eliminated using (3.4).
The discretized equations for interface variables vi+ 1

2 ,0
are formed using (3.5).

The discretized Stokes equations for the ui, 12
variables involve the ghost values ui, - 1

2
,

which can be eliminated using (3.6).

3.4. The linear system. Putting together the equations for the interior grid-
points and the interface conditions and incorporating boundary conditions, we obtain
a double saddle-point system of the form\left(  Ad  - GT 0

G As BT

0 B 0

\right)  \left(  \phi h

\bfitu h

ph

\right)  =

\left(  g1
\bfitg 2

g3

\right)  ,(3.7)
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PRECONDITIONERS FOR MAC STOKES--DARCY 1547

where Ad corresponds to  - \kappa \bigtriangleup for the Darcy equation and As(\not = AT
s ) is the dis-

cretization of  - \nu \bigtriangleup for the Stokes equations coupled with the discretized interface
conditions. The last block row in (3.7) corresponds to the (negated) divergence-free
condition. Due to the boundary and interface conditions, the coefficient matrix in
(3.7) is nonsymmetric. Double saddle-point systems of a similar form have been ex-
tensively studied recently [6, 23, 8], but the focus has mainly been on symmetric
instances. In this paper we offer new insights into the nonsymmetric case.

The linear system (3.7) has 4n2  - n unknowns, and we have Ad \in \BbbR n2\times n2

, As \in 
\BbbR (2n2 - n)\times (2n2 - n), G\in \BbbR (2n2 - n)\times n2

, and B \in \BbbR n2\times n2

. In what follows we describe the
structure of the submatrices of (3.7). To avoid ambiguity when it may arise, when
necessary we attach subscripts to identity matrices to indicate their sizes.

3.4.1. The matrix \bfitA \bfitd . The matrix Ad can be naturally partitioned as a 2\times 2
block matrix having the following structure:

Ad =

\biggl( 
Ad,11 Ad,12

Ad,21 Ad,22

\biggr) 
, Ad =AT

d , Ad,12 =AT
d,21,(3.8)

where Ad,11 \in \BbbR (n2 - n)\times (n2 - n), Ad,21 \in \BbbR n\times (n2 - n), Ad,22 \in \BbbR n\times n, and

Ad,21 = - \kappa 

h2
(0 In) .

The second block row of Ad, namely, (Ad,21 Ad,22), corresponds to the discrete n
equations for \phi near the interface \Gamma , and it is coupled with the discrete interface
variables v, which appear in GT ; see (3.7).

3.4.2. The matrix \bfitA \bfits . The matrix As is a 3\times 3 block matrix with the structure

As =

\left(  A11 A12 0
0 A22 A23

0 A32 A33

\right)  ;(3.9)

Figure 5 depicts the dimensions of the blocks.
The matrix A12 is (n2 - n)\times n, as can be inferred from Figure 5, and it is mostly

zero. It is comprised of an (n - 1)\times n upper bidiagonal block stacked on top of an

A11

0

A12

0

0

A32

A23A22

A33

n2 ´ n

n

n2 ´ n

Fig. 5. Block structure of As.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 5

.1
98

.1
38

.1
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1548 CHEN GREIF AND YUNHUI HE

(n2  - 2n+1)\times n zero block. The bidiagonal block is given by c \cdot bidiag[1, - 1], where

c= 2\nu 2

h2(2\nu +h\alpha ) . This matrix represents the discretization of the discrete function values

ui, 12
, 1\leq i\leq n - 1, which interact with the interface variables vi+ 1

2 ,0
using (3.6).

The matrix A22, which corresponds to the interface v variables, has dimensions
n\times n and a simple structure; it is equal to a scaled identity matrix with 2\nu 

h2 .
The blocks of As satisfy A11 =AT

11,A22 =AT
22,A33 =AT

33, and

A22 =
2\nu 

h2
In, A23 = ( - A22, 0), A32 =

1

2
AT

23.

Notice that while both A11 and A33 are (n2  - n) \times (n2  - n), their internal block
structures are different due to the staggered grid. The matrix A11 (which corresponds
to the u variables) is block tridiagonal with n blocks of dimensions (n - 1)\times (n - 1),
whereas A33 (which corresponds to the v variables) is block tridiagonal with n  - 1
blocks of dimensions n\times n each.

3.4.3. The coupling matrix \bfitG . The equations for the ui, 12
variables are cou-

pled with the discrete interface variables vi+ 1
2 ,0

, which are represented by the matrix

G in (3.7). GT is a 2\times 3 block matrix with the following attractively simple structure:

GT =

\biggl( 
0 0 0
0  - In/h 0

\biggr) 
.(3.10)

The nonzero block arises from the discretization of \phi i+ 1
2 , - 

1
2
using (3.4).

3.4.4. The matrix \bfitB . The matrix B is a standard discrete divergence operator
given by

B =
\bigl( 
Bx B0 By

\bigr) 
\in \BbbR n2\times (2n2 - n), B0 =

\biggl( 
In/h
0

\biggr) 
\in \BbbR n2\times n.(3.11)

Dirichlet boundary conditions are given by

\bfitu s = gsD on \partial \Omega s,

\phi = gdD on \partial \Omega d.

Neumann or mixed boundary conditions are also commonly considered; see, for ex-
ample, [31, 41, 43] and the references therein.

3.5. Properties of the matrices. Let us rewrite the linear system (3.7) in a
form that symmetrizes the off-diagonal blocks:\left(  Ad GT 0

G  - As BT

0 B 0

\right)  \left(  \phi h

 - \bfitu h

ph

\right)  =

\left(  g1
\bfitg 2

 - g3

\right)  .

Let

\scrK =

\left(  Ad GT 0
G  - As BT

0 B 0

\right)  .(3.12)

The blocks of \scrK satisfy a few useful properties.
1. As is nonsymmetric and positive definite.
2. (G BT ) has a one-dimensional null space spanned by an all-ones vector of

size 2n2.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1549

3. B has full rank.
4. If we consider Neumann boundary conditions for the Darcy problem, then Ad

is symmetric positive semidefinite with a one-dimensional null space spanned
by all-ones vector. \scrK is nonsymmetric and singular with a one-dimensional

null space spanned by

\left(  e
0
e

\right)  , where e is the vector of all ones of length n2 and

0 is the zero vector of length 2n2  - n.
5. If we consider Dirichlet boundary conditions for the Darcy problem, then Ad

is symmetric positive definite, and \scrK is nonsymmetric and nonsingular.
For simplicity, in this paper we consider Dirichlet boundary conditions.

