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We introduce an �1-sparse method for the reconstruction of a piecewise smooth point set surface. The technique is motivated by recent advancements in sparse
signal reconstruction. The assumption underlying our work is that common objects, even geometrically complex ones, can typically be characterized by a
rather small number of features. This, in turn, naturally lends itself to incorporating the powerful notion of sparsity into the model. The sparse reconstruction
principle gives rise to a reconstructed point set surface that consists mainly of smooth modes, with the residual of the objective function strongly concentrated
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1. INTRODUCTION

Scanning devices have turned in the course of the last few years
into commercial off-the-shelf tools. Current scanners are capable
of producing large amounts of raw, dense point sets. One of today’s
principal challenges is the development of robust point processing
and reconstruction techniques that deal with the inherent noise of
the acquired dataset.

Early point set surface methods [Alexa et al. 2003; Pauly et al.
2003; Amenta 2004; Kolluri 2005] assume the underlying surface is
smooth everywhere. Hence, robustly reconstructing sharp features
in presence of noise is more challenging. To account for sharp
features and discontinuities, advanced methods rely on explicit
representations of these characteristics [Adamson and Alexa
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2006; Guennebaud and Gross 2007], use anisotropic smooth-
ing [Fleishman et al. 2003; Jones et al. 2003], robust statistics
[Fleishman et al. 2005; Oztireli et al. 2009] or feature-aware meth-
ods [Lipman et al. 2007a]. These methods are typically fast, but
they employ their operators locally and do not seek an objective
function with a global optimum.

In this work, we introduce a technique based on a global approach
that utilizes sparsity. Our method is motivated by the emerging
theories of sparse signal reconstruction and compressive sampling
[Donoho et al. 2006; Candes et al. 2006]. A key idea here is that
in many situations signals can be reconstructed from far fewer
data measurements compared to the requirements imposed by the
Nyquist sampling theory. In sparse signal reconstruction, instead of
using an overcomplete representation, the reconstruction contains
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the sparsest possible representation of the object. This technique
can become effective in the context of surface reconstruction, since
common objects can often be characterized in terms of a rather
small number of features, even if they are geometrically complex.

Our method is inspired by �1 minimization in sparse signal re-
construction and feature selection. We use the �1-sparsity paradigm
since it avoids one of the main pitfalls of methodologies such as
least squares, namely smoothed out error. Indeed, the �2 norm tends
to severely penalize outliers and propagate the residual in the ob-
jective function uniformly. Hence, the solution is typically of a very
poor degree of sparsity. Since least squares methods by their na-
ture handle smooth surfaces better than nonsmooth ones, common
techniques that use them must rely on working in a locally smooth
fashion.

The last observation is particularly important for objects with
sharp features. An �1-based method such as the one we introduce
is not restricted by the aforementioned locality limitations that �2

entails. Since outliers are not excessively penalized, most of the
“energy” of the residual in the objective function is expected to
be concentrated near the sharp features. Thus, by minimizing the
objective function in the �1 sense we encourage sparsity of nons-
mooth singularities in the solution. The �1 norm is not differentiable,
and formulations associated with it are harder to solve, compared
to �2-based formulations. Nevertheless, the objective function is
convex and as long as convexity is preserved, it is well under-
stood how to solve the problem in hand, and efficient solvers are
available. Theory and applications based on �1-sparsity have been
enjoying a huge boost in the last few years in the scientific com-
munity at large. Motivated by this success we seek to utilize �1-
sparsity in computer graphics. In this work we use �1-sparsity to
build a novel method for reconstructing point set surfaces with sharp
features.

Our global reconstruction method incorporates also inequality
constraints that ensure that the points are sufficiently close to the
original input. We first solve for the point orientations, and then,
based on the piecewise smooth normals, solve for the point po-
sitions. We show that we reconstruct point sets effectively, and
compare our technique to state-of-the-art methods by running on
synthetic models as well as real scanned models.

This work offers two main contributions. First is the formula-
tion of a global �1-sparse optimization problem for 3D surfaces.
We show that sparsity and �1-minimization are highly effective in
surface reconstruction of real scanned objects. Second, we show
that this problem can be solved efficiently by convex optimization
techniques. We demonstrate that our method runs on large datasets
within a reasonable time.

2. RELATED WORK

In this section we provide a review of relevant work separated into
two parts. First, we focus on surface reconstruction methods in the
context of sharp feature approximation. Then, we review methods
for sparse signal reconstruction and total variation.

2.1 3D Surface Reconstruction

Since the early 1990s, there has been a substantial amount of work
in the domain of surface reconstruction from range scanned data.

Moving Least Squares (MLS) [Shepard 1968] is a classical and
popular method for functional approximation. Levin [2003] and
Alexa et al. [2003] have demonstrated its effectiveness and promise
for representing point set surfaces. A number of papers have fol-
lowed, improving and extending the MLS operator; see Alexa and

Adamson [2004], Amenta [2004], Amenta and Kil [2004], Shen
et al. [2004], Dey and Sun [2005], and Kolluri [2005]. At the core
of these methods is an iterative projection that involves a local opti-
mization to find the (local) reference plane and a bivariate polyno-
mial fitting. Although state-of-the-art MLS-based methods handle
nonuniform data and noise, these methods are limited by the locality
of the operator.

