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Abstract

We present a field-of-values (FOV) analysis for preconditioned nonsymmetric saddle-
point linear systems, where zero is included in the field of values of the matrix. We
rely on recent results of Crouzeix and Greenbaum [Spectral sets: numerical range and
beyond. SIAM Journal on Matrix Analysis and Applications, 40(3):1087-1001, 2019],
showing that a convex region with a circular hole is a spectral set. Sufficient condi-
tions are derived for convergence independent of the matrix dimensions. We apply our
results to preconditioned nonsymmetric saddle-point systems, and show their appli-
cability to families of block preconditioners that have not been previously covered by
existing FOV analysis. A limitation of our theory is that the preconditioned matrix
is required to have a small skew-symmetric part in norm. Consequently, our analysis
may not be applicable, for example, to fluid flow problems characterized by a small
viscosity coefficient. Some numerical results illustrate our findings.

Keywords. field of values, nonsymmetric saddle-point systems, GMRES convergence,
block preconditioners

1 Introduction

The field of values of a matrix is an indispensable tool in linear algebra and its applications.
It is defined as follows.

Definition 1.1. Given a matrix A ∈ Cn×n, the field of values (FOV) of A is defined as

W (A) =

{
x∗Ax

x∗x
: x ∈ Cn

}
and the H-field of values of A, given another matrix H ∈ Cn×n, is defined as

WH(A) =

{
x∗HAx

x∗Hx
: x ∈ Cn

}
.
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Early work on the topic was published in [11, 16] and in several other papers; see [3]
for a recent expository paper that provides an overview of the use of FOV, its history and
development, and a comprehensive list of references.

In the context of this work, we are interested in the use of FOV to establish the scal-
ability of Krylov subspace iterative solvers (specifically, GMRES [20]) for large and sparse
nonsymmetric saddle-point systems:[

F BT

B 0

] [
u
p

]
=

[
f
g

]
, (1)

where F ∈ Rn×n is nonsymmetric, B ∈ Rm×n has full row rank, and u, f ∈ Rn, p, g ∈ Rm.
Significant work has been done on this topic [2, 4, 16, 17, 19], but to the best of our

knowledge, the analysis is limited to the situation where 0 is not included in the field of
values. Our goal is to perform an FOV analysis for preconditioned saddle-point systems in
the case where the origin is included.

Part of our motivation in considering the field of values is that spectral analysis may
be limited for this family of linear systems: for nonsymmetric saddle-point systems arising
from PDEs, the condition number of the eigenvector matrix of the preconditioned matrix
typically increases with the matrix dimensions. In the context of the Navier-Stokes equa-
tions, for example, this happens even for a large viscosity coefficient. Thus, an analysis
of the eigenvalues of the preconditioned matrix is often insufficient to theoretically prove
convergence for nonsymmetric saddle-point matrices.

Throughout this paper, we extensively use the notion of a weighted norm, which we
define as follows.

Definition 1.2. Given a Hermitian positive definite matrix H ∈ Cn×n, the H-norm of a
vector u ∈ Cn is defined as

∥u∥H = (u,Hu)1/2.

Following the terminology of [7, Eq. (1)], while restricting our attention to discrete linear
operators, polynomials, and the H-norm, we say that for a closed subset X ⊂ C and a matrix
A, X is a K-spectral set for A if for any polynomial p

∥p(A)∥H ≤ K sup
z∈X

|p(z)|.

Theorem 1.3. [8, Theorem 6] Let A be a matrix of the same dimensions as H. Then,
WH(A) is a (1 +

√
2)-spectral set for A.

In the sequel, we will be using GMRES with respect to H-norm, or equivalently the H-
weighted inner product ⟨·, ·⟩H . Applying Theorem 1.3, we obtain the following convergence
bound.

Theorem 1.4. [7] Let rk = b − Axk be the residual of the k-th iteration, xk, of GMRES
with respect to the H-norm applied to the linear system Ax = b of the residual, and let Pj

denote all polynomials p of degree ≤ j that satisfy p(0) = 1. Then,

∥rj∥H
∥r0∥H

≤ min
p∈Pj

∥p(A)∥H ≤ (1 +
√
2) min

p∈Pj

max
z∈WH(A)

|p(z)|.
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A challenge is that when 0 ∈ WH(A), we have minp∈Pj
maxz∈WH(A) |p(z)| = 1, and

Theorem 1.4 fails to provide a useful bound on GMRES convergence in this case. The
presence of a zero in the field of values is, in fact, common in saddle-point systems: the
(2,2)-block of a saddle-point system preconditioned with a block-diagonal matrix can be 0.
Recently, Crouzeix and Greenbaum [7] have defined a convex region with a circular hole and
showed that it is a spectral set. This can be used to analyze cases when zero is included in
the field of values.

Theorem 1.5. [7] Let A be a matrix of the same dimensions as H. Then, ΩCG = WH(A)∩
{z ∈ C : |z| ≥ ∥A−1∥−1

H } is a (3 + 2
√
3)-spectral set for A.

In [14], the author presents a simple example to illustrate the potential of this result in
the context of convergence of GMRES.