Lemma 3.1. All eigenvalues of As, are positive.

Proof. The eigenvalues of As are a union of the eigenvalues of A11 and

E =

\biggl( 
A22 A23

A32 A33

\biggr) 
=

\biggl( 
A22 2AT

32

A32 A33

\biggr) 
.

The matrix E is symmetrizable by a diagonal matrix \~D=
\Bigl( 

In 0

0
\surd 
2In2 - n

\Bigr) 
, and therefore

its eigenvalues are real. Since A11 is symmetric and diagonally dominant with positive
elements on its diagonal, its eigenvalues are positive.

Let \~A32 =
\surd 
2A32. The block LDLT decomposition of \~E = \~DE \~D - 1 is

\~E =

\biggl( 
A22

\~AT
32

\~A32 A33

\biggr) 
=

\biggl( 
In 0

\~A32A
 - 1
22 In2 - n

\biggr) \biggl( 
A22 0

0 A33  - \~A32A
 - 1
22

\~AT
32

\biggr) \biggl( 
In A - 1

22
\~AT
32

0 In2 - n

\biggr) 
.

A simple calculation shows that

A33  - \~A32A
 - 1
22

\~AT
32 =A33  - 

1

2
( - A22 0)TA - 1

22 ( - A22 0)

=A33  - 
\biggl( 

\nu 
h2 In 0
0 0

\biggr) 
.

Thus, the above matrix is the same as A33 except the top left n\times n block, and we
now discuss the structure of that specific block of A33.

The first and nth rows of A33 have three nonzero elements [ - \nu /h2,5\nu /h2, - \nu /h2],
where the value 5 is due to Dirichlet boundary conditions; see (3.3). Rows 2 to n - 1
have four nonzero elements [ - \nu /h2,4\nu /h2, - \nu /h2, - \nu /h2], where the positive values
are located at the diagonal position, and we have diagonal dominance here. It follows
that all eigenvalues of As are positive, as required.

Next, we state a rank property of B, which will be used later in our spectral
analysis. The proof is omitted.

Lemma 3.2. Define

\=B =
\bigl( 
Bx By

\bigr) 
\in \BbbR n2\times m2 ,(3.13)

where m2 = (2n2  - n) - n= 2n2  - 2n. Then, rank( \=B) = n2  - 1, and the nullity of \=B
is (n - 1)2.
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1550 CHEN GREIF AND YUNHUI HE

4. Block preconditioners. Block factorizations of the double saddle-point ma-
trix \scrK defined in (3.12) motivate the derivation of potential preconditioners. We write\left(  Ad GT 0

G  - As BT

0 B 0

\right)  (4.1)

=

\left(  I 0 0
GA - 1

d I 0
0  - BS - 1

1 I

\right)  
\underbrace{}  \underbrace{}  

L

\left(  Ad 0 0
0  - S1 0
0 0 S2

\right)  
\underbrace{}  \underbrace{}  

D

\left(  I A - 1
d GT 0

0 I  - S - 1
1 BT

0 0 I

\right)  
\underbrace{}  \underbrace{}  

U

=

\left(  Ad 0 0
G  - S1 0
0 B S2

\right)  
\underbrace{}  \underbrace{}  

LD

\left(  I A - 1
d GT 0

0 I  - S - 1
1 BT

0 0 I

\right)  
\underbrace{}  \underbrace{}  

U

,

where

S1 =As +GA - 1
d GT(4.2)

and

S2 =BS - 1
1 BT(4.3)

are Schur complements.
In (4.1) we have written two forms of factorizations. The first factorization is a

block LDU factorization, where L is unit lower triangular, D is block diagonal, and
U is unit upper triangular. The second factorization is a block decomposition where
the lower block-triangular matrix is simply the product of LD in the LDU block
factorization. We use these forms to consider block preconditioners. The appendix
provides additional options.

Ideal preconditioners we consider and analyze are

\scrM 1 =

\left(  Ad 0 0
0 S1 0
0 0 S2

\right)  , \scrM 2 =

\left(  Ad 0 0
G S1 0
0 0 S2

\right)  , \scrM 3 =

\left(  Ad 0 0
G  - S1 0
0 B S2

\right)  .

The choice of \scrM 1 is based on the matrix D of the LDU factorization of \scrK . Since
\scrK is nonsymmetric and G is an interface matrix that contains important physical
information on the coupling effect between the Stokes and Darcy equations, it seems
to make sense to consider block triangular preconditioners that contain G in the (2,1)
block. The choice of \scrM 2 amounts to a relatively modest revision of \scrM 1, where the
interface matrix G is added as the (2,1) block. The matrix \scrM 3 is equal to LD in
(4.1).

Recall from section 3.5 that if Neumann boundary conditions are considered for
the Darcy problem, then the matrix Ad is positive semidefinite with a one-dimensional
null space spanned by the all-ones vector. The singularity presents a challenge for the
design of preconditioners, and we do not further pursue this scenario in this paper.
As previously mentioned, we focus on Dirichlet boundary conditions, for which Ad is
symmetric positive definite and the Schur complements are well defined. The matrix
\scrM 1 is symmetric positive definite.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1551

4.1. Spectral analysis. There is an increasing body of literature on symmetric
double saddle-point systems. Block diagonal preconditioners have been extensively
analyzed [1, 3, 6, 7, 8, 25, 38, 39, 44], including bounds on the eigenvalues and theo-
retical observations on their algebraic multiplicities. The double saddle-point matrix
considered in this paper bears similarities, but it has a few distinct features due to its
nonsymmetry.

Theorem 4.1. The matrix \scrM  - 1
1 \scrK has the following eigenvalues and algebraic

multiplicities:
(i) 1 with multiplicity n2  - n;
(ii)  - 1 with multiplicity (n - 1)2;

(iii)  - 1\pm 
\surd 
5

2 with multiplicity n2  - n for each.
In addition,

(a) at most n eigenvalues are larger than 1;

(b) at most n eigenvalues are located at (0,1) \setminus 
\Bigl\{ 

 - 1+
\surd 
5

2

\Bigr\} 
.

