Block Orderings for Tensor-Product Grids in Two and Three
Dimensions !
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Abstract. We consider two-line and two-plane orderings for a convection-diffusion model problem
in two and three dimensions, respectively. These strategies are aimed at introducing dense diagonal
blocks, at the price of a slight increase of the bandwidth of the matrix, compared to natural lexi-
cographic ordering. Comprehensive convergence analysis is performed for block stationary schemes.
‘We then move to consider a two-step preconditioning technique, and analyze the numerical proper-
ties of the underlying linear systems that are solved in each step of the iterative process. For the
three-dimensional problem this approach is a viable alternative to the Incomplete LU approach, and
may be easier to implement in parallel environments. The analysis is illustrated and validated by
numerical examples.
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1. Introduction. Consider the following convection-diffusion model equation
with constant coefficients

(1.1) ~Au+VIVu=p,

subject to Dirichlet type boundary conditions. Problem (1.1) is either in two or three
dimensions, and the domain is the unit square or the unit cube, respectively. We
denote the coefficients of the convective terms by

(1.2) V=(omw,

where in two dimensions V' consists of ¢ and 7 only. We focus on applying finite
difference discretizations: centered differences to the diffusive terms, and centered
differences or first order upwind approximations to the convective terms. Let us
define n and h so that h = 1/(n + 1) is the (uniform) mesh size, and let L denote the
corresponding difference operator, after scaling by h?, so that the discrete solution of
an interior gridpoint in the three-dimensional case, u; ; 1, satisfies:

(1.3) Lu;jre = auijr+buij 16+ cui-1jk

Fduit1 gk +euijri e+ fuije—1 + guijrsr -
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The computational molecule for the three-dimensional case is depicted in Fig.
1.1. For notational convenience, let the difference equation for the 2D case be the
same as (1.3), except f = g =0, and with double subscripts for u rather than triple
ones.

Fi1ag. 1.1. Computational molecule

Denoting the mesh Reynolds numbers by

oh Th uh
14 = = =
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the coefficients a,b,¢,d, e, f and g can be expressed in terms of 3, and § [7].

Our purpose in this report is to introduce a class of orderings which are motivated
by attempting to yield matrices with dense diagonal blocks. In other words, we aim
at having in the computational molecule as many gridpoints as possible with an
associated index in the matrix that is different from the index of the center of the
molecule by a quantity that does not depend on n. The two-line ordering we discuss
was proposed in [11], where it was considered for the classical positive-definite case.
Here we consider the general convection-diffusion case and provide analysis for the
nonsymmetric constant-coefficient model problem. We then proceed to introduce a
two-plane ordering strategy for 3D tensor-product grids.

In the 2D case, gridpoints from two lines are alternately numbered, and in the
3D case, the numbering is done based on blocks of four lines, each consisting of two
pairs of lines in two adjacent planes. Hence the names ‘two-line’ and ‘two-plane’.

For stationary methods, it can be shown analytically that if the matrix is an
M-matrix, strategies that rely on generating dense main diagonal blocks (such as the
ones discussed here) lead to fast convergence [13, p. 91]. We provide comprehensive
convergence analysis for the block Jacobi scheme. For preconditioned Krylov solvers
we present some numerical experiments that illustrate the merits of our approach.

The rest of this paper is organized as follows. In sections 2 and 3 we present the
ordering strategies that are examined, for the 2D and 3D problems respectively. In
each of these sections a block splitting is proposed, bounds on convergence rates for
the block Jacobi scheme are derived, and the amount of computational work involved
in solving the linear systems is estimated. In section 4 we discuss a technique of two-
step preconditioning, and apply it to the three-dimensional case. In section 5 some
numerical results which validate our analysis are presented. In section 6 we draw
some conclusions.