The field of values of a matrix is difficult to compute, and in the context of the iterative
solution of linear systems, it is necessary to exploit the specific properties of the matrices
involved in order to provide concrete conditions for scalability of an iterative solver. Our
work extends the family of saddle-point linear systems for which FOV analysis is applica-
ble. In particular, we consider block-diagonal preconditioners and certain block-triangular
preconditioners for which no previous FOV analysis is available. On the other hand, our
analysis has some limitations compared to the well-studied FOV analysis that excludes the
origin. For example, in [17], scaling is effectively used to allow for applying FOV analysis to
the discrete Navier-Stokes equations with a small viscosity coefficient when the field of values
does not include the origin. In our analysis we are not able to utilize scalings in the same
manner, and we require the skew-symmetric part of the linear system to be small norm-wise.

The remainder of this paper is structured as follows. In Section 2 we present an analysis
that deals with zero in the field of values. In Section 3 we specialize our results to saddle-
point systems. In Section 4 we discuss a few examples of relevant applications and present
some numerical results. Finally, we draw some conclusions in Section 5.

2 FOV Analysis that Includes Zero

In this section, we derive sufficient conditions that will serve us in our analysis for saddle-
point systems.

2.1 Preliminaries

Let us present a few known results that we will use in our analysis.

Definition 2.1. For two symmetric positive definite matrices H1 ∈ Rn×n and H2 ∈ Rm×m,
we define the (H1, H2)-norm for a matrix M ∈ Rm×n as

∥M∥H1,H2 = max
v ̸=0

∥Mv∥H2

∥v∥H1

.
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It is immediate from Definition 2.1 that

∥H−1/2
2 MH

−1/2
1 ∥2 = ∥M∥H1,H

−1
2

= ∥MH−1
1 ∥H−1

1 ,H−1
2

= ∥H−1
2 M∥H1,H2 .

The following properties from [17] are useful for our analysis.

Lemma 2.2 ([17, Lemma 1]). LetM ∈ Rm×n have full rank, and let H1 ∈ Rn×n, H2 ∈ Rm×m

be two symmetric positive definite matrices. Then

(i) ∥M∥H1,H
−1
2

= max
v∈Rn\{0}

max
w∈Rm\{0}

wTMv

∥v∥H1∥w∥H2

.

(ii) If m = n,

∥M−1∥−1

H−1
2 ,H1

= min
v∈Rn\{0}

max
w∈Rm\{0}

wTMv

∥v∥H1∥w∥H2

.

(iii) If Hi ∈ Rni×ni , i = 1, 2, 3 are three symmetric and positive definite matrices and R ∈
Rn1×n2 , Q ∈ Rn2×n3 then

∥RQ∥H3,H1 ≤ ∥Q∥H3,H2∥R∥H2,H1 .

The following result from [10], adapted to our notation and context, is useful in our
analysis.

Theorem 2.3 ([10, Theorem 1]). Let Pn denote the set of polynomials p of degree at most
n with p(0) = 1. For a compact set S in the complex plane, with the origin not included in
or surrounded by S and no isolated points, define

En(S) = min
p∈Pn

max
z∈S

|p(z)|

and the corresponding estimated asymptotic convergence factor

ρ = lim
n→∞

(En(S))
1/n.

Let g(z) be the Green’s function associated with S, defined in the exterior of S, satisfying
∇2g = 0 outside of S, g(z) → 0 as z → ∂S, and g(z) − log |z| → C as |z| → ∞ for some
constants C. Then,

ρ = exp(−g(0)).

2.2 Sufficient Conditions

Lemma 2.4. Let A,H ∈ Rn×n where A is nonsingular and H is symmetric positive definite.
Then, GMRES converges with respect to H-norm in a fixed number of iterations independent
of its dimension, n, if the following conditions hold for some constants a, b, and c:

∥A∥H ≤ a; (2a)

∥A−1∥H ≤ b; (2b)

∥(HA− ATH)/2∥H,H−1 ≤ c; (2c)

bc < 1. (2d)

4



Proof. We first derive a bound on the field of values of A. Suppose the conditions hold.
Then, for any z ∈ WH(A), we have |z| ≤ ∥A∥H ≤ a and

|Im(z)| ≤ max
x∈Cn

∣∣∣∣(x∗HAxx∗Hx
−
(
x∗HAx

x∗Hx

)∗)/
2

∣∣∣∣
= max

x∈Cn

∣∣∣∣(x∗(HA− ATH)x

2x∗Hx

)∣∣∣∣
≤ ∥(HA− ATH)/2∥H,H−1 ≤ c.

Then,

ΩCG ⊆ ΩD := {z : 1
b
≤ |z| ≤ a} ∩ {z ∈ C : |Im(z)| ≤ c}.

By Theorem 1.5, we have the GMRES convergence result

∥rj∥H
∥r0∥H

≤ min
p∈Pj

∥p(A)∥H ≤ (3 + 2
√
3) min

p∈Pj

max
z∈ΩCG

|p(z)|.

Im(z) = c

Im(z) = −c

Re(z)

Im(z)

Figure 1: The shaded region is ΩD when conditions (2a)–(2d) of Lemma 2.4 hold

Since Condition (2d) holds, the origin is not surrounded by ΩCG, and it follows from
Theorem 2.3 that there is always a polynomial of (of some degree) with value 1 at the origin
that has a maximum magnitude strictly less than 1 on the closure of this set and hence
GMRES converges with an asymptotic rate given by exp(−g(0)) < 1, where g is the Green’s
function of this set with a pole at ∞ [6, 7].

Remark 2.1. If condition (2d) of Lemma 2.4 does not hold, the iterative solver may still
converge but we cannot prove convergence using our technique of proof. Specifically, it is
immediate to see that ΩCG is connected and due to the maximum modulus principle, we
can only obtain minp∈Pj ,p(0)=1maxz∈ΩCG

|p(z)| ≥ 1, which does not indicate convergence; see
Figure 2 for a graphical illustration.