Proof. By direct calculation,

\scrM  - 1
1 \scrK =

\left(  I A - 1
d GT 0

S - 1
1 G  - S - 1

1 As S - 1
1 BT

0 S - 1
2 B 0

\right)  .

Let
\bigl( 
xT yT zT

\bigr) T
be an eigenvector of \scrM  - 1

1 \scrK associated with eigenvalue \lambda ; that
is, \left(  I A - 1

d GT 0
S - 1
1 G  - S - 1

1 As S - 1
1 BT

0 S - 1
2 B 0

\right)  \left(  x
y
z

\right)  = \lambda 

\left(  x
y
z

\right)  .

We thus have

x+A - 1
d GT y= \lambda x,(4.4a)

S - 1
1 Gx - S - 1

1 Asy+ S - 1
1 BT z = \lambda y,(4.4b)

(BS - 1
1 BT ) - 1By= \lambda z.(4.4c)

(i) Eigenvalue \lambda = 1: When y= z = 0, (4.4) is reduced to

x= \lambda x,

S - 1
1 Gx= 0,

which means that \lambda = 1 is an eigenvalue of \scrM  - 1
1 \scrK with Gx= 0. Since the null space

of G has dimension n2  - n, the eigenvalue \lambda = 1 has multiplicity n2  - n.
(ii) Eigenvalue \lambda = - 1: If x= z = 0, then (4.4) is reduced to

A - 1
d GT y= 0,(4.5a)

 - S - 1
1 Asy= \lambda y,(4.5b)

By= 0.(4.5c)

We have As = S1  - GA - 1
d GT . Using (4.5a), we rewrite (4.5b) as

 - S - 1
1 (S1  - GA - 1

d GT )y= - y+ 0= \lambda y,
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1552 CHEN GREIF AND YUNHUI HE

which means that \lambda =  - 1. Next we prove that such y \not = 0 exists. From (4.5a) and
(3.10), we see that y has the following structure:

y=

\left(  y1
0
y2

\right)  ,

where y1 and y2 can have any value as long as they are not simultaneously zero. Now,

we consider (4.5c). Then, y1, y2 satisfy \=B
\bigl( 
yT1 yT2

\bigr) T
= 0 (see (3.13)). From Lemma

3.2 we know that the nullity of \=B is (n - 1)2, which is the multiplicity of the eigenvalue
 - 1.
(iii) Eigenvalues \lambda =  - 1\pm 

\surd 
5

2 : If x= 0, y \not = 0, z \not = 0, then (4.4) is reduced to

A - 1
d GT y= 0,(4.6a)

 - S - 1
1 Asy+ S - 1

1 BT z = \lambda y,(4.6b)

(BS - 1
1 BT ) - 1By= \lambda z.(4.6c)

Using As = S1  - GA - 1
d GT and (4.6a), we rewrite (4.6b) as

 - S - 1
1 (S1  - GA - 1

d GT )y+ S - 1
1 BT z = - y+ S - 1

1 BT z = \lambda y,

which gives y= 1
1+\lambda S

 - 1
1 BT z. Substituting y into (4.6c) gives

(BS - 1
1 BT ) - 1By=

1

1+ \lambda 
(BS - 1

1 BT ) - 1BS - 1
1 BT z =

1

1+ \lambda 
z = \lambda z.

It follows that 1
1+\lambda = \lambda . Then we have \lambda =  - 1\pm 

\surd 
5

2 . From (4.6a) we have GT y = 0,
which means we have a set of n2  - n linearly independent vectors y here. It follows
that the pair of eigenvalues  - 1\pm 

\surd 
5

2 have multiplicity n2  - n each.
Next, we prove that the number of eigenvalues that satisfy \lambda > 1 is at most n.

From (4.4a) we have

x=
1

\lambda  - 1
A - 1

d GT y.(4.7)

We claim that GT y \not = 0. This can be shown by contradiction, as follows. If GT y = 0,
from (4.4a) we would have x = 0. At this point, if z = 0, then from the proof of
(ii) it would follow that \lambda =  - 1, which contradicts our assumption that \lambda > 1. So

z \not = 0. If y \not = 0, from the proof of (iii) we would have \lambda =  - 1\pm 
\surd 
5

2 , which contradicts
our assumption that \lambda > 1. So y = 0. However, this leads to z = 0, which is a
contradiction. Thus, GT y \not = 0; that is, y \not \in ker(GT ). Since rank(GT ) = n, there are at
most n such linearly independent vectors y. From (4.4c) we have

z = (\lambda BS - 1
1 BT ) - 1By.

So the space spanned by the eigenvectors
\bigl( 
xT yT zT

\bigr) T
has dimension at most n.

Next, we claim that there are n2 eigenvalues in the interval (0,1). Substituting
(4.7) into (4.4b) and solving for y gives

y=

\biggl( 
1

1 - \lambda 
GA - 1

d GT + \lambda S1 +As

\biggr)  - 1

BT z.

Since BT is full rank, it follows that z \not = 0; otherwise, y = x = 0. Thus, z is in the
range of BT . Note that BT has rank n2. The space spanned by the eigenvectors

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 5

.1
98

.1
38

.1
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PRECONDITIONERS FOR MAC STOKES--DARCY 1553\bigl( 
xT yT zT

\bigr) T
has dimension at most n2. From (iii), we know that  - 1+

\surd 
5

2 has

multiplicity n2  - n, so the number of eigenvalues in (0,1) \setminus \{  - 1+
\surd 
5

2 \} is at most n2  - 
(n2  - n) = n.

Remark 4.2. For symmetric block diagonal preconditioners applied to symmetric
double saddle-point systems, spectral studies provide results on the boundedness away
from zero of all the eigenvalues of the preconditioned matrices; see, e.g., [6, Theorem
3.3]. In Theorem 4.1 we do not know the location of 2n - 1 of the 4n2 - n eigenvalues.

Theorem 4.3. The eigenvalues of \scrM  - 1
2 \scrK are

(i) 1 with multiplicity n2;
(ii)  - 1 with multiplicity n2  - n;

(iii)  - 1\pm 
\surd 
5

2 with multiplicities n2 each.