2. Two-Line Orderings for 2D Problems. We start with the two dimen-
sional problem. Parter [11] introduced a technique of two-line ordering, which we
now analyze for the class of nonsymmetric matrices arising from finite-difference dis-
cretization of convection-diffusion equations. The ordering (for a 4 x 4 grid) and the
sparsity pattern of the matrix (for an 8 x 8 grid) are illustrated in Fig. 2.1. The
idea is to number the unknowns in groups of two lines. The main diagonal block of
this matrix ‘captures’ four of the five components of the computational molecule for
all interior nodes. A two-line ordering strategy was considered for cyclically reduced
problems in [2, 3], where grids of a different structure arise.

10 12 14 16

Fic. 2.1. Two-line ordering

2.1. Convergence of the block Jacobi scheme. Denote by V;g a vector with
alternating 1s and Os, and let V; be a vector of ones. Let the two-line matrix be
denoted by A, and let A = M — N be a splitting, such that

(2.1) M = pentalc- Vi,e-Vig,a-Vi,b-Vig,d- V1] .

We can think of M — N as a ‘two-line Jacobi’ splitting. The spectrum of M is given
in the following theorem.
THEOREM 2.1. The eigenvalues of the matriz M are given exactly by

(2.2) a+Vbe — 2Vedcos(mjh) , j=1,...,n.

Each of these 2n eigenvalues has an algebraic multiplicity of .

Proof. 1t is straightforward to show that M can be symmetrized by a diagonal
nonsingular matrix, by means analogous to the techniques used in [2]. As a result,
each 2n x 2n block of the symmetrized matrix is a block-tridiagonal Toeplitz matrix,
relative to 2 x 2 blocks, given by

(2.3) M = tri[Vbe - I, G, Vbe - I] ,

where

(2.4) G:(\Z—d \/;_d>
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and I is the 2 x 2 identity matrix. The eigenvalues of G are a = ved. Let {\, 2} be
an eigenpair, so that Gz = Az, and consider the 2n-vector:

(s.in2a)a:
25) Y (sin2a)x

(sin ﬁa)m
The jth block row of (M — AI)v is given by:
(2.6) [(M — AI)v]Y) = Ved - [sin(j — 1)az + sin(j + 1)az] + (G — M)(sin ja)z .
Since (G — AI))(sin ja)z = 0, we get after simplification
(2.7) [(M — XI)v]Y) = (2Ved cos a)o'?) .

For j = 1,...,n — 1 this holds for any a, however for j = n, it holds only if
sin(n + 1)a = 0. Thus a = f—jrfl, k=1,...n, and 2\/c_dcos(nk—+“1) is an eigenvalue of
M — M. From this we get that the eigenvalues of M are given by (2.2).

Since the symmetrized matrix M is a block diagonal matrix comprised of & copies
of M, the multiplicity stated in the theorem follows. O

Theorem 2.1 leads to an expression for the minimal eigenvalue of M, as follows.

COROLLARY 2.2. For be,cd > 0 the minimal eigenvalue of M is given by

(2.8) a—2Ved - cos(wh) — Vbe .

For the matrix N the eigenvalues are given as follows.

PROPOSITION 2.3. The eigenvalues of the matriz N are either 0, Vb-e or
—Vb-e.

Proof. The matrix N? is a diagonal matrix whose entries are either 0 or b - e.
d

Using the above results, we can establish a convergence result for the two-line
Jacobi scheme:

THEOREM 2.4. For be,cd > 0, the spectral radius of the Jacobi scheme associated
with the splitting A = M — N is bounded by

o Vbe
P oedcos(nh) — Vbe

(2.9)

Remark: We attach the tilde symbol to p in order to indicate that this is a bound
rather than the actual spectral radius.

Proof. For positive be and cd the matrix is merely a permutation of the matrix
arising from natural lexicographic ordering, which can be symmetrized by a real di-
agonal nonsingular matrix [2]. Since M and N are symmetric, with M being positive

N
definite, we have (see, for example, [2]) p(M ' N) < L O
Amin (M)
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2.2. Estimate of computational work. In [2] it is shown that the spectral
radius of the line-Jacobi iteration matrix is given (exactly) by

B 2v/be cos(mh)
(2.10) PNL = a—2Vedcos(wh)

We have used Maple V to compute symbolically the Taylor expansion of por,, and
have compared it to the Taylor expansion of pnrp,.