5



Im(z) = c

Im(z) = −c

Re(z)

Im(z)

Figure 2: The shaded region is ΩD when bc ≥ 1 (i.e., when condition (2d) of Lemma 2.4 is
violated)

2.3 Scope and Limitations of the Analysis

Recall a widely used definition of FOV equivalence (see, for example, [17]).

Definition 2.5. Given two nonsingular matrices M,A ∈ Rn×n, M is H-field-of-values
equivalent to A if there exist positive constants α, β independent of n such that

α ≤ (MAx, x)H
(x, x)H

,
∥MAx∥H
∥x∥H

≤ β. (3)

If M is H-field-of-values equivalent to A, the FOV of MA is bounded by a well-defined
region:

WH(MA) ⊆ ΩFOV := {z : α ≤ Re(z), |z| ≤ β}.
For a geometric illustration of ΩFOV, see Figure 3.

Re(z)

Im(z)

|z| = 1

Re(z) = 0.5

0 1

Figure 3: The shaded region is ΩFOV with α = 0.5 and β = 1

The analysis in [17] and elsewhere (see, e.g., [16]) pertaining to the case that 0 is not part
of the field of values is based on obtaining convergence independent of the matrix dimensions
(or mesh size when discretizations of partial differential equations are concerned) by scaling
the preconditioner or the inner product. In that case, Definition 2.5 is a convergence crite-
rion and it allows for making α and β arbitrary (positive) and independent of the matrix
dimensions.
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In contrast, in our case, condition (2d) requires bc to be small. While scaling reduces one
of b or c, it increases the other. Therefore, a simple scaling strategy does not work in the case
we are considering, which reveals a limitation of our analysis. We note that condition (2b)
is rather standard by norm equivalence considerations (see, for example, [17, Lemma 3]). It
is condition (2c) that seems to present the difficulty, because it requires the skew-symmetric
part of the operator to be smaller than the radius of the inner disk; see Figure 1. Therefore,
practically speaking, our analysis is limited to cases where the preconditioned matrix is only
mildly nonsymmetric.

However, we note that this lemma can be improved to allow for looser conditions by using
a more sophisticated analysis.

Example 2.6. This is a modified example from [14]:

A = A−1 ⊕ A+1

where A−1 ∈ Rn×n and A+1 ∈ Rn×n are given by

A−1 =


−1 1/4

−1 1/4
. . . . . .

−1 1/4
−1


and

A+1 =


2 1.2

2 1.2
. . . . . .

2 1.2
2

 .
The field of values of A is a convex hull of two disks centered at −1 with radius 1/4 and
at 2 with radius 1.2, independently of the matrix dimensions. The inverse A−1 is available
analytically, and it can be shown that ∥A−1∥−1

2 → 3
4
as n → ∞; see, for example, [15] for

useful relevant results for Toeplitz matrices. For a finite value of n, the norm needs to be
computed numerically, and we have experimentally observed that it is bounded between 0.74
and 0.76 for relatively modest values of n.

We provide a graphical illustration in Figure 4. Here c = 1.2 and b ≥ 1
0.76

. The condition
(2d) is violated, but GMRES would still converge for a linear system with the matrix A
because ΩCG does not surround/include the origin. A more careful analysis that tracks the
boundary of the FOV (see, e.g., [18]) might result in conditions that are easier to satisfy.

While the limitation we have noted is considerable, our analysis substantially broadens
the scope of preconditioners for which FOV analysis can be carried out. In particular, in
terms of the quantities of Definition 2.5, our analysis makes it possible to consider

(MAx, x)H
(x, x)H

≤ 0. (4)

In the upcoming sections, we present specific examples related to discretized fluid flow
problems that demonstrate the advantages and the limitations of our analysis.
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Figure 4: The shaded region is ΩCG for A.

3 Preconditioned Saddle-Point Matrices with Zero in

the Field of Values

Using the results of Lemma 2.4, we now apply our theory to the important case of a non-
symmetric saddle-point system.

Consider

K =

[
F BT

B 0

]
, (5)

where F ∈ Rn×n is nonsingular and B ∈ Rm×n is full row rank. We assume that F is
nonsymmetric and positive real (or positive definite), namely, that uTFu > 0 for all 0 ̸= u ∈
Rn.

Let
S = BF−1BT (6)

be the Schur complement, and define

H =

[
H1 0
0 H2

]
, (7)

where H1 ∈ Rn×n and H2 ∈ Rm×m are symmetric positive definite.
To be able to perform our analysis, we need to make some specific assumptions on H1

and H2. We note that these assumptions amount to sufficient conditions, and in practice
one may relax them.

Definition 3.1. We set H1 as the symmetric part of F , and define N as its skew-symmetric
part:

F = H1 +N, H1 =
F + F T

2
, N =

F − F T

2
. (8)

Note that H1 is symmetric positive definite by our assumptions on F .
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Assumption 3.2. Let α be a constant independent of the matrix dimensions, such that

∥N∥H1,H
−1
1

≤ α. (9)

Lemma 3.3. A bound on the weighted norm of F is given by

∥F∥H1,H
−1
1

≤ (1 + α).

Proof. This is immediate from equation (9).

Lemma 3.4. The inverse of F satisfies

∥F−1∥H−1
1 ,H1

≤ 1.