Proof. It can be shown that

\scrM  - 1
2 =

\left(  A - 1
d 0 0

 - S - 1
1 GA - 1

d S - 1
1 0

0 0 S - 1
2

\right)  ,

and it follows that

\scrM  - 1
2 \scrK =

\left(  I A - 1
d GT 0

0  - I S - 1
1 BT

0 S - 1
2 B 0

\right)  .

Let
\bigl( 
xT yT zT

\bigr) T
be an eigenvector of \scrM  - 1

2 \scrK associated with eigenvalue \lambda ; that
is, \left(  I A - 1

d GT 0
0  - I S - 1

1 BT

0 S - 1
2 B 0

\right)  \left(  x
y
z

\right)  = \lambda 

\left(  x
y
z

\right)  .

We rewrite the above as

x+A - 1
d GT y= \lambda x,(4.8a)

 - y+ S - 1
1 BT z = \lambda y,(4.8b)

(BS - 1
1 BT ) - 1By= \lambda z.(4.8c)

It is obvious that
\bigl( 
xT yT zT

\bigr) T
=
\bigl( 
xT 0 0

\bigr) T
, where x \not = 0 is an eigenvector

of \scrM  - 1
2 \scrK with \lambda = 1. Since x \in \BbbR n2\times 1, we have that \lambda = 1 is an eigenvalue with

multiplicity n2.
If \lambda = - 1 and y \not = 0, from (4.8b) we have S - 1

1 BT z = 0. It follows that BT z = 0.

Since BT has full rank, z = 0. From (4.8c), we have By = 0. Since B \in \BbbR n2\times (2n2 - n)

has rank n2, the null space of B has dimension 2n2  - n - n2 = n2  - n.
If \lambda \not =  - 1, from (4.8b) we have By = 1

1+\lambda BS - 1
1 BT z. Using (4.8c), we have

1
1+\lambda z = \lambda z. Thus, z \not = 0 and \lambda 2 + \lambda  - 1 = 0; that is, \lambda =  - 1\pm 

\surd 
5

2 . Since z \not = 0 \in \BbbR n2\times 1,
the eigenvalue  - 1 has multiplicity n2.

Finally, the spectrum of the preconditioned matrix associated with \scrM 3 is given
as follows.

Theorem 4.4. All of the eigenvalues of \scrM  - 1
3 \scrK are 1, and the minimal polyno-

mial of this preconditioned matrix is p(z) = (z  - 1)3.
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1554 CHEN GREIF AND YUNHUI HE

Proof. Using the notation of (4.1), the result follows immediately since \scrM  - 1
3 \scrK =

(LD) - 1LDU =U .

4.2. Approximations of the Schur complements. The choices \scrM 1,\scrM 2,
and \scrM 3 as preconditioners are too computationally costly to work with in practice,
so we seek effective approximations. Specifically, in order to make the solver prac-
tical, we investigate the structure of the Schur complements S1 and S2 and derive
approximations that are easier to compute and invert.

4.2.1. Approximations of \bfitS 1. To find good approximations of S1 in (4.2),
we seek approximations for the action of its additive components, namely, As and
GA - 1

d GT .
Given the sparsity structure of GT , (3.10), it follows that GA - 1

d GT is given by

GA - 1
d GT =

\left(  0 0 0
0 T 0
0 0 0

\right)  ,(4.9)

where T is an n\times n matrix to be approximated.
Our first (naive) approximation is to take a scaled identity. To that end, we take

the diagonal approximation (diag(Ad))
 - 1 \approx A - 1

d and ignore the corrections near the
boundaries: T \approx \tau 

\kappa In with \tau = 1
3 , because the diagonal elements of Ad,22 in (3.8) are

3\kappa /h2. The resulting approximation of S1 is

\widetilde S1 =

\left(  A11 A12 0
0 A22 +

\tau 
\kappa In A23

0 A32 A33

\right)  .(4.10)

In our numerical experiments we have found that this simple approach is effective
for a limited range of the physical parameters \kappa , \nu , and h. For a larger range of the
parameters, it is necessary to consider a more sophisticated alternative, as we do next.

Suppose the Cholesky decomposition of Ad is given by

Ad = FFT ,

and let GA - 1
d GT =WTW , where W = F - 1GT . Taking the block structure of GT into

consideration, we partition F as follows:

F =

\biggl( 
F11 0
F21 F22

\biggr) 
,

where F11 \in \BbbR (n2 - n)\times (n2 - n) and F22 \in \BbbR n\times n. It readily follows that

W =

\biggl( 
0 0 0
0 F - 1

22 /h 0

\biggr) 
and

T = (F - T
22 F - 1

22 )/h2,

where F22 is an n\times n lower triangular matrix.
In practice, since the Cholesky factorization is too expensive to compute, we

compute an incomplete Cholesky factorization of Ad with a moderate drop tolerance.
We then replace F22 by the corresponding incomplete factor, which we denote by \widetilde F22.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1555

Using the above approach, we denote the corresponding approximation to S1 as

\widehat S1 =

\left(  A11 A12 0

0 A22 + ( \widetilde F - T
22

\widetilde F - 1
22 )/h2 A23

0 A32 A33

\right)  .(4.11)

We stress again that the second block row has only n rows, and therefore the inversion
operations involved in the (2,2) block are not computationally costly with respect to
the overall computational cost of the numerical solution scheme. We have found this
approach to be robust with respect to a large range of \kappa , \nu , and h; see section 5.

4.2.2. Approximation of \bfitS 2. Recall from (4.3) that S2 =BS - 1
1 BT . Consider\widetilde S1 of (4.10), and let us further sparsify it as follows: we keep the block diagonal

part of \widetilde S1 and A23, which contains important information about the interface, and
drop the off-diagonal blocks A12 and A32. We further replace the (2,2) block of the
approximation \widetilde S1 by its diagonal part:\widetilde A22 =

2\nu 

h2
In +

\tau 

\kappa 
In.

We then use this as a sparser approximation of S1:

\v S1 =

\left(  A11 0 0

0 \widetilde A22 A23

0 0 A33

\right)  .