MLS-based techniques are ideally designed to reconstruct smooth
surfaces. To reconstruct sharp features, various approaches have
been proposed. Methods that rely on an explicit representation
of sharp features [Reuter et al. 2005; Adamson and Alexa 2006,
Guennebaud and Gross 2007] classify the input samples into piece-
wise linear components to model sharp features. A more challenging
task is to automatically detect and reconstruct features present in
noisy point clouds in a global framework.

Several feature-aware filters have been developed for 3D mesh
denoising and smoothing [Fleishman et al. 2003; Jones et al. 2003].
Following image denoising approaches [Tomasi and Manduchi
1998], they use an underlying Gaussian smoothing kernel that ac-
counts for position and normal similarity in a continuous manner.
Samples across a sharp feature can be seen as outliers, and ro-
bust statistics-based methods are presented in Mederos et al. [2003]
to locally deal with those outliers and reconstruct sharp features.
Similarly, Fleishman et al. [2005] derive an iterative refitting al-
gorithm that locally classifies the samples across discontinuities
by applying a robust statistics framework. More recently, Daniels
et al. [2007], Oztireli et al. [2009], Lipman et al. [2007a, 2007b]
have presented robust methods for surface reconstruction from point
clouds, which handle sharp features and noise. Common to all these
methods is their locality approach; both detection and reconstruc-
tion of sharp features are performed within a local context. This
leads to the possible detection of local minima, where locally, high
noise-to-signal ratio yields redundant features or in the other ex-
treme oversmoothing. This phenomena is demonstrated in Figure 4
(middle row), which shows the result of applying a bilateral filter
(local method) on a shallow V-shaped noisy model. In contrast, we
apply a global method that solves for the whole surface at once,
avoiding such effects and generating a global optimal solution that
preserves the sharp features (bottom row).

Note that some of the local methods discussed before use some
form of �1-norm minimization. Nevertheless, this usage is funda-
mentally different from our method. In these methods �1 minimiza-
tion is applied as a robust statistic, based on the observation that data
across discontinuity can be viewed as outliers. Thus, the �1 mini-
mization is used to make the local filter more robust. Nevertheless,
their local nature poses inherent limitations. In contrast, our method
is based on the �1-sparsity paradigm (discussed in Section 3) which
naturally leads to a global method.

Somewhat similar to us, Sharf et al. [2008] have recently used a
lower-than-�1 minimization scheme which they apply to dynamic
surface reconstruction. The problem is formulated as an implicit
incompressible flow volume minimization which accounts for vol-
ume boundaries using a reweighted �0.8 norm. Both works have in
common the observation that a metric below �2 better accounts for
sharp features.

2.2 Sparse Signal Reconstruction

Sparse signal processing has had over the last few years a significant
impact on many fields in applied science and engineering such as
statistics, information theory, computer vision, and others. From a
general viewpoint, sparsity and compressibility lead to dimension-
ality reduction and efficient modeling.
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The general idea of �1 regularization for the purpose of sparse
signal reconstruction or feature selection has been used in geo-
physics since the early 1970s; see, for example, Claerbout and Muir
[1973]. In signal processing, the idea of �1 regularization comes
up in several contexts, including basis pursuit [Chen et al. 2001]
and image decomposition [Elad et al. 2005; Starck et al. 2005].
In these works it is shown that while the �2 norm yields a mini-
mum length solution, it lacks properties of sparsity and the recon-
structed signal error is spatially spread out. Although �0 is in fact
the sparsest solution, in Donoho et al. [2006] it is shown that under
bounded noise conditions, the recovered sparse representation us-
ing �1 is both correct and stable. Similar to us, Tropp [2006] shows
that convex optimization techniques are useful for sparse signal
reconstruction.

The �1-sparsity paradigm has been applied successfully to im-
age denoising and deblurring using Total Variation (TV) methods
[Rudin 1987; Rudin et al. 1992; Chan et al. 2001; Levin et al. 2007].
The underlying model for TV methods aims at exploiting the spar-
sity of the gradient of the image. The continuous variant yields a
model of a nonlinear PDE, hence is less relevant in the context of
the current work. The discrete variant, on the other hand, yields the
convex objective function

TV(u) = �ij‖Diju‖2,

where Dij is the discrete gradient operator at pixel (i, j ) and u is
a vector containing the gray-level pixel values. TV methods filter
the image by minimizing T V (u) under a certain constraint, for
example, one that keeps the output sufficiently close to the input.

‖u − u0‖2 ≤ ε

TV is designed for images, and hence is not directly applicable
to our problem. Our method is close in spirit to TV. Similar to their
sparse gradient minimization, we formulate our piecewise smooth-
ness reconstruction problem as a sparse minimization of orientation
differences and position projections.

The analog of TV for surface denoising is Total Curvature (TC),
which corresponds to minimizing the integral of the local curva-
ture values [Tasdizen et al. 2002, 2003, Elsey and Esedoglu 2009].
TC methods preserve edges and sharp features, but by their nature,
being represented by a nonlinear PDE, they require significant com-
putational resources and an underlying parametrization. Given the
nature of TC, it seems hard to develop a convex discrete variant
for it.

Rather than working on curvatures, we examine the normal field
of the surface. This allows us to develop a convex �1-based formu-
lation. It should be stressed that convexity is of much importance,
since it gives rise to a robust, efficient, and stable solution proce-
dure in contrast to nonconvex nonlinear problems such as the just
mentioned.