The Taylor expansion about h = 0 of the Jacobi iteration matrix associated with
the lexicographic ordering is

1 1
1- (71'2 + gUQ + §T2> h* + o(h?).

For the bound on the spectral radius of the two-line matrix, the Taylor expansion is

1 1
1- <7r2 + 102 + 172> h* + o(h?).

A useful quantity to compare here is the asymptotic rate of convergence, which
for a given spectral radius p, is given by —In p. It can roughly indicate the number
of iterations it takes to reduce the initial error by a fixed rate. If p = 1 — ch?, with
¢ being a constant and h being a small quantity (such as gridsize), then to leading
order, we have —In p ~ ch®.

From a point of view of iteration counts, then, when the convective coefficients
are large, it is evident that compared to the scheme associated with the lexicographic
ordering, the two-line Jacobi scheme converges faster by a factor of approximately 2.

When o and 7 are very small, it seems by looking at the bound that the natural
lexicographic ordering may have approximately the same rate of convergence (in this
case the rate of convergence is dominated by the factor 72h? in the Taylor expansions
given above). However, as is shown in section 5, our numerical experiments indicate
that the two-line scheme is faster even for this case.

Table 2.1 provides some insight into the improved spectral radius, and the tight-
ness of the bound.

L [ pne [ por | por |
8 [ 0.686 || 0.524 | 0.575
16 || 0.741 || 0.589 | 0.605
24 | 0.753 || 0.604 | 0.612
32 | 0.758 || 0.610 | 0.614

TABLE 2.1
Spectral radii of the natural lezicographic iteration matriz (pnr ), the two-line iteration matriz
(p2r ), and the bound (par ), for B = v = 0.5, using the centered difference discretization for the
first and second derivatives.

3. Two-Plane Ordering for 3D Problems. A strategy of two-plane order-
ing was proposed and analyzed for a different type of grids: the class of cyclically
reduced problems [6, 7, 8], and is now adopted for tensor-product grids. It is based
on numbering the nodes by dividing the grid into groups of 4n points, gathered from
two lines and two planes. The idea is illustrated in Fig. 3.1, where both the ordering
(for a 4 x 4 x 4 grid) and the sparsity pattern of the underlying matrix (for a 6 x 6 x 6
grid) are depicted.
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Fic. 3.1. Two-Plane ordering

3.1. Convergence of the block Jacobi scheme. Consider the splitting
A = M — N, where M is a block diagonal matrix whose semibandwidth is 4. A
single block of M is depicted in the leftmost graph in Fig. 3.2. In order to obtain
an upper bound on the spectral radius of the iteration matrix, we use a technique of
symmetrization.

ProproSITION 3.1. The two-plane matriz can be symmetrized by a real nonsin-
gular diagonal matriz, provided that be, cd, fg > 0.

Proof. The two-plane matrix is a symmetric permutation of the matrix associated
with the natural lexicographic ordering, which is symmetrizable under the conditions
stated above [7]. O

Fic. 3.2. Single blocks of the matriz M and its ”splitting” into My + M

PROPOSITION 3.2. Suppose be,cd, fg > 0. Then the minimal eigenvalue of M is

(3.1) Amin(M) = a — 2Ved cos(wh) — Vbe — \/Jg .

Proof. By Proposition 3.1, M can be symmetrized. In order to keep notation
as simple as possible, we refer below to M as the symmetrized matrix rather than
the original nonsymmetric matrix. We split M into two matrices, M = M; + M, as
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depicted in Fig. 3.2. (In the figures a single 4n x 4n block of each of these matrices

is given.) M, is a block diagonal matrix, consisting of %2 blocks. Each of the blocks
has three nonzero diagonals, located in diagonals -4, 0 and 4. The values in these
diagonals are ¢, a and d respectively.