Then we have

B \v S - 1
1 BT \approx 

\bigl( 
Bx B0 By

\bigr) \left(  A - 1
11 0 0

0 \widetilde A - 1
22  - \widetilde A - 1

22 A23A
 - 1
33

0 0 A - 1
33

\right)  \left(  BT
x

BT
0

BT
y

\right)  
=BxA

 - 1
11 B

T
x +ByA

 - 1
33 B

T
y +B0

\widetilde A - 1
22 B

T
0  - B0

\widetilde A - 1
22 A23A

 - 1
33 B

T
y .

The matrix BxA
 - 1
11 B

T
x +ByA

 - 1
33 B

T
y can be approximated by a scaled identity, since in

the MAC discretization we have that BxB
T
x and ByB

T
y are scaled second-derivative

operators in each of the variables. In fact,

BxA
 - 1
11 B

T
x +ByA

 - 1
33 B

T
y \approx 1

\nu 
In2 - n.

Then,

B0
\widetilde A - 1
22 B

T
0 =

\biggl( 
In/h
0

\biggr) \biggl( 
2\nu 

h2
In +

\tau 

\kappa 
In

\biggr)  - 1 \bigl( 
In/h 0

\bigr) 
=

\biggl( 
\kappa 

2\nu \kappa +h2\tau In 0

0 0

\biggr) 
.

Further, we have

B0
\widetilde A - 1
22 A23A

 - 1
33 B

T
y =

\biggl( 
In/h
0

\biggr) \biggl( 
2\nu 

h2
In +

\tau 

\kappa 
In

\biggr)  - 1 \bigl( 
 - 2\nu 

h2 In 0
\bigr) 
A - 1

33 B
T
y

=

\biggl( 
 - 2\nu \kappa 

h(2\nu \kappa +h2\tau )In 0

0 0

\biggr) 
A - 1

33 B
T
y .

This matrix contains entries that are smaller by a factor of h than B0
\widetilde A - 1
22 B

T
0 , and

therefore we drop it and do not incorporate it into the approximation.
Based on the above, we approximate S2 by

\widehat S2 =
1

\nu 
In2 - n +

\biggl( 
\kappa 

2\nu \kappa +h2\tau In 0

0 0

\biggr) 
=

\Biggl( 
3\nu \kappa +h2\tau 

\nu (2\nu \kappa +h2\tau )In 0

0 1
\nu In2 - 2n

\Biggr) 
.(4.12)
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1556 CHEN GREIF AND YUNHUI HE

4.2.3. Practical block preconditioners. Based on the discussion in subsec-
tions 4.2.1 and 4.2.2, for our numerical experiments we will consider mostly the fol-
lowing block preconditioners:

\widehat \scrM 1 =

\left(  Ad 0 0

0  - \widehat S1 0

0 0 \widehat S2

\right)  , \widehat \scrM 2 =

\left(  Ad 0 0

G  - \widehat S1 0

0 0 \widehat S2

\right)  , \widehat \scrM 3 =

\left(  Ad 0 0

G  - \widehat S1 0

0 B \widehat S2

\right)  ,

where \widehat S1 and \widehat S2 are given by (4.11) and (4.12), respectively.

5. Numerical experiments. We consider three numerical examples. The first
two are taken from [43] but with a different formulation of the Beavers--Joseph--
Saffman condition. We use those examples to perform an error validation and confirm
that we observe the expected order of the error. These two examples impose specific
constraints on the values of the physical parameters \nu ,\kappa .

We then move to consider a third example from [31], where there is no restriction
on the physical parameters; this allows us to investigate the convergence behavior of
our solver for a broad range of the parameters. As explained in section 4, we assume
Dirichlet boundary conditions in all our examples. Our code is written in MATLAB.
As such, it is not optimized to maximize computational efficiency.

The dimensions of the linear systems used in our numerical experiments are given
in Table 1.

Example 1. We take \Omega s = [0,1] \times [1,2] and \Omega d = [0,1] \times [0,1]. The analytical
solution is given by

u= - 1

\pi 
ey sin(\pi x),

v= (ey  - e) cos(\pi x),

p= 2ey cos(\pi x),

\phi = (ey  - ye) cos(\pi x).

The interface equations (2.5) require that \alpha = \nu = 1.

Example 2. We consider \Omega s = [0,1]\times [1,2] and \Omega d = [0,1]\times [0,1]. The analytical
solution is given by

u= (y - 1)2 + x(y - 1) + 3x - 1,

v= x(x - 1) - 0.5(y - 1)2  - 3y+ 1,

p= 2x+ y - 1,

\phi = x(1 - x)(y - 1) +
(y - 1)3

3
+ 2x+ 2y+ 4.

Table 1
Values of n and the dimensions of the corresponding linear systems.

n Dimensions

32 4,064
64 16,320

128 65,508

256 261,888
512 1,048,064

1024 4,193,280
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PRECONDITIONERS FOR MAC STOKES--DARCY 1557

Table 2
Convergence rates for Example 1. Each row shows the ratio between error norms for two

adjacent grids.

n1/n2 32/64 64/128 128/256 256/512

u 1.9888 1.9957 1.9983 1.9994

v 1.9895 1.9965 1.9990 1.9998

p 1.9946 1.9982 1.9994 1.9998
\phi 1.7136 1.7759 1.8198 1.8514

Table 3
Convergence rates for Example 2. Each row shows the ratio between error norms for two

adjacent grids.

n1/n2 32/64 64/128 128/256 256/512

u 1.9070 1.7649 1.4823 1.2078

v 2.0639 1.9929 1.5441 1.0405
p 2.0035 2.0197 2.0306 2.0009

\phi 1.0139 1.0072 1.0036 1.0018

By (2.5) it is required that \alpha = \nu = \kappa = 1.

Example 3. We consider \Omega s = [0,1]\times [0,1] and \Omega d = [0,1]\times [ - 1,0]. The equation
is constructed so that the analytical solution is given by

u= \eta \prime (y) cosx,

v= \eta (y) sinx,

p= 0,

\phi = ey sinx,

where

\eta (y) = - \kappa  - y

2\nu 
+
\Bigl( 
 - \alpha 

4\nu 2
+

\kappa 

2

\Bigr) 
y2.

Using interface condition (2.5a), there is no constraint on \kappa . Using interface condition
(2.5b), there is no constraint on \nu . Using interface condition (2.5c), there is no
constraint on \alpha and \nu .