Proof. The result can be readily deduced by using the standard property of norms

∥F−1∥−1

H−1
1 ,H1

= min
v∈Rn\{0}

max
w∈Rn\{0}

wTFv

∥v∥H1∥w∥H1

≥ min
v∈Rn\{0}

vTFv

∥v∥2H1

≥ 1,

which is stated in result (ii) of Lemma 2.2 (see also [17, Lemma 1]).

In the problems that we consider, we will assume boundedness of B and a standard
inf-sup condition, both of which in fact impose a condition on the choice of H2.

Assumption 3.5.

∥B∥H1,H
−1
2

≤ C1, min
x

∥BTx∥H−1
1

∥x∥H2

≥ C2, (10)

where C1 and C2 are independent of α and the dimensions of K.

Lemma 3.6. If Assumption 3.5 holds, then

∥S−1∥H−1
2 ,H2

≤ (1 + α)2/C2
2 .

Proof. Using (10) and following similar steps to the analysis of [17], we have

∥S−1∥−1

H−1
2 ,H2

= min
v∈Rm\{0}

max
w∈Rm\{0}

wTBF−1BTv

∥v∥H2∥w∥H2

≥ min
v∈Rm\{0}

vTBF−1BTv

∥v∥2H2

≥ min
v∈Rm\{0}

vTBF−1BTv

vTBH−1
1 BTv

min
v∈Rm\{0}

∥BTv∥2
H−1

1

∥v∥2H2

≥ C2
2 min
v∈Rm\{0}

vTBF−1BTv

vTBH−1
1 BTv

.
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Using [17, Lemma 8] and lemma 3.3, we have

min
v∈Rm\{0}

vTBF−1BTv

vTBH−1
1 BTv

≥ min
y∈Rn\{0}

yT (I +H
−1/2
1 NH

−1/2
1 )−1y

yTy

= min
k

Re

(
1

λk(I +H
−1/2
1 NH

−1/2
1 )

)

= min
k

Re

(
1

1 + λk(H
−1/2
1 NH

−1/2
1 )

)
=

1

maxk

∣∣∣λk(I +H
−1/2
1 NH

−1/2
1 )

∣∣∣2
≥ 1

∥H−1/2
1 FH

−1/2
1 ∥22

≥ 1

(1 + α)2
,

which completes the proof.

Finally, we establish notation that will become handy in the following subsections.

Definition 3.7. For a matrix T and a scalar τ , we say that ∥T∥ ≲ τ if ∥T∥ ≤ Cτ , where
C is a constant independent of the dimensions of T .

3.1 Block-Triangular Preconditioners

Let us consider two block-triangular preconditioners:

(i) upper block-triangular preconditioners of the form

MU =

[
F BT

0 H2

]
, (11)

with left preconditioning under the H-norm;

(ii) lower block-triangular preconditioners of the form

ML =

[
F 0
B H2

]
, (12)

with right preconditioning under the H−1-norm.

It is well known that there are some differences in the use of left and right preconditioners.
For example, in flexible GMRES it is necessary to use right preconditioning. The correct
norm considered in GMRES for finite element discretizations should typically be ∥ · ∥H−1 [1].

Consider first the left preconditioner MU . The preconditioned matrix is given by

M−1
U K =

[
I − F−1BTH−1

2 B F−1BT

H−1
2 B 0

]
,
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and its inverse, which is required in order to be able to use Lemma 2.4, is given by

(M−1
U K)−1 =

[
I − F−1BTS−1B F−1BTS−1H2

S−1B I − S−1H2

]
.

We now need to establish conditions (2a)–(2d) of Lemma 2.4.

Lemma 3.8 (Proof of condition (2a) for MU). The H-norm of the inverse of the precondi-
tioned matrix associated with the preconditioner MU satisfies

∥(M−1
U K)−1∥H ≲ 1.

Proof. The proof is obtained by putting together the bounds of Lemmas 3.3, 3.4, and 3.6.

∥(M−1
U K)−1∥H =

∥∥∥∥∥
[
H

1/2
1 (I − F−1BTS−1B)H

−1/2
1 H

1/2
1 (F−1BTS−1H2)H

−1/2
2

H
1/2
2 (S−1B)H

−1/2
1 H

1/2
2 (I − S−1H2)H

−1/2
2

]∥∥∥∥∥
2

≤ ∥I − F−1BTS−1B∥H1 + ∥F−1BTS−1H2∥H2,H1 + ∥S−1B∥H1,H2 + ∥I − S−1H2∥H2

≤ (1 + 2C2
1(1 + α)2/C2

2) + ((1 + α)2/C2
2C1) + 1 + (1 + α)2/C2

2

≲ 1.

Lemma 3.9 (Proof of condition (2b) for MU). The H-norm of the preconditioned matrix
associated with the preconditioner MU satisfies

∥M−1
U K∥H ≲ 1.

Proof. Similarly to the proof of Lemma 3.8,

∥M−1
U K∥H =

∥∥∥∥∥
[
H

1/2
1 (I − F−1BTH−1

2 B)H
−1/2
1 H

1/2
1 F−1BTH

−1/2
2

H
1/2
2 H−1

2 BH
−1/2
1 0

]∥∥∥∥∥
2

≤ ∥I − F−1BTH−1
2 B∥H1 + ∥F−1BT∥H2,H1 + ∥B∥H1,H

−1
2

≤ (1 + (1 + α)2/C2
2C

2
1) + 2C1

≲ 1.