Let ® denotes the Kronecker product operator. Let Q1 = penta[\/c_d, 0,a,0, \/c_d]
be a 2n x 2n pentadiagonal matrix. M; can be written as a block pentadiagonal

matrix relative to 2 x 2 blocks:

(3.2) Mi=Q, 5.
Let Qs = tri[Ved, a, Ved), of size n x n. Then
(3.3) Q1=Q3®1.

Q3 is a symmetric tridiagonal Toeplitz matrix. Thus its eigenvalues are known ex-
plicitly (see [2] or [12, p. 119]), and it follows that the eigenvalues of @)1 are

(3.4) A =a+2Ved-cos(jm/(n+1)), j=1,...,n,

each of multiplicity "Tz. Thus the eigenvalues of M; are (3.4), with algebraic multi-
plicity %2.

Consider now the matrix M>. Let Q2 be a 2n x 2n block diagonal matrix of the
form diag[Y,...,Y], where

(3.5) Yy = ( ! é ) .
Define T by:
- ro (Y VY.

Then M, = Q, ® T, and the eigenvalues of M, are £v/be + /Jg.
Any four matrices A, B,C and D with the appropriate sizes satisfy [1]

(3.7) (A® B)-(C® D) = (AC) ® (BD) .

Thus

(3.8) My-My=(Q1®DL) (Q:®T) =(Q1Q2) T .
By (3.7), we have

(3.9) Q- Q2=(Q3®D) ([n®Y)=Q30Y =Q2-Q1 .

Since ()1 and > commute, it follows from eq. (3.8) that
(3.10) My - My =M,y - M,

by which it follows that M; and M, can be simultaneously diagonalized and have the
same eigenvectors. Thus the sum of the exact minimal eigenvalues of M; and M, is
also the minimal eigenvalue of M = My + M>. O

7
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Fic. 3.3. The matrices N1 and N>

Next, we examine the matrix N. Here as well we split the matrix into two
submatrices, N1 + Ny, in the manner illustrated in Fig. 3.3, and in this case we are
able to find the eigenvalues directly, without symmetrizing first.

PROPOSITION 3.3. The spectral radius of the matriz N is given by vbe + v/fg.

Proof. Relative to 2n? x 2n? blocks, N; is a block diagonal matrix. The nonzero
entries in the superdiagonals indexed 4n + 2 are equal to e. On the other hand, the
nonzero entries in the subdiagonals —4n £ 2 are equal to b. Along each of the above
diagonals, any two nonzero entries is separated by three zeros.

Relative to 2n% x 2n2 blocks, Ns is a block tridiagonal matrix with zero blocks
on its main diagonal. The nonzero entries of the superdiagonals indexed 2n% + 1 and
2n2% — 3 are equal to g. The entries on the subdiagonals indexed —2n?+3 and —2n2—1
are equal to either 0 or f. Here, as in the diagonals of Ny, each two nonzero entries
along a diagonal are separated by three zeros.

Given the above, it is possible to perform direct computation of N1- Ny and No-Nj.
The resulting matrices are block tridiagonal relative to 2n? x 2n? blocks. Subdividing
each of these blocks into 4n x 4n blocks, and taking into account the spacing of nonzero
entries along each diagonal, it follows that the nonzero diagonals of the product are
all diagonals with identical nonzero values along them, which are either bf, ef, bg or
eg. Thus the matrices N; and N, commute, and hence have common eigenvectors.

The matrix N7 is a diagonal matrix whose values on the diagonal are either be
or 0. Thus the eigenvalues of N; are given by 0,4v/be. Using a similar argument,
N2 is a diagonal matrix which has either zeros or fg along the main diagonal, thus
the eigenvalues of N> are either zeros or £4/fg. From this it follows that the maximal
eigenvalue of N = Ny + N, is as stated in the proposition. O

The above results lead to a bound on the spectral radius of the two-plane Jacobi
iteration matrix, as follows.

