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Static analysis determines interesting
b b properties of programs to enable some
Static analysis Dt

All interesting properties are actually

T

undecidable, so the analysis computes a
conservative approximation:

e if we say yes, then the property definitely
holds;

e if we say no, then the property may or
may not hold;

e only the yes answer will help us to
perform the optimization;

e a trivial analysis will say no always; so

e the art is to say yes as often as possible.

Properties need not be simply yes or no, in
which case the notion of approximation is
more subtle.
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Static analysis may take place: Simple static analysis:
e at the source code level; e is merely advanced weeding;
e at some intermediate level; or e uses symbol and type information; and
e at the machine code level. e is recursive in the program syntax.
Static analysis may look at: An example is the definite assignment

« basic blocks only: requirement in Java and JOOS:

. . . e local variables must be assigned before

e an entire function (intraprocedural); or

they are read;

e the whole program (interprocedural).
prog ( P ) e this is undecidable; but

In each case, we are maximally pessimistic at

the boundaries.

e the language specification dictates a
specific conservative approximation.

The precision and cost of an analysis rises as
we include more information.
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For each program point, compute a set of local
variables that:

e contains only variables that have definitely
been assigned;

e may he too small, since the analysis is
conservative; and

e depends on the set computed for the
previous program point.

It accepts:

{ int k;
if (flag) k = 3; else k = 4;
System.out.println(k);

}

but rejects:

{ int k;
if (flag) k = 3;
if (!flag) k = 4;
System.out.println(k);
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To make the analysis more precise, it
considers boolean expressions in more detail.

The procedure defasnEXPassume(...,b)
assumes the expression evalutes to b.

This refinement handles a case like:

{ int k;
if (a>0 && (k=b)>0) System.out.println(k);
}

which would otherwise be rejected.

In general, a static analysis becomes more
precise when it may make further assumptions
ahout the context.
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JOOS code for statements:

ASNSET *defasnSTATEMENT (STATEMENT #*s, ASNSET *before)
{ if (s!=NULL) {
switch (s—>kind) {
case skipK:
return before;
case expK:
return defasnEXP(s->val.expS,before);
case returnK:
if (s->val.returnS!=NULL)
(void)defasnEXP(s->val.returnS,before) ;
return setUniversal();
case sequenceK:
return
defasnSTATEMENT (s->val.sequenceS.second,
defasnSTATEMENT(s—>val.sequenceS.first,
before)
);
case ifelseK:
return
setIntersect(
defasnSTATEMENT(s—>val.ifelseS.thenpart,
defasnEXPassume (s->val.ifelseS.condition,
before,1)

),
defasnSTATEMENT (s->val.ifelseS.elsepart,
defasnEXPassume (s->val.ifelseS.condition,
before,0)
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The definite assignment analysis is particularly
simple:

there are no recursive dependencies between
the computed sets.

This allows a simple implementation:
a top-down traversal of the parse tree.

For more sophisticated analyses, we generate
equations and compute the solution as a fixed
point.
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For the JIT compiler, we want to optimize the
use of registers:

mov 1,R3 —> mov 1,R1
mov R3,R1

This requires knowledge ahout the future uses
of registers:

The optimization is only sound if the value of
R3 is not used later on.
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For basic block register allocation, which
variables need to be written back to memory?

The naive scheme:

e must write all those variables that are only
in registers.

A better scheme:

e write all those variables that are only in
registers and whose values might be used
later on.

This could avoid many useless spills.
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In both examples, we need to know if some R;
might be used later on. If so, it is called live;
otherwise, it is called dead.

A static analysis can conservatively
approximate liveness at each program point.

Exact liveness is of course undecidable.

A trivial analysis will call everything live,
which precludes all optimizations.

A superior analysis will identify more dead
variables.
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Liveness analysis for Virtual RISC:
e build a control flow graph (goto graph);
e define dataflow equations for each node;

e compute the least solution of these
equations.

For basic blocks the computation is trivial.

For intraprocedural analysis we must compute
a minimal fixed point in a lattice.
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Consider a simple basic block:

mov 3,R1
mov 4,R2

add R1,R2,R3
mov R3,R0O
return

The underlined registers are written (defined),
the others are merely read (used).