3. �1-SPARSITY OVERVIEW

Suppose we are given discrete samples of a continuous time signal
u(t). Signal reconstruction deals with the problem of reconstructing
u from those samples as a linear combination of basis functions
φi ∈ R

n, i = 1, . . . , m, with m > n. The problem amounts to
finding the coefficients αi such that

u =
m∑

i=1

αiφi .

The Nyquist sampling theorem states that the number of sam-
ples needed to reconstruct a signal without error is dictated by its

bandwidth. Inside the bandwidth the signal can be dense, containing
information in all frequencies. Nevertheless, it has been shown in
a set of seminal papers [Candes et al. 2006; Donoho et al. 2006]
that when the signal is sparse, that is, only a small set of frequen-
cies are present, the signal can be reconstructed from a number of
samples much lower than required by Nyquist’s theorem using �1

minimization.
Sparse signal reconstruction utilizes the fact that if the underly-

ing signal indeed has a sparse representation, then its coefficients
α can be cast as the solution of the optimization problem. We
have

min
α

‖α‖0 s.t. u(tj ) =
m∑

i=1

αiφi(tj ),

where the samples are given at times tj . The zero norm, ‖.‖0, rep-
resents the number of nonzero elements in a vector. Unfortunately,
formulating the problem in terms of this norm requires a combi-
natorial solution time; the problem is highly nonconvex. It is thus
common practice to replace �0 by (the convex) �1 norm. It has been
shown [Candes et al. 2006; Donoho et al. 2006; Tropp 2006] that
in some cases minimizing the �1 norm is equivalent to minimizing
the �0 norm.

It is well established in the scientific community that in presence
of discontinuities, �2 minimization tends to produce solutions that
are smooth. To overcome this problem, the iterative reweighted �2

minimization (IRLS) method has been introduced [Holland and
Welsch 1977] that achieves lower-than-�2-sparsity using a pre-
designed reweighting scheme. The weights essentially concentrate
the error at discontinuities and enhance sparsity. Formulating an
�1 minimization scheme instead achieves sparsity in a much more
direct way. Although theoretically �1 minimization can be approx-
imated using IRLS, interior-point methods (like the one we use)
are usually faster and more reliable in terms of convergence and
stability.

Sparse reconstruction is a broad methodology with many flavors.
In some application areas, the basis functions are either known or
predefined by the method. In these cases it is often possible to es-
tablish formal guarantees on the reconstruction. The most notable
is compressive sampling which economically translates data into a
compressed digital form subject to �1 minimization; for a survey
see Candes and Wakin [2008]. Other sparse reconstruction methods,
and most notably TV filters, do not assume a predefined overcom-
plete dictionary. Instead, these methods assume sparsity under some
transformation, and set up an optimization scheme that filters the
signal using the sparsity prior.

Our method is inspired by sparse �1 filtering methods like TV.
As already mentioned, given that our scan data is sampled from
a piecewise smooth shape, we seek to approximate it by a sparse
set of smooth pieces that connect at the edges. We approximate
smoothness in terms of pairwise orientation differences; next, po-
sitions are integrated from orientations by assuming local pla-
narity. We provide the exact details of our formulation in the next
section.

It is important to discuss the relationship between �1 minimiza-
tion and sparse methods. Broadly speaking, there are two major
research domains where �1 minimization has been extensively ap-
plied: robust statistics (i.e., as an M-estimator) and sparse recovery.
Robust statistics use �1 due to its robustness to outliers. Sparse re-
covery methods use �1 as an approximation of �0. The problem is
formulated such that the solution is a sparse vector, and �1 is used
to find a sparse-as-possible approximation. Our method belongs to
the latter class of methods.
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Fig. 1. A demonstration of the effectiveness of our �1-sparsity-based approach on a scanned model. The armadillo statue (left) is scanned generating a noisy
point cloud (middle). Using our method we are able to reconstruct it and recover its sharp features (right). Close-up view of a cross section of its head reveals
the sharpness of the reconstructed surface.

Fig. 2. A 2D demonstration of our �1-sparse reconstruction method applied to a synthetic V-shaped model. Given a 2D noisy curve (left), the point orientations
are solved first, using an interior-point solver (middle). In the second step, the correctly computed orientations are used to recover consistent positions. The
rightmost figure is the V-shape result of our algorithm.

4. RECONSTRUCTION MODEL

Since scanned information is generally noisy, we cannot assume
that we have high-quality point orientations, and rely on that in our
solution procedure. Hence, similarly to Lipman et al. [2005], we de-
couple orientations and positions. We solve first for the orientations,
and then use them to compute consistent positions. We formulate
both problems in a similar �1 nature, yielding a consistent solution.
For a 2D demonstration of this process see Figure 2.

Our goal is to formulate a global surface approximation that is
piecewise smooth and consists of a sparse set of singularities at sharp
edges. We denote as P (X, N ) a point cloud defined by positions
xi ∈ X ⊆ R

3 and corresponding orientations ni ∈ N ⊆ R
3. Thus,

a point is defined by the pair pi = (xi, ni).
Our orientation reconstruction model is based on the same key

observation made by Tasdizen et al. [2003]: smooth surfaces have
smoothly varying normals, thus penalty functions should be defined
on the surface normals. However, their method assumes a local
parametrization of the surface and involves solving second-order
PDEs. These limitations have led us to adopt a simplified generic
approach. Instead of using a quadratic form for curvature, we use
pairwise normal differences as an estimator for shape smoothness.
If two points pi and pj belong to the same smooth part, and the
distance between them is small enough in local feature size, then
ni ≈ nj . Furthermore, we assume that there is a minimum crease
angle at singularities between smooth parts. Hence, at crease angles
where pi and pj belong to different smooth parts, the distance
between ni and nj is above a small threshold τ . This leads to

an observation that the reconstructed normals should be such that
only a small (i.e., sparse) number of local normal differences are
large.