Lemma 3.10 (Proof of condition (2c) for MU). When α < 1
2
, we have∥∥H(M−1

U K)− (M−1
U K)TH

∥∥
H,H−1 ≲ α. (13)

Proof. We have ∥∥H(M−1
U K)− (M−1

U K)TH
∥∥
H,H−1 =

∥∥∥∥[ B11 B12

−BT
12 0

]∥∥∥∥
2

≤ ∥B11∥2 + 2∥B12∥2,
(14)
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where
B11 = −H1/2

1 F−1BTH−1
2 BH

−1/2
1 +H

−1/2
1 BTH−1

2 BF−TH
1/2
1 .

B12 = H
1/2
1 F−1BTH

−1/2
2 −H

−1/2
1 BTH

−1/2
2

∥B12∥2 = ∥(H1F
−1 − I)BT∥H2,H

−1
1

≤ C1∥H1F
−1 − I∥H−1

1

= C1∥H1/2
1 (H1 +N)−1H

1/2
1 − I∥2

= C1∥(I +H
−1/2
1 NH

−1/2
1 )−1 − I∥2.

When α < 1
2
we have

∥B12∥2 ≤ C1

∥N∥H1,H
−1
1

1− ∥N∥H1,H
−1
1

≤ C1α/(1− α) ≤ 2C1α ≲ α (15)

and

∥B11∥ = ∥H1F
−1BTH−1

2 B −BTH−1
2 BF−TH1∥H1,H

−1
1

= ∥(F −N)F−1BTH−1
2 B −BTH−1

2 BF−T (F T −NT )∥H1,H
−1
1

= ∥ −NF−1BTH−1
2 B +BTH−1

2 BF−TNT∥H1,H
−1
1

≤ ∥NF−1BTH−1
2 B∥H1,H

−1
1

+ ∥BTH−1
2 BF−TNT∥H1,H

−1
1

≤ 2C2
1α

≲ α.

Substituting the above inequalities into (14), we obtain (13), as required.

The results of Lemmas 3.8–3.10 along with the assumption that α is sufficiently small
establish the scalability of the iterations.

Theorem 3.11. Given a saddle-point system with matrix K defined in (5), where F ∈ Rn×n

is positive real and B ∈ Rm×n is full row rank, let H1 and N be the symmetric and skew-
symmetric parts, respectively, of F , as in (8). Let H2 be a symmetric positive definite matrix,
such that the three conditions in (9)–(10) are satisfied. Finally, let H be the block-diagonal
matrix defined in (7). Then, for α sufficiently small, GMRES with the left preconditioner
MU under the H-norm will converge in a fixed number of iterations independently of the
dimensions of K.

Proof. Lemmas 3.8–3.10 establish conditions (2a)–(2c). Trivially, by Lemmas 3.9 and 3.10,
(2d) holds when α is sufficiently small.

We now consider the right preconditionerML defined in (12). The analysis is very similar
to the left preconditioner case. The details are omitted and we present a theorem analogous
to Theorem 3.11.
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Theorem 3.12. Given a saddle-point system with matrix K defined in (5), where F ∈ Rn×n

is positive real and B ∈ Rm×n is full row rank, let H1 and N be the symmetric and skew-
symmetric parts, respectively, of F , as in (8). Let H2 be a symmetric positive definite matrix,
such that the three conditions in (9)–(10) are satisfied. Finally, let H be the block-diagonal
matrix defined in (7). Then, for α sufficiently small, GMRES with the right preconditioner
ML under the H−1-norm will converge in a fixed number of iterations independently of the
dimensions of K.

Remark 3.1. In practice, H can be replaced with another symmetric positive definite matrix
H̃ and results will still hold if H and H̃ are spectrally equivalent: GMRES convergence with
H-norm can induce GMRES convergence with H̃-norm. This is because

∥p(A)∥H = ∥H1/2(H̃−1/2H̃1/2)p(A)(H̃−1/2H̃1/2)H−1/2∥2 ≤ κ2(H
1/2H̃−1/2)∥p(A)∥H̃ .

3.2 A Block-Diagonal Preconditioner

The case of a block diagonal preconditioner of the form

MD =

[
F 0
0 H2

]
(16)

is interesting in the context of this work, because contrary to block-triangular precondi-
tioners, where one might select either an upper block-triangular preconditioner or a lower
block-triangular preconditioner along with left or right preconditioning to avoid a situation
of having zero in the field of values, here it is immediate that the field of values contains zero
regardless of any such choices made. There is no practical difference between left and right
preconditioning here, and we proceed with left preconditioning below. The preconditioned
matrix is

M−1
D K =

[
I F−1BT

H−1
2 B 0

]
,

and its inverse is

(M−1
D K)−1 =

[
I − F−1BTS−1B F−1BTS−1H2

S−1B −S−1H2

]
.

The analysis is essentially identical to the analysis in Section 3.1.

Lemma 3.13 (Proof of condition (2a) for MD). The H-norm of the inverse of the precon-
ditioned matrix associated with the preconditioner MD satisfies

∥(M−1
D K)−1∥H ≲ 1.

Proof. The proof follows similar steps as for MU in Lemma 3.8. We need to bound the norm
of each block in the inverse, and we apply the bounds obtained in Lemmas 3.3, 3.4, and 3.6:

∥I − F−1BTS−1B∥H1 ≤ 1 + C2
1(1 + α)2/C2

2 ,

∥F−1BTS−1H2∥H2,H1 ≤ (1 + α)2/C2
2C1,

∥S−1B∥H1,H2 ≤ C1,

∥S−1H2∥H2 ≤ (1 + α)2/C2
2 .