THEOREM 3.4. An upper bound on the spectral radius of the two-plane Jacobi
iteration matrix is given by

_ Ve + /g
pap = a—2\/£cos(7rh)—\/b_—\/f—g'

(3.11)



3.2. Estimate of computational work. The spectral radius of the one-line
Jacobi iteration matrix associated with the natural lexicographic ordering is [7]

2(vbe + /Fg) - cos(mh)
a—2Vcdcos(nh)

It is possible to show that the bound on the two-plane iteration matrix is smaller
than the spectral radius of the iteration matrix associated with natural lexicographic
ordering. The Taylor expansion about h = 0 of the Jacobi iteration matrix associated
with the lexicographic ordering is

(3.12)

3 1 1 1
1— (224 2524 220 22 p2 B2
<4" 167 tigm fagh ) e

and the Taylor expansion of the bound on the spectral radius of the two-plane Jacobi
iteration matrix is

1 1 7 7
12422 L2y L2
(27r +80' +64T +64u

) B>+ o(h®) .

However, even though we obtain an impressive saving in iterations, similarly
to the 2D case, here there is fill-in when the main block diagonal of the matrix is
factorized. This can be observed by examining the leftmost graph of Figure 3.2.
Therefore, in the three-dimensional case we should expect a much smaller gain in
overall computational work when the block Jacobi scheme is used in conjunction with
the two-plane ordering. Nevertheless, this ordering strategy is more effective than the
the natural lexicographic ordering.

4. Two-step preconditioner. In [10] a class of two-step preconditioners is con-
sidered. Suppose we are given a linear system Az = b. The first step is to form a
splitting

(4.1) A=A + Ao,

and decompose Aj, either exactly or approximately. In the discussion that follows,
we shall focus on the LU or incomplete LU decomposition of A;. We note that other
decompositions are viable as well. Consider the preconditioner

(4.2) Mt =UYI+L AU YLt
If Ay = LU then M~! = A~! because in this case M is given by:
(4.3) M=LI+L "AU YU = A, + Ay = A.

Thus, if A; = LU + R is an incomplete LU factorization with ||R|| small, M ! can
be considered an effective approximation to A~'. However, computing

(I + L=*A,U~Y7! is nearly as costly as computing A~!, since I + L=1A,U~! =
LY (LU + A5)U~! =~ L71AU~!. We therefore seek an approximation for this quan-
tity rather than its exact value. This is the second step, hence the name two-step
preconditioner. The approach suggested in [10] is to use a first order truncated Neu-
mann series:

(4.4) T+ L AU ) P T — L AU L.
9



This approach is similar in spirit to the technique presented and investigated in
[5], where the skew-symmetric part of the matrix forms the basis for the splitting.

If M is computed as specified above, with the approximation as in (4.4), then the
algorithm for computing Mz = r is as follows:

Find L and U such that A; ~ LU.
Solve LUy, =r.

Compute y2 = Asy;.

Solve LUys = ya.

Z2=Y1 —Ys-

Cu N

The splitting A = A; + A, is useful for cases where dealing with A; is much
easier than handling the matrix A. For example, if A is positive real, we can define
A; as the symmetric part of A, and compute an incomplete Cholesky decomposition
[4, p. 535]. Note that for any choice of A;, ||L7 AU || < 1 must be satisfied for
the approximation (4.4) to be valid.

It is possible to pick A; based on sparsity considerations. Having A; with sparse
factors is especially useful for linear systems arising from discretization of three-
dimensional elliptic problems, where the loss of sparsity is significant when factorizing
A. If Ay gives rise to modest fill-in, its full LU decomposition may be computed, and
the quality of the preconditioner would depend solely on the quality of the approxi-
mation of (I + L=tA,U~1)~L.

Suppose indeed that

(4.5) M7 =UI-L' AU YL, A =LU.

For any splitting of the matrix A, we have the following useful result:
PROPOSITION 4.1. Let A= Ay + A and let M~ be the matriz defined in (4.5).
Then

(4.6) M7 A=T-(A;14,)% .

Proof.
MTPA=UTI-L ' AU LA = (A = AP A AT D (A 4+ Ap) = T— (A1 AR)?,

O
Thus the convergence rate of a scheme of the form

Mzt = Nz(®) 4 p
depends on the spectral radius of
M™'N=I-M"4=(A]"'4,)".