We use computed orientations to define consistent positions by
assuming that the surface can be approximated well by local planes.
Given a pair of neighbor points (pi, pj ), we examine nij · (xi − xj )
(where nij is the average normal). Indeed, if both pi and pj belong
to a smooth part of the surface then nij · (xi − xj ) ≈ 0. At sharp
features we expect

∣∣nij · (xi − xj )
∣∣ > 0.

Note that this last assumption is not necessarily true and in some
point configurations nij · (xi − xj ) ≈ 0 even at sharp features (e.g.,
pi and pj are equidistant from both sides of a sharp perpendicu-
lar edge). Nevertheless, such specific configurations do not occur
much in practice and the use of large neighborhoods for each point
compensates for this discrepancy.

In the following subsections we distinguish between an arbitrary
point cloud P (X, N ), the input point cloud P (Xin, Nin), output
point cloud P (Xout , Nout ) and the intermediate point cloud after
reconstructing the orientations P (Xin, Nout ).

Reweighted �1. We use in this work a reweighted �1 scheme
in order is to achieve lower-than-�1-sparsity. Such an aggressive
sparsity is desired in cases where �1 is too smooth. Our motivation
for using reweighting is drawn from the nature of our problem. For
scanned models it is common to have a high correlation of noise
in the normals. This effect occurs since normals are commonly ap-
proximated using local PCA and it is enhanced since scanners tend
to sample more points near sharp edges. While �1 minimization
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Fig. 3. A comparison of applying �2 (solid black), �1 (dotted green) and reweighted-�1 (dashed red) norms to a set of noisy 2D orientations (circled blue).
Sharpness in the reconstruction first appears in the �1 norm and is enhanced by reweighting.

Fig. 4. A comparison between �1-sparse reconstruction and bilateral filtering applied on a series of synthetic shallow 2D V-shaped models with different
signal-to-noise ratios. Top, left-to-right are the noisy inputs with angles 140◦, 150◦, and 160◦ and noise of 1.45%, 1.20%, and 1.00% respectively. Middle is
the result of applying a local bilateral filter. Bottom is our �1-sparse reconstruction.

works well for uncorrelated random noise, it penalizes high val-
ues too strongly to break correlation-induced smoothness in the
normals.

A higher degree of sparsity can be accomplished by driving the
minimization norm below �1, using a norm �p , 0 < p < 1. Unfor-
tunately, such penalty functions are nonconvex. Instead of applying
them directly, we use �1 as the basic building block, and achieve the
effect of lower-than-�1-sparsity using reweighting. Here we rely on
the theoretical observations made in Candes et al. [2008], by which
reweighting within the �1 realm may enhance the sparsity and sig-
nificantly improve the quality of the reconstruction. We can see in
Figure 3 that reweighted �1 is sparser than �1 and hence achieves a
better approximation in this example.

4.1 Orientation Reconstruction

Our orientation minimization consists of two terms: one is the
global �1 minimization of orientation (normal) distances; the sec-
ond amounts to constraining the solution to be reasonably close
to the initial orientations. Following the previous discussion, our

minimization term is composed of the normal differences be-
tween adjacent points pi and pj , formulated as a pairwise penalty
function cN

ij .

cN
ij (N ) = ‖ni − nj‖2

For a piecewise smooth surface the set {cN
ij ≥ τ } is sparse for some

small τ depending on the smoothness of the surface, so it makes
sense to define a global weighted �1 penalty function CN :

CN (N,W, E) =
∑

(pi ,pj )∈E

wijc
N
ij (N )

where W = {wij} is a set of weights whose role is to achieve
lower-than-�1-sparsity as discussed before, and E is the adjacency
set computed using k-nearest neighbors. We perform two �1 iter-
ations. The first iteration is unweighted. Using the results of the
first iteration, we compute weights and resolve. The weights are
set to

wij = e
−(θij/σθ )4

,
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where θij is the angle between the initial normals of pi and pj and
σθ is a parameter (usually set to 10 degrees). We use an exponent of
4 instead of the usual 2 for a more aggressive sparsity enhancement.

Notice that CN (N, W,E) is in fact the �1 norm of the |E|-element
vector [ · · · wijc

N
ij (N ) · · · ].

We compute the new orientations as a minimization of the penalty
function.

Nout = arg min
N

CN (N,W, E)

To avoid the degenerate minimum of Nout = 0 in our minimization
we impose additional constraints on the system. We require change
in normal orientation to be within some prescribed expected noise
level (γn). This comes in the form of imposing a bounded �∞-
norm on the orientation change. We define our global optimization
problem by

Nout = arg min
N

∑
(pi ,pj )∈E

wij‖ni − nj‖2

s.t. ∀i‖ni − nin
i ‖2 ≤ γn.