Combining these, we get the bound for the entire matrix.
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Lemma 3.14 (Proof of condition (2b) for MD). The H-norm of the preconditioned matrix
associated with the preconditioner MD satisfies

∥M−1
D K∥H ≲ 1.

Proof. Similar to the analysis for MU in Lemma 3.9, we bound the norm of each block in
the preconditioned matrix:

∥I∥H1 = 1,

∥F−1BT∥H2,H1 ≤ C1,

∥H−1
2 B∥H1,H2 ≤ C1.

Thus, the norm of the entire matrix is bounded by the sum of these norms.

Lemma 3.15 (Proof of condition (2c) for MD). When α < 1
2
, we have∥∥H(M−1

2 K)− (M−1
2 K)TH

∥∥
H,H−1 ≲ α.

Proof. Note that

∥∥H(M−1
D K)− (M−1

D K)TH
∥∥
H,H−1 =

∥∥∥∥[ 0 B12

−BT
12 0

]∥∥∥∥
2

≤ 2∥B12∥2,

where
∥B12∥2 = ∥(H1F

−1 − I)BT∥H2,H
−1
1
.

By (15), we complete the proof.

Theorem 3.16. Given a saddle-point system with matrix K defined in (5), where F ∈ Rn×n

is positive real and B ∈ Rm×n is full row rank, let H1 and N be the symmetric and skew-
symmetric parts, respectively, of F , as in (8). Let H2 be a symmetric positive definite
matrix, such that the three conditions in (9)–(10) are satisfied. Finally, let H to be the
block-diagonal matrix defined in (7). Then, for α sufficiently small, GMRES with the block-
diagonal preconditionerMD under the H-norm for left preconditioning or H−1-norm for right
preconditioning will converge in a fixed number of iterations independently of the dimensions
of K.

3.3 Inexact Preconditioning

To make the iterations practical, one needs to consider computationally inexpensive ways
of approximately inverting the preconditioners that we have discussed so far, and using
those approximate linear operators as the actual preconditioners. Under mild conditions,

14



our analysis seems to carry over to such situations. We illustrate this for a block upper-
triangular preconditioner that approximates the leading block. Consider

M̃U =

[
P1 BT

0 H2

]
,

where the action of (implicitly) inverting P1 is computationally practical. Note that

M̃−1
U K = (M̃−1

U MU)M
−1
U K

and

M̃−1
U MU =

[
P−1
1 F 0
0 I

]
.

Assumption 3.17. We assume ∥P−1
1 F − I∥H1 ≤ C3α and ∥F−1P1∥H1 ≤ C4.

Based on Assumption 3.17, we have

∥M̃−1
U MU∥H ≤ (1 + C3α) + 1 ≲ 1

and
∥(M̃−1

U MU)
−1∥H ≤ ∥F−1P1∥H1 + 1 ≲ 1.

We now examine the sufficient conditions. For condition (2a), we have

∥M̃−1
U K∥H ≤ ∥M̃−1

U MU∥H∥M−1
U K∥H ≤ (1 + C3α)∥M−1

U K∥H ≲ 1.

For condition (2b), we have

∥(M̃−1
U K)−1∥H ≤ ∥(M̃−1

U MU)
−1∥H∥(M−1

U K)−1∥H ≲ 1.

For condition (2c), we have

∥H(M̃−1
U K)− (M̃−1

U K)TH∥H,H−1 ≤ ∥H(M−1
U K)− (M−1

U K)TH∥H,H−1

+ ∥H(M̃−1
U MU − I)M−1

U K − (M−1
U K)T (M̃−1

U MU − I)TH∥H,H−1

≲ α + 2∥P−1
1 F − I∥H1∥M−1

U K∥H
≲ α.

Thus, if α is small enough, condition (2d) is satisfied and the iterative solver with M̃U as a
preconditioner will converge in a fixed number of iterations.

4 Numerical Experiments

We provide a couple of examples of applications from fluid dynamics to validate our analysis.
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4.1 Navier-Stokes Equations

Let Ω ⊂ R2 be a bounded domain. The Navier-Stokes equations with pure Dirichlet bound-
ary conditions are [12]

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = ud on ∂Ω,

where ν is a viscosity coefficient, u is the velocity, p is the pressure, and u = ud provides the
Dirichlet boundary conditions.

Linearizing the equations using the Picard iteration, we obtain

−ν∆u+ (b · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = ud on ∂Ω,

where b is the velocity from the previous iteration.
For simplicity, we assume ud = 0. Define the Sobolev spaces

V = {v ∈ (H1(Ω))2 : v = 0 on ∂Ω} , Q = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

The weak form involves solving the following system: find u ∈ V and p ∈ Q such that

a(u,v) + b(v, p) = f(v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,

where the bilinear forms are defined as

a(u,v) = ν

∫
Ω

∇u · ∇v +

∫
Ω

(b · ∇u) · v,

b(u, q) = −
∫
Ω

(∇ · u)q,

and f is the linear functional
∫
Ω
f · v.

By using conforming finite element spaces Vh ⊂ V and Qh ⊂ Q, we discretize these
equations and obtain the nonsymmetric saddle-point system[

F BT

B 0

] [
u
p

]
=

[
f
0

]
, (17)

where F = νH1 + N , a(uh,vh) = (Fu1,v1) = ν(H1u1,v1) + (Nu1,v1) , (∇uh,∇vh) =
(H1u1,v1), and ((b · ∇uh),vh) = (Nu1,v1). So far, this is a standard treatment of these
equations; see [12].

