COMP 520 Fall 2004 Garbage collection (1)

Garbage collection

BTy [e]oT]

5

e
|

i

)
T

|
[I-L]

COMP 520 Fall 2004 Garbage collection (3)

Life without garbage collection:

e unused records must he explicitly
deallocated,;

superior if done correctly;

but it is easy to miss some records; and

it is dangerous to handle pointers.

Memory leaks in real life (ical v.2.1):

MB

w

O WEUIO NI O NWIE U131 ~I000 S N U151 ~1000 O

01234567 8 91011121314151617 18192021 222324

hours

COMP 520 Fall 2004 Garbage collection (2)

A garbage collector is part of the run-time
system: it reclaims heap-allocated records that
are no longer used.

A garbage collector should:
e reclaim all unused records;
e spend very little time per record;
e not cause significant delays; and

e allow all of memory to be used.

These are difficult and often conflicting
requirements.

COMP 520 Fall 2004 Garbage collection (4)

Which records are still in use?

Ideally, records that will never be accessed in
the future execution of the program.

But that is of course undecidable...

Basic conservative assumption:

A record is live if it is reachable from a
stack-based program variable.

Dead records may still be pointed to by other
dead records.

COMP 520 Fall 2004 Garbage collection (5)

A heap with live and dead records:

= Qa T
w
~

Y

no (8] w e —
Lelels{o[e|{e]ela|{e]s]a][~[¢][e]e]z][e]e]s]

COMP 520 Fall 2004 Garbage collection (7)

Pseudo code for mark-and-sweep:

function DFS(x)
if is a pointer into the heap then
if record @ is not marked then
mark record ®
for i:=1 to || do
DFS(x. f;)

function Mark()
for each program variable v do
DFS(v)

function Sweep()
p := first address in heap
while p < last address in heap do
if record p is marked then
unmark record p
else
p.f1 := freelist
freelist:= p
p := p+sizeof(record p)

COMP 520 Fall 2004

Garbage collection (6)

encountered;

Assumptions:

COMP 520 Fall 2004

The mark-and-sweep algorithm:

e explore pointers starting from the program
variables, and mark all records

e sweep through all records in the heap and
reclaim the unmarked ones; also

e unmark all marked records.

e we know the size of each record;

e we know which fields are pointers; and

e reclaimed records are kept in a freelist.

Garbage collection (8)

Marking and sweeping:

]

115
»37
9]
0]

i

9

2

H
w
~
} { — —
all®]l®]o

—

E_

freelist

o w
[E:Ix]l'l'lol 4

4

n
[e]e]s]

COMP 520 Fall 2004 Garbage collection (9)

Analysis of mark-and-sweep:
e assume the heap has size H words; and
e assume that R words are reachable.

The cost of garbage collection is:
ciR+ coH
Realistic values are:
10R + 3H

The cost per reclaimed word is:

ClR+02H
H-R

if R is close to H, then this is expensive;

the lower bound is cs;

increase the heap when R > 0.5H; then

the cost per word is ¢; + 2¢5 = 16.

COMP 520 Fall 2004 Garbage collection (11)

The reference counting algorithm:

e maintain a counter of the references to
each record;

e for each assignment, update the counters
appropriately; and

e arecord is dead when its counter is zero.
Advantages:

e is simple and attractive;

e catches dead records immediately; and

e does not cause long pauses.
Disadvantages:

e cannot detect cycles of dead records; and

e is much too expensive.

COMP 520 Fall 2004 Garbage collection (10)

Other relevant issues:

e The DFS recursion stack could have size H
(and has at least size log H), which may he
too much; however, the recursion stack
can cleverly be embedded in the fields of
marked records (pointer reversal).

e Records can he kept sorted by sizes in the
freelist. Records may be split into
smaller pieces if necessary.

e The heap may become fragmented:
containing many small free records but
none that are large enough.