This is a convex optimization problem. Imposing the additional
normalization constraints ‖nout

i ‖2 = 1 will result in a nonconvex
optimization problem. Therefore we solve and renormalize the solu-
tion afterwards. Renormalization is usually mild since we constrain
orientations in the solution to be close to originals.

Initial orientations. Although our method reconstructs orien-
tations based on their initial values, it does not require them as
raw-inputs. Indeed, our implementation loosely approximates ori-
entations from point-positions by applying a local PCA with fixed
size neighborhoods. Although more advanced techniques exist for
approximating point orientations [Dey and Sun 2006], our algo-
rithm successfully handles coarse initial orientation approxima-
tions. Therefore, using such a simple heuristic was sufficient in
our case.

4.2 Position Reconstruction

Given the reconstructed normal orientation obtained from the previ-
ous step, we reconstruct point position by assuming a local planarity
criteria. For each pair of neighbor points (pi, pj ) ∈ E we define a
penalty function cX

ij (X, N ); it measures the projection distance of
the points from the local plane defined by their average normal nij
and average position xij.

cX
ij (X, N ) = |nij · (xi − xj )|

For a piecewise smooth surface the set {cX
ij ≥ τ } is sparse for some

small τ depending on the smoothness of the surface and sampling
resolution, so it makes sense to define a global weighted �1 penalty
function

CX(X, N, W,E) =
∑

(pi ,pj )∈E

wijc
X
ij (X, N ) .

The weights W = {wij} are designed to favor smooth parts over
nonsmooth parts, so we use the same formula as the one used
for orientations, but we recompute them using the new orientation
values.

We find the new positions as a minimization of the penalty func-
tion where Nout is already known and kept fixed.

Xout = arg min
X

CX(X, Nout,W,E)

To minimize the amount of degrees of freedom we restrict our-
selves to movement along normals. This fairly mild restriction has
several benefits: it reduces the problem size and avoids the known
effect of point clustering. Moreover, in our early experiments, we
have noticed no significant benefit in using general movement. Thus,
we define reconstructed positions as

xi = xin
i + tin

out
i ,

and our local penalty functions are

cX
ij (X, Nout) = ∣∣nout

ij · (xi − xj )
∣∣ =

∣∣(nout
ij

)T
nout

i ti − (
nout

ij

)T
nout

j tj + (
nout

ij

)T · (
xin

i − xin
j

)∣∣. (1)

The goal penalty function becomes

CX(X, Nout , W, E) = ‖At + f ‖1 ,

where A ∈ R
|E|×|P | and f ∈ R

|E| (|.| is the size). Each row of A
corresponds to a single (pi, pj ) ∈ E, and is equal to

[
· · · wij

(
nout

ij

)T
nout

i · · · −wij
(
nout

ij

)T
nout

j · · ·
]

.

Each index in f corresponds to a single pair (pi, pj ) ∈ E and is
equal to

fij = (
nout

ij

)T · (
xin

i − xin
j

)
.

We regularize the problem by constraining the norm of the cor-
rection term

‖t‖2 ≤ γx,

where γx is a parameter proportional to the noise level. We use the
following formula to determine γx . We have

γx = 0.7 · ηx�(P )
√

|P |,
where �(P ) is the length of the largest diagonal of the bounding box
of the points in P , and ηx is the assumed noise level (in percents
of the object size). Our implementation assumes ηx is a parameter
provided by the user. Nevertheless, since ηx is directly related to
noise, it can be approximated from the local point covariance matrix
in the spirit of Pauly et al. [2004].

Overall, to find t we solve the following convex optimization
problem.

arg min
t

‖At + f ‖1 s.t. ‖t‖2 ≤ γx

5. AN EFFICIENT CONVEX
OPTIMIZATION SOLVER

In the previous sections we formulated our method as a sequence
of convex optimization problems. These problems are nonlinear,
but since they are convex they can be solved efficiently and reli-
ably. Formulating the problem as an �1 minimization allows us to
use an interior-point solver, which usually converges faster than
IRLS. We show in Section 6 that our solver is indeed fast and
reliable.

The problems described in Section 4 are Second-Order Cone
Problems (SOCP). That is, problems of the form

min
x

pT x s.t. ‖Aix + bi‖2 ≤ cT
i x + di .

We now describe a technique for solving the problem described in
Section 4.2. A similar technique can be used to solve the problem
described in Section 4.1. Nevertheless, for solving orientations we
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currently use the external package called CVX [Grant and Boyd
2009], which we found sufficient for our needs.

We recast

arg min
t

‖At + f ‖1 s.t. ‖t‖2 ≤ γx

as the Second-Order Cone Problem (SOCP) by first adding variables
u ∈ R

M . We set x = (t, u) and set p = ( 0N×1 1M×1 ). Each row
of A adds two inequality constraints

Ai,:t − u + fi ≤ 0

and

−Ai,:t − u + fi ≤ 0

where Ai,: is row i of A. We get the following equivalent SOCP.

min
t,u

M∑
i=1

ui s.t. At − u + f ≤ 0

−At − u − f ≤ 0
1

2

(‖t‖2
2 − γ 2

x

) ≤ 0

where M = |E| (size of adjacency list) and N = |P | (number of
points).