5.1. Convergence order study. First, we check the convergence order of the
velocity and pressure for the three examples.

Example 1. Table 2 shows the convergence rates for the values of the physical
parameters \alpha = \nu = \kappa = 1. We observe second-order convergence for the velocity and
pressure components for Stokes, while for Darcy the convergence order of \phi is slightly
lower than 2.

Example 2. Table 3 shows the convergence rates for the values of the physical
parameters \alpha = \nu = \kappa = 1. We observe second-order convergence for the pressure
components of Stokes and first-order convergence for the remaining components.

Example 3. Table 4 shows the convergence rates for \nu = 1 and \kappa = 10 - 2, where
we observe first-order convergence for all components. This is typical for most values
of the physical parameters that we have tested. As an illustration of the quality of
the solution, the error norms at the finest level of the discretization (512\times 512 grid)
for u, v, p, and \phi were computed to be, respectively, 5.5027 \times 10 - 6, 6.3298 \times 10 - 6,
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1558 CHEN GREIF AND YUNHUI HE

Table 4
Convergence rates for Example 3 with \nu = 1 and \kappa = 10 - 2. Each row shows the ratio between

error norms for two adjacent grids.

n1/n2 32/64 64/128 128/256 256/512

u 1.0386 1.0158 1.0065 1.0027

v 1.0940 1.0458 1.0224 1.0110

p 1.0767 1.0351 1.0165 1.0079
\phi 0.9750 0.9872 0.9935 0.9968
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Fig. 6. The eigenvalue distribution of \scrK with different values of \nu and \kappa .

8.9076\times 10 - 4, and 5.8343\times 10 - 5. We note that for \nu = \kappa = 1 we have observed nearly
second-order convergence rates for all components.

In summary, in all examples we observe either first- or second-order convergence,
depending on the values of the physical parameters and the model problems. This is in
line with or better than the theoretically guaranteed first-order convergence [43]. We
also note that although the values of the mesh size h used in our tests do not always
satisfy (3.1), the scheme still converges and we obtain the theoretically guaranteed
first-order convergence.

In the remainder of this section we conduct our numerical tests using Example 3.

5.2. Eigenvalue distribution of the double saddle-point matrix (Exam-
ple 3). We explore the effect of \kappa and \nu on the eigenvalue distribution of \scrK for
Example 3. We take n = 32 and vary the values of \kappa and \nu . The results are shown
in Figure 6. Notice that in all examples, the magnitudes of the real parts of the
eigenvalues are significantly larger than the magnitudes of the imaginary parts.
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PRECONDITIONERS FOR MAC STOKES--DARCY 1559

We observe that for \nu = \kappa = 1 (top left plot) the real part of the eigenvalues is
spread rather evenly (in terms of magnitudes) over both sides of the real axis. We
also notice that the eigenvalues with a negative real part are complex, whereas the
eigenvalues on the right half of the plane are real. While the imaginary parts of the
eigenvalues do not exceed approximately 2.5, the largest positive and negative real
parts are almost 104 in value.

Taking \kappa = 0.01 and keeping \nu = 1 (top right plot) generates a rather dramatic
effect on the real part of the eigenvalues; they are shifted towards the negative axis. In
our computations we have found that the eigenvalue with the algebraically maximal
real part was approximately equal to 81.9, whereas the eigenvalue with the algebrai-
cally minimal real part was approximately  - 8,183.0.

Taking \kappa = 1 and \nu = 0.01 (bottom left plot) shifts the real parts of the eigenvalues
to be mostly positive. The scales of the imaginary parts are now smaller. The
algebraically smallest eigenvalue in this case was  - 0.4, and the algebraically largest
eigenvalue was approximately 8,189.5.

Finally, we show the interesting case where \nu = 10 - 4 and \kappa = 10 - 8 (bottom right
plot). All eigenvalues in this case are real and are spread over both axes in a rather
symmetrical fashion. The algebraically maximal value in this case was 90.0, and the
algebraically minimal one was  - 90.8.

The above observations indicate that the spectral properties of the coefficient
matrix highly depend on the values of the physical parameters \kappa and \nu .

5.3. GMRES performance. In our numerical tests we run GMRES(20) and
stop the iteration once the initial relative residual is reduced by a factor of 10 - 8 or
a maximum iteration count of 500 iterations has been reached. For the incomplete
Cholesky factorization of the Schur complement S1, we use a drop tolerance of 10 - 2.

In Table 5 we report the iteration counts of preconditioned GMRES using pre-
conditioners \widehat \scrM 1 and \widehat \scrM 2. We see that these two preconditioners scale poorly with
respect to small physical parameters. To better understand this behavior, we explore
an improved version of the preconditioner, where we use the approximation \widehat S1 and
exact S2 for the Schur complements in \scrM 1 and \scrM 2; we refer to the correspond-
ing preconditioners as \scrM 1,in and \scrM 2,in, where the subscript ``in"" is shorthand for
``inexact."" We report the corresponding results in Table 6. We see a much better
performance. However, the cost of inverting S2 exactly is too high in practice, and
we seek less costly alternatives. We thus consider approximations of \scrM 3: we use
the simple approximations \widehat S1 and \widehat S2 defined in (4.11) and (4.12), respectively, and
include the block B. This is the preconditioning approach that we have found to be
the most effective.

Table 5
Iteration counts of GMRES(20) for the preconditioners \widehat \scrM 1 and \widehat \scrM 2 with \nu = 1 and varying

n and \kappa . The symbol ``-"" marks no convergence to a relative residual tolerance of 10 - 8 within 500
iterations. The two schemes failed to converge for \kappa < 10 - 4.

\widehat \scrM 1
\widehat \scrM 2

\kappa n= 32 n= 64 n= 128 n= 32 n= 64 n= 128

100 60 62 60 55 57 62
10 - 1 67 75 87 62 64 70

10 - 2 186 215 275 67 125 114

10 - 3 - - - 99 159 204
10 - 4 444 285 - 239 78 -

10 - 5 - - - - - -
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1560 CHEN GREIF AND YUNHUI HE

Table 6
Iteration counts of GMRES(20) for the inexact versions \scrM 1,in and \scrM 2,in corresponding to

preconditioners \scrM 1 and \scrM 2 with \nu = 1 and varying n and \kappa using approximation \widehat S1 and the exact
S2.