To make our analysis applicable, we scale the system on the left by

[
1
ν

0
0 1

]
and on the

right by

[
1 0
0 ν

]
, respectively, and the system becomes[

H1 +
1
ν
N BT

B 0

] [
u
1
ν
p

]
=

[
1
ν
f
0

]
.
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Since the problem is given with pure Dirichlet boundary conditions, we have NT = −N ,
which indicatesH1 is the symmetric part ofH1+

1
ν
N . If ν is sufficiently large, then conditions

(9) and (10) are satisfied, as we have used conforming elements.
We numerically solve the regularized lid-driven cavity problem using IFISS [13] to illus-

trate our results. The domain Ω is chosen as [−1, 1]2. Zero boundary conditions are imposed,
except we take ux = 1− x4 on {y = 1,−1 ≤ x ≤ 1}.

We set ν = 1, because our analysis requires it to be relatively large, and apply the Picard
iteration. Since ν is relatively large, the nonlinear iterations converge quickly; we record
average iteration counts and examine the performance of the linear solvers. We note that we
have observed no significant differences among the linear solver iteration counts throughout
the nonlinear iteration. We use the diagonal preconditioner MD defined in (16) and the
upper triangular preconditioner MU defined in (11). We use left preconditioning for both;
the results for right preconditioning with ML defined in (12) are virtually the same.

Results for a few mesh sizes can be found in Table 1. We observe an excellent level of
scalability: the iteration counts are nearly constant for various mesh sizes in all cases. We
present our iteration counts in both the ℓ2 and H norms, and observe that they are nearly
identical.

System Size ℓ2 norm H-norm
Diagonal Upper Triangular Diagonal Upper Triangular

210 21.0 11.0 21.0 11.3
770 22.5 12.0 23.0 12.0
2,946 23.0 12.5 23.0 12.5
11,522 24.0 13.0 24.0 13.0

Table 1: Average iteration counts for Navier-Stokes

For the diagonal preconditioner, we have computed the parameters of Lamma 2.4 and
have observed that b ≈ 2.25 and c ≈ 0.016. For the upper-triangular preconditioner, b ≈ 2.06
and c ≈ 0.035. In both cases we have bc < 1, as required.

4.2 Stokes-Darcy Equations

Consider the Stokes-Darcy equations on a non-overlapping domain Ω = Ωs ∪ Ωd with a
polygonal interface ΓI = ∂Ωs ∩ ∂Ωd:

−∇ · (2νD(u)− pI) = f s in ∂Ωs,

∇ · u = 0 in ∂Ωs,

u = gs on Γs = ∂Ωs ∩ ∂Ω,
−k∆ϕ = fd in Ωd,

ϕ = gd on Γd,

k∇ϕ · n = gn on Γn,

u · n12 = −k∇ϕ · n12 on ΓI ,

(−2νD(u) · n12 + pn12) · n12 = ϕ on ΓI ,

u · τ 12 = −2νG(D(u)n12) · τ 12 on ΓI ,
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where u satisfies the incompressibility condition ∇ ·u = 0. Here, ΩS and Ωd are assumed to
be simple domains, e.g., the unit squares in two dimensions, with a polygonal interface. The
operator D is defined as D(u) = 1

2
(∇u + ∇uT ). The physical parameters ν and k denote

the viscosity coefficient and hydraulic constant, respectively. The constant G represents an
experimentally-determined constant related to the Beavers-Joseph-Saffman interface condi-
tion. Finally, n12 and τ12 are unit normal and tangential vectors; see [4] for details. We use
the finite element discretization described in [4, 9, 5]; some details on the Stokes part are
similar to Section 4.1. Full details on the discretization of the entire problem are omitted
since this is not the focus of our paper. The discretization yields the following linear system:

K

u1

ϕ1

p1

 =

νAΩs IT12 BT

−I12 kAΩd
0

B 0 0

u1

ϕ1

p1

 =

ff
0

 , (18)

where u1, ϕ1 and p1 represent the vectors of coefficients in the finite element basis expansions,
with corresponding continuous finite element solutions denoted by uh, ph and ϕh, respectively.

For simplicity of our analysis, we assume k = ν, and consider the following scaled matrix: AΩs

1
ν
IT12 BT

− 1
ν
I12 AΩd

0
B 0 0

 .
Then, assuming that ν is sufficiently large (which corresponds to requiring α to be sufficiently
small in our analysis in Section 3; see (9)), let us define

F =

[
AΩs 0
0 AΩd

]
+

1

ν

[
0 IT12

−I12 0

]
.

It has been shown in the literature [4, 9] that the inf-sup condition for the matrix
[
B 0

]
is satisfied and that the skew-symmetric operator

[
0 IT12

−I12 0

]
is bounded. Therefore, the

conditions of Lemma 2.4 are satisfied, and it follows that an iterative solver preconditioned
with the block preconditioners discussed in Section 3 will converge independently of the mesh
size.

We use the following example from [4]. We choose Ωs to be [0, 1]
2 and Ωd to be [0, 1]×[1, 2].