The control flow graph is:

S1: mov 3,R1
Y

S2: mov 4,R2

Y

S3: add R1,R2,R3

Yy
S4: mov R3,RO

S5: return
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Let out(S;) be the variables that are live just
after S; and in(S;) those that are live just
before S;:
in(s;)
S;: op X,Y,Z

l out(s;)

Then we have the dataflow equation:

in(S;) = uses(S;) U (out(s;) — defines(s;))

We add those registers that are used in the
current instruction and delete those that are
defined here.
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Each instruction uses some registers and
defines some registers:

uses(S;) defines(S;)

S1: mov 3,R1 {} {R1}

Y
S2: mov 4,R2 {} {R2}

Y
S3: add R1,R2,R3  {R1,R2} {r3}
S4: mov R3,R0 {R3} {RO}

Y
S5: return {RO} {}

The register RO is implicitly used for the return
value.
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Since out(s5) = {}, it follows that:

in(s5) = uses(s5) = {RO}

We can continue to unravel the equations:

out(s4) = in(s5) = {RO}
in(S4) = uses(S4) U (out(S4) — defines(S4))
= {r3} U ({r0} — {RO})
= {r3}
out(s3) = in(s4) = {R3}
in(83) = uses(83) U (out(S3) — defines(s3))
= {R1,R2} U ({R3} — {R3})
= {R1,R2}
and so on
uses(S;) defines(s;) in(S;)
S1: mov 3,R1 {} {R1} {}
S2: mov 4,R2 {} {R2} {R1}
$3: add R1,R2,R3 {R1,R2} {R3} {R1,R2}
S4: mov R3,RO {R3} {ro} {r3}

S5: return {RO} {} {RO}
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In basic blocks we use the equation:
out(s;) = in(Si+1)
If we have branches, then a node in the control
flow graph may have several successors.
In this case, we must use the equation:

out(s;) = U in(x)

x € succ(S;)

But now the equations are cyclic and cannot
simply be unraveled.
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The control flow graph:

S1: mov 1,R1
S2: mov O,R2
S3: mov O,R3
S4: mov O,R4
S5: andcc R1,1,RBe——
S6: cmp R5,0
S7: bne S9

S8: add R2,R1,R2 S9: add R3,R1,R3

\ /

S510: add R4,R1,R4

S11: add R1,1,R1

S12: cmp R1,9

S13: ble S5
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Consider the small piece of C code:

{ int i, sum_even, sum_odd, sum;
i=1;
sum_even = 0;
sum_odd = 0;
sum = 0;
while (i < 10)
{ if (i%2 == 0) sum_even = sum_even + i;
else sum_odd = sum_odd + i;
sum = sum + i;
i++;

H

}
}
It yields the following VirtualRISC code:
mov 1,R1 // Rl is i
mov 0,R2 // R2 is sum_even
mov 0,R3 // R3 is sum_odd
mov O,R4 // R4 is sum
loop:
andcc R1,1,R6 // R6E =Rl & 1
cmp R5,0
bne else // if R5 != 0 goto else
add R2,R1,R2 // R2 = R2 + R1; even case
b endif
else:
add R3,R1,R3 // R3 = R3 + R1; odd case
endif:
add R4,R1,R4 // R4 = R4 + R1; update sum
add R1,1,R1 // Rl = R1 + 1; increment i
cmp R1,9
ble loop // if i <= 9 goto loop
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To unravel the liveness equations, we should
start with:

out(s13) = in(S5)

but we have not computed in(S5) yet, so this
will not work!

If in(S1),...,in(S13) are known, then we can
unravel the code as before and obtain the sets
in(S1),...,in(S13) once again.

But this means that unraveling is a function:

f: PR - PR

where R = {R1,R2,...,R5}. A solution is a
fixed point, and we want the minimal one.
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Two fundamental observations:
e the set D = P(R)'3 is a finite lattice:
Ve,ye D:xMNMye D AN xzllyeD
where C is point-wise set inclusion; and
e the unraveling function f is monotonic:
Ve,y e D:zCy = f(z) C f(y)

since g(¢) = A U (@ — B) is monotonic.

The fixed point theorem:

Any monotonic function f on a finite lattice D
has the unique minimal fixed point:

Ll L)

which is always obtained after finitely many
iterations.
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Computing the minimal fixed point:

uses |defs|succ |L [ F(L) £ (L)

s1 Rl |S2 14 {

S2 R2 |S3 14 {3

s3 R3 | sS4 {14 {}

sS4 R4 |S5 {14 {1}

S5 |Rt R5 | S6 {3 {r1} {r1}

S6 | RS s7 {} | {r5} {r5}

7 s8,so| (3|} {R1,R2,R3}

s8 |Ri,R2|R2 |S10 |{}|{R1,R2}|{R1,R2,R4}
S9 |R1,R3|R3 |S10 |{}|{R1,R3}|{R1,R3,R4}
S10 |R1,R4 |R4 |S11 | {}|{R1,R4} | {R1,R4}
S11 |R1 R1 |s12 | {}|{ri} {r1}

S12 | R1 513 {} | {r1} {R1}

S13 S5 {31{ {r1}

The function is:
f(X1,X2,...,X13) = (Y1,Y32,...,Y13)
where:

Y; = uses(S;) U (

U X —defs(ss))
S; € succ(S;)
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J_:(@,@,,Q))

Note that:

For D = P(R)'® we have that:

so we start with the sets in(S;) = {} and keep
unraveling until they no longer change.