We implement a primal solver, using a log-barrier method [Boyd
and Vandenberghe 2004; Candes and Romberg 2005]. (See Lobo
et al. [1998] for a primal-dual formulation). The method involves
solving a series of nonlinear minimization problems of the form

(tk, uk) = arg min
t,u

M∑
i=1

ui + 1

τk

2M+1∑
i=1

− log (−gi (t, u)) ,

where τk > τk−1 and each gi corresponds to a constraint in the
SOCP (each row of A defines two constraints; the constraint on the
size of t is the last constraint). The inequality constraints {gi} have
been incorporated into the functional via a penalty function which
is infinite when constraints are violated and smooth elsewhere. As
τk gets large the solution tk approaches the optimal solution. The
method stops when τk is large enough, based on the duality gap (see
Boyd and Vandenberghe [2004] and Candes and Romberg [2005]
for more details). Each nonlinear minimization problem is solved
iteratively using Newton’s method, that is, each Newton iteration
involves solving a linear system of equations.

Let us write g(1) = At − u + f , g(2) = −At − u − f and
g(γ ) = 1

2 (‖t‖2
2 − γ 2

x ). For a vector v denote by D(v) the diagonal
matrix with v on its diagonal, and v−1 the vector with the values in
v inverted. For our SOCP each Newton iteration involves solving a
series of normal equations of the form

(
AT �tA − g−1

(γ )IN×N + g−2
(γ )rr

T
)
�t = w0,

where �t = �1 − �2
2�

−1
1 , �1 = D(g(1))−2 + D(g(2))−2, �2 =

−D(g(1))−2 + D(g(2))−2 and r = t ∈ R
N is a dense vector. The

solution of the linear system is the search direction of the corre-
sponding Newton iteration.

Each Newton step requires the numerical solution of a linear
system of equations. It is imperative to solve these equations ef-
ficiently, and this requires dealing with sparsity and conditioning
issues. The matrix of the normal equations is symmetric positive
definite, but for large-scale problems it tends to be ill-conditioned,
which in turn may result in an incorrect search direction. Further-
more, the vector r is dense, whereas the original problem is sparse.

Therefore, factoring the matrix using the Cholesky decomposition
may require a prohibitive amount of computational work and stor-
age allocation. It is thus preferred, both from a numerical stability
point of view and from a sparsity point of view, to adopt an iterative
solution technique. We use the LSQR method [Paige and Saunders
1982], which is especially suited for least-squares problems. We
write

Ã =

⎛
⎜⎝

�
1/2
t A

(−g(γ ))−1/2IN×N

g−1
(γ )r

T

⎞
⎟⎠ ,

and the search direction can now be found by solving

min
�t

∥∥Ã�t − w
∥∥

2
,

where

w =
⎛
⎝ �

−1/2
t

(
g−1

(1) − g−1
(2) − �2�

−1
1

(
τk1N×1 + g−1

(1) + g−1
(2)

))
0N×1

1

⎞
⎠ .

For brevity we omit the formula for w0, but state that w0 = ÃT w.
To deal with the dense row associated with the vector r , we form

a preconditioner using the strategy proposed in Avron et al. [2009].
We remove the dense row from Ã; let us call the resulting matrix Ã0.
We then compute the Cholesky factorization of the sparse matrix
associated with Ã0:

RT R = ÃT
0 Ã0,

using CHOLDMOD [Davis and Hager 2005]. The R factor is used
as a preconditioner for the augmented system associated with Ã,
and now we apply LSQR. The important point here is that removing
r amounts to a rank-1 change of the matrix that corresponds to the
least squares operator. Therefore, only two iterations are needed
for convergence in exact arithmetic [Avron et al. 2009]. The ma-
trix ÃT

0 Ã0 may become very ill-conditioned, which can sometimes
cause the Cholesky factorization to fail (by encountering a negative
diagonal value due to inaccurate arithmetic). In such cases we use
SuiteSparseQR [Davis 2008] to compute a QR factorization instead
and use R as a preconditioner.

Finally, we use one additional heuristic to speed up our solver.
We have noticed that in some of the iterations, |g(γ )| tends to be
considerably smaller than the maximum value on the diagonal of
�t . In those cases, LSQR on Ã without a preconditioner tends to
converge very quickly, because the singular values of Ã are strongly
clustered. We thus work on Ã directly when conditioning allows for
it (if ‖�t‖2/|g(γ )| ≥ 103), which saves the cost of a preconditioner
solve.

The iterative method stops when the backward error drops below
a certain threshold. This ensures backward stability relative to the
desired level of accuracy. We use LSQR so the relevant condition
number is κ(Ã) (and not κ(ÃT Ã) as is the case for the normal
equations). This ensures that a good search directions is found,
which is crucial for the log-barrier method, even if low convergence
threshold is used. The threshold we used in our experiments is
10−8. As for accuracy of interior-point method, its stopping criteria
is based on a threshold as well. Here we found that only a coarse
level of accuracy was sufficient and further adjustments had no
visual significance.

6. RESULTS AND DISCUSSION

We present results that demonstrate the viability and effectiveness
of our method. For rendering purposes, our point set surfaces
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Fig. 5. Reconstruction of a scanned iron vise. Left to right: the original vise photo; the noisy scan and a zoomed region with its corresponding cross section
(bottom); our �1 reconstructed model; rightmost is the zoomed result, demonstrating the sharp piecewise smooth reconstruction and its cross section (bottom).