Γn is {x = 0, y ∈ [0, 1]} ∪ {x = 1, y ∈ [0, 1]}. Boundary conditions and right-hand side are
computed from the following exact solution:

u(x, y) = [y2 − 2y + 1 + ν(2x− 1), x2 − x− 2ν(y − 1)]T ;

p(x, y) = 2ν(x+ y − 1) +
1

3k
− 4ν2;

ψ(x, y) =
1

k
(x(1− x)(y − 1) +

y3

3
− y2 + y) + 2νx.

We also set k = ν = 3 and G = 1, in order for the parameters to satisfy the conditions of
Lemma 2.4.
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As we have done for the Navier-Stokes problem in Section 4.1 – here, too, we provide a
brief validation of our analysis. We again apply left preconditioning, using the diagonal and
the upper-triangular preconditioners, MD and MU respectively, defined in (16) and (11).

Our observations are similar to those we made in Section 4.1. The results for a few
mesh sizes can be found in Table 2. We again observe an excellent level of scalability, with
iteration counts nearly constant for various mesh sizes in all cases. The iteration counts in
the ℓ2 and H norms are nearly identical.

System Size ℓ2-norm H-norm
Diagonal Upper Triangular Diagonal Upper Triangular

633 27 16 29 16
2,545 28 16 30 16
10,209 28 16 30 16
40,897 30 16 28 16

Table 2: Iteration counts for the Stokes-Darcy equations.

For the diagonal preconditioner, we have observed experimentally for the smaller-size
problems that the parameters of Lemma 2.4 satisfy b ≈ 9.18, c ≈ 0.08, and bc < 1. For the
upper triangular preconditioner, b ≈ 8.28, c ≈ 0.11 and bc < 1.

5 Concluding Remarks

Our analysis broadens the range of preconditioned saddle-point systems for which FOV
analysis may be applied by including cases where zero is included in the field of values. This
includes the important family of block-diagonal preconditioners, as well as upper-triangular
preconditioners applied with right preconditioning. For these cases, to our knowledge, no
FOV analysis was previously available when (4) is true.

When applying Theorem 1.5, a disk must be excluded from the field of values, and
the remaining part should not surround the origin, as we have illustrated in Figure 1. To
accomplish this, we require the imaginary part of the FOV to be small enough, which means
that for the nonsymmetric saddle-point systems we consider, the preconditioned matrix is
close to normal, or equivalently, the skew-symmetric part of preconditioned operator needs
to be small in norm.

A finer geometric study of the field of values, beyond bounding it just by using the
imaginary axis, may allow for loosening the aforementioned restriction. It would be useful
to enhance the set of nonsymmetric saddle-point linear systems for which FOV analysis of
the type we have offered is applicable.
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ods: śapplications to PDE’s. Calcolo, 38(2):97–112, 2001.

19



[2] Fatemeh Panjeh Ali Beik and Michele Benzi. Preconditioning techniques for the coupled
Stokes–Darcy problem: spectral and field-of-values analysis. Numerische Mathematik,
150(2):257–298, 2022.

[3] Michele Benzi. Some uses of the field of values in numerical analysis. Bollettino
dell’Unione Matematica Italiana, 14(1):159–177, 2021.

[4] Prince Chidyagwai, Scott Ladenheim, and Daniel B Szyld. Constraint precondition-
ing for the coupled Stokes–Darcy system. SIAM Journal on Scientific Computing,
38(2):A668–A690, 2016.

[5] Prince Chidyagwai and Beatrice Rivière. Numerical modelling of coupled surface and
subsurface flow systems. Advances in Water Resources, 33(1):92–105, 2010.

[6] Daeshik Choi and Anne Greenbaum. Roots of matrices in the study of GMRES conver-
gence and Crouzeix’s conjecture. SIAM Journal on Matrix Analysis and Applications,
36(1):289–301, 2015.

[7] Michel Crouzeix and Anne Greenbaum. Spectral sets: numerical range and beyond.
SIAM Journal on Matrix Analysis and Applications, 40(3):1087–1101, 2019.

[8] Michel Crouzeix and César Palencia. The numerical range is a (1+
√
2)-spectral set.

SIAM Journal on Matrix Analysis and Applications, 38(2):649–655, 2017.

[9] Marco Discacciati and Alfio Quarteroni. Navier-Stokes/Darcy coupling: modeling, anal-
ysis, and numerical approximation. Rev. Mat. Complut, 22(2):315–426, 2009.

[10] Tobin A Driscoll, Kim-Chuan Toh, and Lloyd N Trefethen. From potential theory to
matrix iterations in six steps. SIAM review, 40(3):547–578, 1998.

[11] Michael Eiermann. Fields of values and iterative methods. Linear algebra and its
applications, 180:167–197, 1993.

[12] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press,
06 2014.

[13] Howard C. Elman, Alison Ramage, and David J. Silvester. IFISS: A computational
laboratory for investigating incompressible flow problems. SIAM Review, 56(2):261–
273, 2014.

[14] Mark Embree. How descriptive are GMRES convergence bounds? arXiv preprint
arXiv:2209.01231, 2022.

[15] P. C. Hansen. Analysis of Toeplitz Systems, volume 1481 of Lecture Notes in
Mathematics. Springer-Verlag, 1991.

[16] Axel Klawonn and Gerhard Starke. Block triangular preconditioners for nonsymmetric
saddle point problems: field-of-values analysis. Numerische Mathematik, 81:577–594,
1999.

20



[17] Daniel Loghin and Andrew J Wathen. Analysis of preconditioners for saddle-point
problems. SIAM Journal on Scientific Computing, 25(6):2029–2049, 2004.
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