Below we provide analytical observations specifically for the two-plane ordering.
We define A; to be the matrix A, with its fourth superdiagonal and fourth subdiagonal
eliminated. This actually corresponds to setting ¢ = d = 0. It turns out that the
amount of fill-in for Ay is significantly lower than the fill-in for the whole matrix A:
see Fig. 4.1. Since only two diagonals of the original matrix have been zeroed out,
we can expect good convergence rates.

10



Fic. 4.1. Fill-in in A vs. fill-in in A1 for a 6/-point grid. Shown are the sparsily patterns of
L+U, where L and U are the matrices associated with the full LU decompositions (without pivoting)
of A (left) and A1 (right).

PROPOSITION 4.2. The eigenvalues of A1 are given by

(4.7) Ajk(A1) = a+ 2Vbecos(mjh) + 2¢/fgcos(tkh) ,  jk=1,...,n.

Proof. Ay is a permuted version of the lexicographically ordered matrix with the
convection term in the z-direction set to 0. O
COROLLARY 4.3. For be, fg > 0 the minimal eigenvalue of Ay is

(4.8) Amin(41) = a — 2(Vbe + /fg) cos(wh).

PROPOSITION 4.4. The eigenvalues of As are given by

(4.9) \j = 2Ved cos(mjh) j=1,...,n.

Proof. The matrix Ay is a permuted version of the lexicographically ordered
matrix with zero convection in the y and z directions, modified so that its main
diagonal is zero. O

The above propositions lead us to the following result.

THEOREM 4.5. Let

2v/ed cos(mih)
a + 2v/becos(mjh) + 2v/Fgcos(nkh) ’

(410) Ai,j,k = i,j,k: 1,...,n.

The eigenvalues of M~ A are given by 1 — X7, ., i,5,k =1,...,n.

We can make a few further observations on the eigenvalues of the preconditioned
matrix. For example:

COROLLARY 4.6. Suppose centered difference discretization is used for the con-
vective terms. For the region of numerical stability, namely |3|,|v|, |0] < 1, the eigen-
values of M 1A are all real, positive and smaller than 1.

Proof. For the centered difference scheme we have cd = 1 — 32, hence if |5] < 1
we have 0 < ed < 1. Similarly, 0 < be, fg < 1. Since a = 6, it readily follows by (4.10)
that 0 < 1 — )\?’j’k < 1foralli,j,k. O

Suppose we wish to use the splitting A = M — N for fixed point iterations. We
can estimate the spectral radius of the iteration matrix I — M L A.
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PROPOSITION 4.7. Let Ay = LU, and let be,cd, fg > 0. Denote

2v/ed cos(h)
a — 2(vbe + \/fg) cos(wh)

(4.11) p1 =

Then the spectral radius of I — M 1A is given by p?.
Proof. A; and A commute. By Proposition 4.1 we have [ — M 1A = (4, ' 4,)?,

2
thus the spectral radius is given by (%) .0
From Proposition 4.7 (or Cor. 4.6) we can deduce the following on the convergence

of the scheme.
COROLLARY 4.8. Given |B], |v|,|d| < 1, the iteration

(4.12) Mz D = (M — A)z® +b

with M as defined in (4.5), converges for any initial guess.

It is clear that if the matrices L and U defining M satisfy A; = LU, improving
the rate of convergence lies solely on obtaining a better approximation to the matrix
(I + L' A,U~1) =1 An alternative to approximating it by the leading two terms of
the Neumann series is to perform a small number of, say, Jacobi iterations of the form

(4.13) e® = —L7 AU 2 4+ k=1,2,...
We have (see [9, p. 53] for justification)
(4.14) (LT AUY) = (A7 Ay) |

and the spectral radius of the iteration matrix is known by the previous propositions.
We can thus estimate the number of iterations required for obtaining a solution to a
certain level of accuracy. Furthermore, by induction it is straightforward to show:

PROPOSITION 4.9. Suppose m steps of (4.13) are performed, and suppose that
Ay = LU. Then if the initial guess is zero, the corresponding preconditioned matriz
is

(4.15) M™'A=1-(A7"4,)".