T=(R,R,...,R)
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M ()

is always a safe answer, but clearly useless and
pessimistic.

Observe that the maximal fixed-point:

may in general be smaller than T.
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7 £ L)
st | {} {3 185
s2 [{} {r1} {r1}
s3 | {r1} {r1} {R1}
s4 | {ri} {r1} {R1,R2,R3}
ss | {r1} {R1,R2,R3} {R1,R2,R3,R4}
s6 | {R1,R2,R3,R5} {R1,R2,R3,R4,R5} | {R1,R2,R3,R4,R5}
s7 | {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
s8 | {R1,R2,R4} {R1,R2,R4} {R1,R2,R4}
s9 | {R1,R3,R4} {R1,R3,R4} {R1,R3,R4}
S10 | {R1,R4} {R1,R4} {R1,R4}
s11 | {R1} {R1} {R1}
s12 | {R1} {r1} {R1,R2,R3}
s13 | {r1} {R1,R2,R3} {R1,R2,R3,R4}
) £7(L) (L)
st [{} 3] {
s2 | {ri} {r1} {R1}
s3 | {Rr1,R2} {R1,R2} {R1,R2}
s4 | {Rr1,R2,R3} {R1,R2,R3} {R1,R2,R3}
S5 | {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
sé | {R1,R2,R3,R4,R5} | {R1,R2,R3,R4,R5} | {R1,R2,R3,R4,R5}
s7 | {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
s8 | {R1,R2,R4} {R1,R2,R4} {R1,R2,R3,R4}
s9 | {Rr1,R3,R4} {R1,R3,R4} {R1,R2,R3,R4}
S10 | {R1,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
si1 | {R1,R2,R3} {R1,R2,R3,R4} {R1,R2,R3,R4}
s12 | {rR1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
s13 | {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}
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A turbo fixed point technique:

A

vl

A3
N
-
/
Y 4
/4

The improved function is:
fa(X1, X2,...,X13) = (Y1, Y2,...,Y13)
where:

Y; = uses(S;) U ( U 2z — defs(sy))

S; €succ(S;)

Y; ifj>i

X; otherwise
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Improved fixed point computation:

L |[Fa(L) [FA(L) FAL)
st | {3[{} {3 {}
s2 | {}|{} {r1} {r1}
s3 | {}|{} {R1,R2} {R1,R2}
sa [{}|{} {R1,R2,R3} {R1,R2,R3}
ss | {}|{rt} {R1,R2,R3,R4} {R1,R2,R3,R4}
s6 | {}|{r5} {R1,R2,R3,R4,R5} | {R1,R2,R3,R4,R5}
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Liveness analysis is used for register allocation
in optimizing compilers.

In the basic block case, reduce spills to those
variables that are only in registers and live.

In the intraprocedural case, construct a graph
whose nodes are variables:

and where edges connect nodes that are live at
the same time.

Register allocation is now reduced to finding a
minimal graph coloring:

{ {a,d,f}, {b,e}, {c} }

and assigning a register to each color.

s7 | {}|{} {R1,R2,R3,R4} {R1,R2,R3,R4}
s8 | {}|{rt,R2} | {R1,R2,R4} {R1,R2,R3,R4}
s9 | {}|{rt,R3} | {R1,R3,R4} {R1,R2,R3,R4}
s10 | {} | {rt,R4} | {R1,R4} {R1,R2,R3,R4}
st1 | {} | {rt} {r1} {R1,R2,R3,R4}
s12| {} | {r1} {R1} {R1,R2,R3,R4}
s13| {} [{} {R1} {R1,R2,R3,R4}

Number of iterations is down from 8 to 3.

Liveness analysis is a backwards analysis, since
we unravel from the future towards the past.

An example of a forwards analysis is constant
propagation:

S1: mov 3,R1 {(rRO,?), (R1,7), (R2,7),(R3,7)}

Y

$2: mov 4,R2 {(R0,?),(R1,3), (R2,?),(R3,7)}

Y
S3: add R1,R2,R3 {(r0,?),(R1,3),(R2,4),(R3,7)}

Y

S4: mov R3,RO {(r0,?),(R1,3),(R2,4), (R3,7)}

Y
S5: return

{(r0,7),(R1,3),(R2,4),(R3,7)}

Static analysis (28)
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A basic static analysis of JOOS and other
object-oriented languages is type inference.