\scrM 1,in \scrM 2,in

\kappa n= 32 n= 64 n= 32 n= 64

100 14 15 10 11
10 - 1 17 19 12 14

10 - 2 25 26 15 16

10 - 3 33 35 17 21
10 - 4 34 40 17 21

10 - 5 29 38 16 21
10 - 6 24 34 15 19

10 - 7 25 31 15 17

10 - 8 22 31 14 18

Table 7
Iteration counts of GMRES(20) with an inexact version of \scrM 3 using \widehat S2 and a scaled identity

approximation of S1 with \nu = 1 and varying n and \kappa . The symbol ``-"" marks no convergence to a
relative residual tolerance of 10 - 8 within 500 iterations.

n \kappa = 100 \kappa = 10 - 1 \kappa = 10 - 2 \kappa = 10 - 3 \kappa = 10 - 4 \kappa = 10 - 5 \kappa = 10 - 6 \kappa = 10 - 7 \kappa = 10 - 8

32 18 19 21 37 49 76 79 360 -

64 18 19 24 39 75 - - - -

128 19 20 25 44 280 - - - -
256 20 21 28 44 - - - - -

512 21 22 31 39 448 105 - - -

1024 22 23 31 37 464 300 - - -

As per Theorem 4.4, the preconditioned matrix \scrM  - 1
3 \scrK has one eigenvalue 1 with

a minimal polynomial of degree 3. We have confirmed for this ideal (yet impractical)
preconditioner that GMRES takes three iterations to converge.

In the experiments reported henceforth, we use the approximation \widehat S2 in (4.12)
for S2; we have found this approximation to be robust with respect to the physi-
cal parameters. On the other hand, the quality of the approximation of S1 has a
more dramatic effect on convergence of GMRES, as we discuss below. We consider
approximations of S1, which result in inexact versions of \scrM 1,\scrM 2, and \scrM 3.

In Table 7 we show that the approximation of S1 based on the scaled identity
approximation of T , namely, \widetilde S1 given in (4.10), is only effective for relatively large
values of \nu and \kappa . We set \nu = 1 and observe a good degree of scalability (nearly
constant iteration counts) for \kappa = 1 and \kappa = 0.1, but convergence starts degrading for
smaller values of \kappa , with poor convergence for \kappa \leq 10 - 4.

In Tables 8 and 9 we consider the much superior approximation of S1 based on
the incomplete Cholesky factorization with drop tolerance 10 - 2, namely, \widehat S1 defined
in (4.11). We see that for both values of \nu and varying values of \kappa , the preconditioner\widehat \scrM 3 is quite robust, although convergence degrades as \kappa becomes smaller. In Table 10
we replace the approximation of \widehat S1 by the exact S1, just to confirm that indeed, the
source of the decline in performance for small values of \kappa is related to the quality
of the approximation of S1. We therefore expect that a better approximation---for
example, an incomplete Cholesky factorization with a tighter drop tolerance---would
yield faster convergence in most cases.
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Table 8
Iteration counts of GMRES(20) for the preconditioner \widehat \scrM 3 with \nu = 1 and varying n and \kappa .

n \kappa = 100 \kappa = 10 - 1 \kappa = 10 - 2 \kappa = 10 - 3 \kappa = 10 - 4 \kappa = 10 - 5 \kappa = 10 - 6 \kappa = 10 - 7 \kappa = 10 - 8

32 18 17 18 18 18 18 20 21 23
64 19 19 19 20 21 23 24 38 39

128 20 20 20 23 24 35 37 37 38
256 21 22 22 25 37 32 35 37 39

512 22 23 23 36 36 34 38 39 42

1024 24 25 24 39 37 41 59 60 61

Table 9
Iteration counts of GMRES(20) for the preconditioner \widehat \scrM 3 with \nu = 10 - 2 and varying n and \kappa .

n \kappa = 100 \kappa = 10 - 1 \kappa = 10 - 2 \kappa = 10 - 3 \kappa = 10 - 4 \kappa = 10 - 5 \kappa = 10 - 6 \kappa = 10 - 7 \kappa = 10 - 8

32 16 15 16 16 17 19 20 37 39
64 17 16 17 18 20 21 35 36 38

128 18 18 18 11 21 32 33 35 37

256 18 20 21 11 11 11 11 11 11
512 20 30 14 13 12 12 11 11 11

1024 20 32 16 14 13 13 12 12 12

Table 10
Iteration counts of GMRES(20) for the inexact version of preconditioner \scrM 3 with \nu = 10 - 2

and varying n and \kappa , using the exact S1 and approximation \widehat S2.

n \kappa = 100 \kappa = 10 - 1 \kappa = 10 - 2 \kappa = 10 - 3 \kappa = 10 - 4 \kappa = 10 - 5 \kappa = 10 - 6 \kappa = 10 - 7 \kappa = 10 - 8

32 14 14 15 15 16 17 19 20 22
64 14 14 15 15 15 17 19 20 31

128 14 14 14 7 15 16 18 20 37

Table 11
Iteration counts of GMRES(20) for the preconditioner \widehat \scrM 3 with \nu = 10 - 4 and varying n and \kappa .

n \kappa = 100 \kappa = 10 - 1 \kappa = 10 - 2 \kappa = 10 - 3 \kappa = 10 - 4 \kappa = 10 - 5 \kappa = 10 - 6 \kappa = 10 - 7 \kappa = 10 - 8

32 9 8 7 7 7 7 7 7 7

64 9 8 6 6 6 6 6 6 6
128 10 7 6 6 6 6 6 6 6

256 11 8 6 6 6 6 6 6 6

512 12 9 7 6 6 6 6 6 6
1024 14 9 7 6 5 5 5 5 5

Finally, in Table 11 we show that when the difference in scale between \nu and \kappa is
smaller, preconditioned GMRES with \widehat \scrM 3 performs remarkably well even when the
parameters are small.

6. Concluding remarks. We have considered the MAC discretization of the
Stokes--Darcy equations and have designed a robust and scalable preconditioner for
the corresponding linear system. We draw the following conclusions: (i) The MAC
discretization gives rise to attractive sparsity patterns of some of the block matrices,
which we are able to take advantage of for approximating the Schur complements.
(ii) It is crucial to include the coupling equations (interface conditions) in the precon-
ditioner. (iii) The nonsymmetry of the coefficient matrix is mild, and it is possible
to design a solver based on spectral considerations. The analysis reveals a rich and
interesting spectral structure. The inexact block lower triangular preconditioner \widehat \scrM 3

seems promising in terms of robustness with respect to the values of the physical pa-
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1562 CHEN GREIF AND YUNHUI HE

rameters. Among its attractive features is our ability to form effective and relatively
cheap approximations of the Schur complements S1 and S2.