4.1. Evaluation of the bounds for small mesh size. Taylor expansions of
the quantities discussed in the previous sections can help gain insight into asymptotic
rates of convergence.

PROPOSITION 4.10. For h sufficiently small the spectral radius of I — M~ A,
where M is the matriz defined in (4.5), can be written as:

2

2 2
(4.16) p(I—M~'A)=1— (37 + UZ +TZ +“Z)h2+o(h2).

Proof. Expanding Ved = \/1—-52 =1 — "28h2 + o(h?), and similarly for v/be
and /fg, using cos(wh) = 1 — # + o(h?), and using = = 1+ 2? + o(z?) for &

sufficiently small, eq. (4.16) readily follows. This result has been verified using Maple
v.O
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From the point of view of iteration counts, the two-step preconditioning solve, if
used as a fixed point iteration scheme, is faster than the Jacobi scheme associated with
the two-plane matrix by a factor of 2, and is faster than the Jacobi scheme associated
with the lexicographic ordering by a factor of 4; but the computational work involved
in each iteration of the two-step preconditioner is larger: it is equivalent to solving
two linear systems, and requires that the fill-in in the factorization of A; be minimal.

0 2 4 6 8 10 12

L L L L L
0 01 02 03 04 05 0.6 07 08 09 1

FIG. 4.2. Eigenvalues of A and of M~ A (upper and lower plots respectively). M is the two-
step preconditioner. Note that the scales are different. In this example we have a 512-point grid and
the problem is described in section 5 (Test problem 2, with ¢ =1/10).

In Figure 4.2 we observe the structure of the eigenvalues of the preconditioned
matrix. The eigenvalues of the matrix associated with the two-step preconditioner are
all positive and smaller than 1 (for this example Cor. 4.6 applies), and are clustered
near 1.

5. Numerical experiments. The experiments were performed on an SGI ma-
chine, using MATLAB.

5.1. Test Problem 1. Consider Problem (1.1). For the 2D problem we tested
with n = 32, for the 3D problem we tested with n = 16. The tables validate our
analysis, both in terms of iteration counts and solve time.

In Table 5.1 we present iteration counts and solution times for the block Jacobi
scheme in the two-dimensional case. As is predicted by our bounds and estimate of
computational costs, the iteration count is faster by a factor of approximately 2, and
so is the solution time. The analysis predicts an improvement by a factor of 2 for
iterations, and at least 80% for solution time. The same rates of improvement occur
for the Gauss-Seidel and the SOR schemes — Tables 5.2 and 5.3. (In these tables
only iteration counts are given.)

For the SOR scheme applied to the matrix associated with the two-line ordering,
the relaxation parameter was determined by using the bound for the block Jacobi
scheme, and substituting it in Young’s formula [15]. (The two-line matrix is con-
sistently ordered relative to 2n x 2n blocks, and hence the Young analysis can be
applied.) Even though the chosen relaxation parameter is not optimal, since a bound
rather than the actual spectral radius of the Jacobi iteration matrix is used, numerical
experiments verify that it is very close in value to the optimal relaxation parameter.
For example, for 8 = v = 0.1, we have obtained 1.62 as the approximate optimal re-
laxation and the scheme converged within 42 iterations (see Table 5.3) ; the optimal
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B, v Two-Line Lexicographic

Iterations | time || Iterations | time
0.1 526 14.0 1042 28.6
0.3 141 3.8 269 7.4
0.5 74 2.0 135 3.7
0.7 49 1.3 84 2.3
0.9 34 0.9 56 1.5

TABLE 5.1

2D Block Jacobi: comparison between the two ordering strategies for different values of the
mesh Reynolds numbers.