Given an expression, what are the possible
classes of the objects to which it may evaluate?

The exact answer is undecidable, so we must
conservatively approximate:

e we will accept a set that is too large;
e we want it as small as possible; and

e a trivial answer includes all classes.

This analysis is interprocedural and requires
access to the whole program.
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The constraint technique:

e assign a variable [E] to each occurrence of
an expression E;

e assign a variable [m] to each occurrence of
a method m;

e the variables range over the set of all
classes C = {C1,C2,...,Cn};

e each parse tree node generates a local
constraint on the variables; and

e the global minimal solution of these
constraints is finally computed.

Again, we must compute a minimal fixed point
in a finite lattice.
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Possible uses of type inference:

e inline methods when there is only one
possible receiver;

e eliminate run-time checks that can be
decided statically;

e remove code that is never executed; and

e approximate the control flow graph to
enable other static analyses.

In each case, smaller inferred sets will give
better results.
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Each constraint models the flow of objects:
e the assignment “i = E” yields: [E] C [i]};

e the creation “new C()” yields:
{Cc} C [new COT;

e the cast “C(E)” yields:
{c} C[c®];

e the constant “this” yields: {C} C [this],
where C is the surrounding class; and

e the statement “return E” yields:

[E] < [=],

where m is the surrounding method.
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The method invocation:
E.m(E1 ,E2, ... ,Ek)

yields the conditional constraints:
[E:] C [x:1]
[E2] C [x2]

C; € [[E]] =

[Ex] © [xx]
{ [@] € [E.m(Eq1,E2,...,Ex)]

whenever the class C; implements a method
named m which accepts k arguments named x4,

X2, v, Xk
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For the example constraints:

vy C vz
C3 Evy = v3 C vy
{Cz} C vs

we get the function:

f(X17X27X3) =
(X1UX3, X7UX,{Cr}UX3) ifCse X,
(X1, X1UX5,{Cr}UX3) otherwise
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Since the constraint:
v Cw
holds if and only if the equality:

w=vUw

does, we can rewrite a set of constraints into a
function:

f:P(C) = PC)*

such that fixed-points of f correspond to
solutions to the constraints.
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Solving the constraints:
e P(C)F is a finite lattice;
e each function f is monotonic; and

e the least fixed point of f is the unique
smallest solution of the constraints.

T

fixed point

® ideal answer
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A tiny JOOS sketch:

public class A {
public AQ { super(); }
public A id(A x) { return x; }
}

public class B extends A {

public BO { super(); }

public B me() { return (B) (new A()).id(this); }
}

The generated constraints are:

(=l C [idl,

[xlp C [idl

[(B) (new AQ)).id(this)]] C [me]

{B} C [(B) (new AQ)).id(this)]]

{8} C [this]

{A} C [[new AQ)]

A € [[new AQ] = [[this] C [[x]]5

A € [[new AQ] = [id]]; C [[(new AQ).id(this)]
B € [[new AQ] = [this] C [x]lg

B € [[new AQ] = [id]lg C [[(new AQ).id(this)]

The minimal solution is:

new AQ] = {A}
x]ly = [idly = [this] = [(new AQ).id(this)] = {B}
(B) (new A(Q)).id(this)]] = {B}

[
[
[
[z = [idlls = {}
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Improving analyses by transformations:
e let P be our set of programs;

e let S: P — D bhe an ideal static analysis
(uncomputable); and

e let T : P — P be a program
transformation that preserves the
semantics.

Since S gives the ideal information, clearly
S(T(p)) = S(p) forallp € P.

However, if A : P — D is a conservative
approximation to S, then A(7T'(p)) may be
different from A(p), perhaps even better.
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The generated code for the me method is:

.method public me()LB;
.1limit locals 1
.limit stack 2
new A
dup
invokenonvirtual A/<init>()V
aload_O
invokevirtual A/id(LA;)LA;
checkcast B
areturn

.end method

The information [new A().id(this)] = {B}
eliminates the checkcast instruction.

That [new AQ)] = {A} is a singleton further
allows inlining of the id method:

.method public me()LB;
.1limit locals 1
.limit stack 1
aload_0
areturn

.end method

With type inference, many little methods
become almost free.
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Transformations boost analyses:

T

The transformation 7':

e may unfold the program to make it more
explicit; or

e may itself be an optimization.