Appendix A. Related block preconditioners. We have considered several
additional options for block preconditioners with some minor changes (e.g., sign
changes) in comparison to the ones we have analyzed in section 4.1:

\widetilde \scrM 1 =

\left(  Ad 0 0
0  - S1 0
0 0 S2

\right)  , \widetilde \scrM 2 =

\left(  Ad 0 0
G  - S1 0
0 0 S2

\right)  , \widetilde \scrM 3 =

\left(  Ad 0 0
G S1 0
0 B S2

\right)  .

We first provide a summary of the eigenvalues of the preconditioned matrices associ-
ated with the above preconditioners. The preconditioned matrix \widetilde \scrM  - 1

1 \scrK has a large

number of complex eigenvalues. The preconditioned matrix \widetilde \scrM  - 1
2 \scrK has three distinct

eigenvalues: the eigenvalue 1 with algebraic multiplicity 2n2  - n and the complex
eigenvalues 1\pm 

\surd 
3\imath 

2 (\imath 2 =  - 1) with multiplicity n2 each. Compare this with \scrM  - 1
2 \scrK ,

which has four distinct eigenvalues, as per Theorem 4.3. The preconditioned matrix\widetilde \scrM  - 1
3 \scrK has three distinct eigenvalues: the eigenvalue 1 with algebraic multiplicity n2,

the eigenvalue  - 1 with algebraic multiplicity n2  - n, and the eigenvalues \pm 
\surd 
2  - 1

with multiplicities n2 each. We now prove these results.

Theorem A.1. The eigenvalues of \widetilde \scrM  - 1
2 \scrK are

(i) 1 with multiplicity 2n2  - n,

(ii) 1\pm 
\surd 
3i

2 with multiplicity n2 each.

Proof. The preconditioned matrix is given by

\widetilde \scrM  - 1
2 \scrK =

\left(  I A - 1
d GT 0

0 I  - S - 1
1 BT

0 S - 1
2 B 0

\right)  .

Let
\bigl( 
xT yT zT

\bigr) T
be an eigenvector of \widetilde \scrM  - 1

2 \scrK associated with eigenvalue \lambda . We
write the corresponding eigenvalue problem as follows:

x+A - 1
d GT y= \lambda x,(A.1a)

y - S - 1
1 BT z = \lambda y,(A.1b)

(BS - 1
1 BT ) - 1By= \lambda z.(A.1c)

Let us consider the vector
\bigl( 
xT yT zT

\bigr) T
=
\bigl( 
xT 0 0

\bigr) T
, where x \not = 0. Then

equations (A.1), along with \lambda = 1, are satisfied, and hence this vector is an eigenvector

of \widetilde \scrM  - 1
2 \scrK . Since x\in \BbbR n2\times 1, 1 is an eigenvalue with multiplicity n2.

If \lambda = 1 and y \not = 0, the three equations of (A.1) are simplified to

A - 1
d GT y= 0,(A.2a)

BT z = 0,(A.2b)

By= 0.(A.2c)

Since BT has full rank, (A.2b) leads to z = 0. From (A.2c) we have By = 0. Since
B \in \BbbR n2\times (2n2 - n) has rank n2, the null space of B has dimension (2n2 - n) - n2 = n2 - n.
From the proof of Theorem 4.1, y satisfies GT y = 0. Thus, the multiplicity of the

eigenvalue 1 with eigenvector
\bigl( 
xT yT 0

\bigr) T
with y \not = 0 is n2  - n. Therefore, 1 has

multiplicity 2n2  - n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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If \lambda \not = 1, from (A.1b) we have By= 1
1 - \lambda BS - 1

1 BT z. Using (A.1c), we have

1

1 - \lambda 
z = \lambda z.

Thus, z \not = 0 and

\lambda 2  - \lambda + 1= 0;

that is, \lambda = 1\pm 
\surd 
3i

2 . Since z \not = 0 \in \BbbR n2\times 1, the eigenvalues 1\pm 
\surd 
3i

2 have multiplicity n2

each.

Theorem A.2. The eigenvalues of \widetilde \scrM  - 1
3 \scrK are

(i) 1 with multiplicity n2,
(ii)  - 1 with multiplicity n2  - n,
(iii)

\surd 
2 - 1\approx 0.4142 and  - 

\surd 
2 - 1\approx  - 2.4142 with multiplicity n2 each.

Proof. The preconditioned matrix is given by

\widetilde \scrM  - 1
3 \scrK =

\left(  I A - 1
d GT 0

0  - I S - 1
1 BT

0 2S - 1
2 S - 1

1  - I

\right)  .

Thus, n2 of the eigenvalues of \widetilde \scrM  - 1
3 \scrK are 1, and the remaining ones are the eigenvalues

of

H =

\biggl( 
 - I S - 1

1 BT

2S - 1
2 S - 1

1  - I

\biggr) 
.

We write the corresponding eigenvalue problem for H and obtain

 - y+ S - 1
1 BT z = \lambda y,(A.3a)

2S - 1
2 By - z = \lambda z.(A.3b)

If \lambda = - 1, then

S - 1
1 BT z = 0,

2S - 1
2 By= 0.

Therefore, BT z = 0 and By= 0. Since B is full rank, z = 0 and y is the null space of
B with dimension (2n2  - n) - n2 = n2  - n.

If \lambda \not = - 1, from (A.3a) we have y = (1 + \lambda ) - 1S - 1
1 BT z. Therefore y, z \not = 0. From

(A.3b) we have

(1 + \lambda )z = 2S - 1
2 By= 2S - 1

2 (1 + \lambda ) - 1S - 1
1 BT z = 2(1 + \lambda ) - 1z,

which gives (1 + \lambda )2 = 2. Therefore \lambda = \pm 
\surd 
2  - 1. Since BT has full rank, the

eigenvalues \pm 
\surd 
2 - 1 have multiplicity n2 each.
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