[ 8, 7 || Two-line | Lexicographic |

0.1 260 516

0.3 65 124

0.5 31 55

0.7 18 29

0.9 10 14
TABLE 5.2

2D Block Gauss-Seidel: comparison of iteration counts for different values of the mesh Reynolds
numbers.

relaxation parameter in this case is 1.58 and the scheme converges within 40 iteration
when the value is used, i.e. an insignificant difference.

In Table 5.4 we present results for the block Jacobi scheme in the 3D case. Here
as well, the analysis predicts the behavior. In the 3D case the factor of 2 in iteration
count does not carry over to a similar saving in running time, due to the fill-in in the
main diagonal block of the matrix. Nevertheless, the two-plane ordering is superior
to the natural lexicographic ordering when the block Jacobi scheme is used, and an
optimized block solver could possibly increase the savings.

5.2. Test Problem 2. Consider the following PDE with variable coefficients:

(5.1) —eAu+ (z,y,2) - Vu = w(z,y, 2)

on Q= (0,1)x(0,1)x(0,1) , with zero Dirichlet boundary conditions, where w(z, y, z)
is constructed so that the solution is

(5.2) w@,y,z) =zyz(1—-x) (1-y) (1 -2) exp(z+y+2).

We experimented with the standard centered second order accurate finite difference
scheme on a uniform grid, with e = &. Bi-CGSTAB [14] was used, and the stopping
criterion was: relative residual smaller than 1071°. The grid size was 32 x 32 x 32
(32,768 gridpoints). Note that for this grid the mesh Reynolds numbers do not exceed
the value 1, hence the centered difference scheme is adequate.

Our results are presented in Table 5.2. The solver preconditioned with ILU and
drop tolerance 0.04 is the overall winner. (We note that larger values of the drop toler-
ance did not reduce the amount of computational work.) However, while the variation
in performance for the ILU preconditioned solvers is high (this is true for both the
construction time and iteration counts), the two-step preconditioner demonstrates ro-
bustness in that regardless of the numerical drop tolerance that is used, the overall
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B, v Two-Line Lexicographic
— w | Iterations w | Iterations
0.1 1.62 42 1.68 59
0.3 1.40 21 1.49 31
0.5 1.12 16 1.21 21
0.7 1.04 13 1.09 17
0.9 1.01 9 1.01 11
TABLE 5.3

2D Block SOR: comparison between iteration counts and relaxation parameters for different
values of the mesh Reynolds numbers.

B, v, 6 Two-Plane Lexicographic
— Iterations | time || Iterations | time
0.1 304 60.9 600 66.4
0.3 129 25.9 248 27.1
0.5 71 14.3 130 14.4
0.7 47 9.5 81 9.0
0.9 31 6.2 53 5.8

TABLE 5.4

3D Block Jacobi: comparison between the two ordering strategies for different values of the
mesh Reynolds numbers.

computation time does not significantly vary. The two-step preconditioner is param-
eter free; for ILU it may be difficult to find the optimal value without performing
repeated experiments.

[ Method [ ILU p/c || two-step p/c |

ILU(4 10 2) | 36.60 38.75
ILU(10~2) 42.04 38.40
ILU(7 10 %) | 45.59 38.52
ILU(4 107°) || 52.61 40.43
ILU(10°) 85.30 46.55

6. Conclusions. Two ordering strategies have been analyzed: the two-line or-
dering for 2D problems, and the two-plane ordering for 3D problems. Bounds on
convergence rates of the block Jacobi scheme have been derived and have been shown
to be effective and reliable in predicting the convergence behavior of this scheme.
Analysis and numerical experiments demonstrate improvement in comparison to the
natural lexicographic ordering.

A two-step preconditioning technique based on ideas in [5, 10] has been presented.
For a certain choice of the splitting with the ordering strategy we have considered,
we obtain a rapid construction of the preconditioner. While convergence is slower
compared to the optimal ILU preconditioned schemes that are based on drop toler-
ance, the two-step preconditioning technique is not parameter dependent, which is an
important advantage. Preserving the sparsity throughout the computation may make
it possible to gain savings in a parallel environment.
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