COMP 520 Fall 2004 Garbage collection (12)

Pseudo code for reference counting:

function Increment(x)
x.count := x.count+1

function Decrement(x)
x.count := x.count—1
if z.count=0 then
PutOnFreelist(x)

function PutOnFreelist(x)
Decrement(z. f)
x.f1 := freelist

freelist := @

function RemoveFromFreelist(x)
for i:=2to |z| do
Decrement(x. f;)

COMP 520 Fall 2004 Garbage collection (13)

The stop-and-copy algorithm:
e divide the heap into two parts;
e only use one part at a time;

e when it runs full, copy live records to the
other part; and

e switch the roles of the two parts.
Advantages:

e allows fast allocation (no freelist);

e avoids fragmentation;

e collects in time proportional to R; and

e avoids stack and pointer reversal.

Disadvantage:

e wastes half your memory.

COMP 520 Fall 2004 Garbage collection (15)

Pseudo code for stop-and-copy:

function Forward(p)
if p € from-space then
if p.f1 € to-space then
return p. f;
else
for i:=1to |p| do
next.f; := p.fs

p.f1 := next
next : = next + sizeof(record p)
return p. f;

else return p

function Copy()

scan := next := start of to-space

for each program variable v do
v := Forward(v)

while scan < next do
for i:=1 to |scan| do

scan.f; := Forward(scan. f;)

scan := scan + sizeof(record scan)

COMP 520 Fall 2004 Garbage collection (14)

Before and after stop-and-copy:

5

(¢— next

limit

from-space to-space to-space from-space

next
limit

e next and limit indicate the available heap
space; and

e copied records are contiguous in memory.

COMP 520 Fall 2004 Garbage collection (16)

Snapshots of stop-and-copy:

[17] > — —15|

<] <] [+

a -] <] p[+] :]

el 37 — 37 ==

E = ? L] ? .__I_—:£~ scan
| | amad

5 5 ULz

L]

~—— next

[
y
[(s[4
[
Y

T
Elnun
1]

@?w
|é?|-|-|

:
g

before after forwarding p and q and scanning one record

COMP 520 Fall 2004 Garbage collection (17)

Analysis of stop-and-copy:
e assume the heap has size H words; and
e assume that R words are reachable.
The cost of garbage collection is:
csR
A realistic value is:
10R

The cost per reclaimed word is:

CgR
H
I _R

e this has no lower bound as H grows;

e if H = 4R then the cost is ¢z ~ 10.

COMP 520 Fall 2004 Garbage collection (19)

We use mark-and-sweep or stop-and-copy.

But garbage collection is still expensive:
~ 100 instructions for a small object!

Each algorithm can be further extended by:

e generational collection (to make it run
faster); and

e incremental (or concurrent) collection (to
make it run smoother).

COMP 520 Fall 2004 Garbage collection (18)

Earlier assumptions:
e we know the size of each record; and
e we know which fields are pointers.

For object-oriented languages, each record
already contains a pointer to a class descriptor.

For general languages, we must sacrifice a few
bytes per record.

COMP 520 Fall 2004 Garbage collection (20)

Generational collection:
e obhservation: the young die quickly;

e hence the collector should focus on young
records;

e divide the heap into generations:
G07 G17 G27 Y

e all records in G; are younger than records
in Giq1;

e collect Gy often, G4 less often, and so on;
and

e promote a record from G; to G;4+1 when it
survives several collections.

COMP 520 Fall 2004 Garbage collection (21) COMP 520 Fall 2004 Garbage collection (22)

How to collect the G generation: Incremental collection:

e roots are no longer just program variables e garbage collection may cause long pauses;

but also pointers from G4, G2, .. .; .. , . .
p 1=z e this is undesirable for interactive or

e it might be very expensive to find those real-time programs; so
pointers; e try to interleave the garbage collection
e fortunately, they are rare; so with the program execution.
e we can try to remember them. Two players access the heap:
Ways to remember: e the mutator: creates records and moves

o . ointers around; and
e maintain a list of all updated records (use P

marks to make this a set); or e the collector: tries to collect garbage.
e mark pages of memory that contain Some invariants are clearly required to make
updated records (in hardware or software). this work.

The mutator will suffer some slowdown to
maintain these invariants.