Fig. 6. Comparison between our �1 method and state-of-the-art robust reconstruction methods: In (a) we show a noisy fandisk with noise in positions of 1%
of the bounding box. Output LOP (b), DDMLS (c), RIMLS (d) and our �1 method (e). The bottom row contains, for each of the aforesaid, the cross-section of
a corner and a top orthographic view.

were meshed using the “Ball Pivoting” algorithm [Bernardini
et al. 1999] and rendered using a standard illumination
model.

We show in Figure 2 a simple example where we apply our
method on a noisy 2D curve to recover its sharp features. In fact, for
this simple synthetic model we can accomplish a perfect reconstruc-
tion, since it was sampled from a perfect piecewise linear “V” curve.
�1 minimization generates an exact piecewise linear result with one
singular point at the apex. For natural, real-world objects, we cannot
expect such precise reconstruction. Nevertheless, using our global
sparse method we obtain high-quality results even for fairly com-
plex sharp objects with relative high noise level (see Figure 5). The
resulting models are piecewise smooth, and the error concentrates
on edges, as can be seen in the corresponding zoomed regions and
cross sections.

In Figures 6 and 7 we provide a comparison with state-of-the-
art feature-aware reconstruction methods applied to the classical
fandisk and blade models. In both models, we insert noise in the

point positions in the amount of 1% of the bounding box size.
In Figure 6, we show the results of LOP [Lipman et al. 2007b],
DDMLS [Lipman et al. 2007a], RIMLS [Oztireli et al. 2009], and
our method. The superiority of �1 over the other methods is evi-
dent; sharp features are recovered to a high level of accuracy, while
smoothness is preserved in other regions.

Figure 7 shows a similar example where local feature-aware
reconstruction methods (DDMLS, RIMLS) are able to faithfully
recover sharp features (blade edges), however, at the price of erro-
neously detecting local noise as redundant features (blade facets).
Note also the lack of sharpness of some of the corners for the first
two methods. In contrast, our global method does not have this flaw,
and it correctly locates sparse singularities on the edges in a much
cleaner manner.

For all the comparisons, we followed the guidelines provided in
the distributed code by the authors and the parameters specified
in their publications. We explicitly provide the parameters that we
used.
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Fig. 7. Comparison between our �1 with state-of-the-art reconstruction
methods applied to a noisy blade model that originally contains sharp edges
and smooth parts. We show the reconstruction results of LOP (a), DDMLS
(b), RIMLS (c) and our �1 method (d).

Fig. 8. The �1 method applied to a sharp knot, with 1% noise added to
the positions of the synthetic knot model (top left). The recovered knot
appears on the top right. At the bottom, a zoom on a reconstructed sharp
edge: from left to right: the initial noisy edge, point cloud after �1, and
reconstruction.

—DDMLS: using cubic piecewise polynomials m = 3, local neigh-
borhood size h = 0.35% of bounding box.

—LOP: max influence radius size h = 0.3% of bounding box,
repulsion parameter μ = 0.3, 10 iterations.

—RIMLS: local weight radii h = [5 − 7] times local point spacing,
degree of sharpness σn = 0.75, 15 projection iterations.

Figures 5 and 8 further illustrate the effectiveness of the �1 ap-
proach in terms of recovering the fine features of the object, while
leaving the other parts smooth.

We have also applied our method to objects with less evident
sharpness in the features. We observe that our method could han-
dle such objects well (Figures 9 and 10). Note that the ability to
reconstruct smooth surfaces with no evident sharp features is due
to the fact that our norm is �1 and not purely �0. In other words,
we balance between sparsity and local smoothness. In smooth parts
with no evident singularities �1 minimization acts much like �2

minimization (much like the way median acts like mean when no
outliers are present). In the scanned human face, we compared our
global �1 minimization with a global �2 minimization. We note that
even in this case, where sharpness is low, �1 provides a result of
higher visual quality than �2.

Fig. 9. Result of applying our method to a scanned funnel (left). The scan
contains shallow sharp features that are noisy.

In Figures 9 and 11 we demonstrate the behavior of our method
in cases where the signal-to-noise ratio is low in the proximity of
sharp features. In Figure 9, we reconstruct a scanned funnel that
shows a shallow edge across the model. Figure 11 shows a similar
shallow feature along the hand of a scanned Buddha statue. In both
examples our method was able to recover sharpness to a large extent
without smoothing it.

In Figure 12 we show the result of running the method on a large
(240K points) scanned 3D model of a statue based on Escher’s
famous drawing. It took our solver roughly 20 minutes to compute
the optimal global solution. Note that despite its large size, our
method does not fall into local minima. Our performance timings
are reasonably good, considering the size of the problems. They are
in the range of minutes (see Table I) and were measured on a 64-bit
Intel Core2 2.1 GHz using MATLAB.

Sensitivity and parameters. Sensitivity to parameters is al-
ways a concern for methods of our type. Penalty methods at large
require the choice of parameters whose optimal values are often
either unknown or prohibitively expensive to compute (e.g., the
smallest singular value of a linear operator). This is an area of ac-
tive research in which progress is constantly being made, but much
is still not understood.

Our algorithm is not particularly sensitive to parameters, espe-
cially in the positions phase. Table II provides a detailed list of the
parameters involved in our method, and the actual range of values
used in our experiments. The parameter range is narrow, and use of
default parameters along with adjustments of γn and ηx according
to the perceived noise level yields high-quality results in a consis-
tent fashion. Specifically, to obtain the results in this article we start
with the default parameters. Next, based on the amount of noise and
sharpness in the results we fine-tuned the parameters to gain further
improvement (see Figure 10(c) and 10(d) for a comparison between
default and fine-tuned parameters).

We do observe that the parameter that affects the output the most
is γn. Since γn is a measure of noise level, we require a value large
enough to obtain correct piecewise smooth normals while avoiding
a too high value that may cause oversmoothing. This is a classical
signal-to-noise ratio issue, which we explore in Figure 4, which
shows three excerpts of a series of shallow V-shaped models of
different angles and noise level. As expected, our method can handle
less noise as the angle becomes shallower (i.e., weaker signal). The
value of γn corresponds to noise level: 0.15 for 160◦, 0.18 for 150◦,
and 0.30 for 140◦. Like many methods, our method tends to be more
sensitive to parameters if the signal-to-noise ratio approaches the
method’s limit.

Some of this sensitivity may be attributed to the simple approach
we use to compute initial orientations, using PCA with constant
neighborhoods. In the presence of highly nonuniform sampling
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Fig. 10. A comparison of minimization of �2 norm (b) vs. our �1-sparse minimization (c, d) on a scanned noisy human face (a). Although there are no pure
sharp features, the method works well also on general models. In (c) we show the result of using our default parameters and (d) is obtained after fine-tuning.

Fig. 11. Result showing our method applied on a noisy scan of the Buddha statue (left). In the zoomed-in regions of the hand, a small sharp feature is present
in the original statue. Although hidden by the noise in the scan, our method was capable to pick it using a sparse global representation of the data.

Fig. 12. Result of applying our method to a large 240K noisy point cloud. Left is a highly complex physical model of an Escher statue, middle is the piecewise
smooth point cloud after �1 optimization. On the right we show a zoomed cross-section comparison between the input (top) and our sharp result.
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Table I. Running Times
Model Points Minutes Model Points Minutes

fandisk 17,106 3.5 face 110,551 12
blade 24,998 4 Buddha 150,737 27
knot 25,455 7 funnel 201,655 21
armadillo 99,416 16 Escher 240,909 22

Table II. Parameters
Parameter Range (Default)

Neighborhood size of normal estimation (k) 10 − 30 (20)
Neighborhood size in orientation phase (k) 3 − 6 (5)
Max normals correction, 1st iteration (γn) 0.10 − 0.15 (0.10)
Max normals correction, 2nd iteration (γn) 0.03 − 0.07 (0.05)
Angle for reweighting, normals phase (σθ ) 5◦ − 20◦ (10◦)
Neighborhood size in positions phase (k) 8 − 12 (12)
Assumed noise level in positions (ηx ) 0.02 − 0.03 (0.02)
Angle for reweighting, positions phase (σθ ) 4◦ − 20◦ (10◦)

densities and noise, using a more refined technique for initial nor-
mals approximation may be more adequate. Finally, global opti-
mization methods tend to be in general more sensitive to parameters
than local methods.

On the other hand, our global approach has some clear advan-
tages. Consider again the shallow V-shaped models of Figure 4.
With no global considerations, a local method will keep many local
sharp features or drop all of them. Using our global �1 method a
single feature that concentrates all the error at one point is a feasible
solution even for relatively low signal-to-noise ratios.

Limitations and future work. In some of our synthetic exam-
ples, our method has difficulty in correctly projecting points lying
exactly on edge singularities. This is because orientations are es-
sentially not defined there. Our method tends to concentrate errors
on those edge samples, leaving them as error spikes outside of the
model. We observed this phenomenon only in artificially noised
synthetic models. This limitation can be overcome in the postpro-
cessing stage, by applying a simple low-pass filter with a very small
kernel that removes those singular spikes. For fairness, in our com-
parisons on synthetic objects we have applied the same filter for any
other result that was improved by it. We did not apply the filter to
any reconstruction of the real scanned objects.

Another limitation of our method is its relatively high computa-
tional cost. Our convex formulation incurs a high cost in the normals
computation step, which has been addressed only partially so far.
We believe, however, that it is possible to design a very efficient
solver. Our experiments show that it is sufficient to solve the nonlin-
ear iterates to a crude tolerance, and hence accelerate convergence,
while keeping a high quality of the output. Furthermore, the precon-
ditioner, which is based on a rank-1 correction, preserves sparsity
of the underlying operator, and the overall iteration count for the
optimization problem is fixed. As part of our future work, we plan
to fully optimize our presented convex solver, and we believe that
its performance can be improved considerably.

7. CONCLUSIONS

We have introduced an �1-sparse approach for reconstruction of
point set surfaces with sharp features. Our method is based on
solving separately for the orientations and the positions and is for-
mulated as a sequence of convex optimization problems. A key
point here is that convexity allows for finding a global optimum and
deriving efficient solvers. We incorporate a reweighted technique

to further enhance sparsity. A novel iterative solver tailored to the
problem and based on a preconditioned iterative solver has been
derived and implemented. As we demonstrate on several examples,
the results are of high quality.

This work fits within a growing body of literature on methods
whose principal goal is to enhance sparsity. We believe that the
approach we use and our solution methodology may prove useful
and effective for many problems in computer graphics. As part of
our future work, we plan to look at extensions and other problems,
and optimize the performance of our convex programming solver.
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