COMP 520 Fall 2004 Introduction (1)

Introduction
COMP 520 Compiler Design

Laurie Hendren
MWF 11:35-12:35

—» SCAN [—»| PARSE [—¥»1 WEED

Y

RESOURCE[¢—{ TYPE [<4— SYMBOL

A

CODE |—»{ OPTIMIZE[—¥»| EMIT [—»

COMP 520 Fall 2004 Introduction (3)

Contents:

e Deterministic parsing: LR parsers, the
flex/bison and SableCC tools.

e Semantic analysis: abstract syntax trees,
symbol tables, type checking, resource
allocation.

e Virtual machines and run-time
environments: stacks, heaps, objects.

e Code generation: resources, templates,
optimizations.

e Surveys on: garbage collection, native
code generation, static analysis.

COMP 520 Fall 2004 Introduction (2)

Purpose:

e The course will teach modern compiler
techniques applied to both
general-purpose and domain-specific
languages.

The examples chosen will also convey a
detailed knowledge of state-of-the-art
based WWW technology such as Java and
CGI-based interactive services.

COMP 520 Fall 2004 Introduction (4)

Schedule:
e Lectures: 3 hours/week.
Prerequisites:

e COMP 273, COMP 302, (COMP 330),
ahility to read and program “large”
programs.

e Students without COMP 330 should do
background reading as indicated in Week 1
of the web page (ASAP).

Lecturer:

e Professor Laurie Hendren, McConnell 228
, Office Hours MW 12:30-13:30

Lecturer:

e Chris Pickett, McConnell 226, Office Hours
TF 10:00-11:30

COMP 520 Fall 2004 Introduction (5)

Marking Scheme:

e 15% midterm, 25% final exam, 60%
assignments and project

e the 60% for assignments and projects will
be divided approximately as follows:

5 points for each of the first 3 JOOS

deliverables,

— 10 points for the 4th JOOS deliverable
(peephole optimizer),

5 points for meeting milestone
deadlines,

and 30 points for the WIG
compiler/report.

e Group members may be given different
grades on the project work if the
contributions are not reasonably equal.

COMP 520 Fall 2004 Introduction (7)

Course material:

e Readings;

e slides for the lectures; and

e extensive documentation on the course
WWW pages.

COMP 520 Fall 2004 Introduction (6)

Academic Integrity:

e McGill University values academic
integrity. Therefore all students must
understand the meaning and consequences
of cheating, plagiarism and other academic
offences under the Code of Student
Conduct and Disciplinary Procedures.

e In terms of this course, part of your
responsibility is to ensure that you put the
name of the author on all code that is
submitted. By putting your name on the
code you are indicating that it is
completely your own work. If you use
some third-party code you must have
permission to use it and you must clearly

indicate the source of the code.

COMP 520 Fall 2004 Introduction (8)

Course Text

The course text is a special collection of chapters of two very good text books, plus some
supplementary material not available in standard text books. The text is required for the course and
isavailable as an Eastman Cour se Pack which can be purchased in the basement of the McGill
Book Store (look under the stairs going to the basement for the Eastman Custom Publishing area).
The course text contains extracts from:

1. Compiler Construction, Kenneth C. Louden, 582 pages

2. Modern Compiler Implementation in C, Andrew W. Appel, 544 pages

3. SableCC: An Object-Oriented Compiler Framework, M.Sc. Thesis, McGill Unviersity,
Etienne Gagnon

plus, the following documents:

1. Flex, version 2.5, by Vern Paxson

2. Bison, The YACC-compatible Parser Generator, November 1995, Version 1.25

3. A Beginner's Guideto HTML, NCSA

4. Aninstantaneous introduction to CGI scripts and HTML forms, The University of Kansas,
Michael Grobe

The order of the readingsis:

Introduction, Louden (Chapter 1), pages 1-30

Lexical Analysis, Appel (Chapter 2) pages 16-38

Flex, version 2.5, by Vern Paxson

Context-Free Grammars and Parsing, Louden (Chapter 3), pages 95-142
Parsing, Appel (Chapter 3.2 - 3.5), pages 46-87

Bison, The YACC-compatible Parser Generator

SableCC Gagnon (Chapters 3-6)

A Beginner's Guideto HTML

An instantaneous introduction to CGI scripts and HTML forms

10. Symbol Tables, Louden (Chapter 6.3.1 - 6.3.4), pages 295-308

11. Data Types and Type Checking, Louden (Chapter 6.4), pages 313-334
12. Garbage Collection, Appel (Chapter 13), pages 273-298

13. Liveness Analysis, Appel (Chapter 10), pages 218-234

OCONOUAWNE

[Maintained by Laurie . Hendren. Last modified Mon Aug 23 10:36:08 EDT 1999, [HOME] | |

COMP 520 Fall 2004 Introduction (9)

The book:
e is mainly background reading; and

e does not discuss the projects used in this
course

The slides:
e are quite detailed; and

e will be available at the EUS Copy Center in
McConnell by the beginning of the second
week of lectures.

The WWW pages:
e aim to contain all information;

e provide on-line documentation; and

e may be updated frequently.

COMP 520 Fall 2004 Introduction (11)

New programming languages per year:

1207
1104
100 —
90 —
80 -
70 4
60 — o
50 4
40 -
30 4 |
204
10 1
.

120_52535455565758596061626364 66 676869707172
1104 [
1004 1
90 —
80 - |
70 4]
60 —
50 4
40
30 4
20—
104

o
(%)

(Ul e S B N N N N N N N N N
737475767778798081828384858687 888990919293

COMP 520 Fall 2004 Introduction (10)

Reasons to learn compiler technology:
e understand exisiting languages;
e appreciate current limitations;
e talk intelligently about language design;

e implement your very own general-purpose
language; and

e implement lots of useful domain-specific
languages.

COMP 520 Fall 2004 Introduction (12)

Domain-specific languages:
e extend software design; and

e are concrete artifacts that permit
representation, optimization, and analysis
in ways that low-level programs and
libraries do not.

Prominent examples are:
o KTEX;
e yacc and lex;
e HTML;
e XML;

Domain-specific languages require full-scale
compiler technology.

COMP 520 Fall 2004 Introduction (13)

The FORTRAN compiler:
e implemented in 1954-1957;
e the world’s first compiler;

e was motivated be the economics of
programming;

e had to overcome deep skepticism;
e paid little attention to language design;
e focused on efficiency of the generated code;

e pioneered many concepts and techniques;
and

e revolutionized computer programming.

COMP 520 Fall 2004 Introduction (15)

The L) project:
e Java’s Object-Oriented Subset;
e compiled into Java Virtual Machine code;

e illustrates a general-purpose language;

e shows client-side programming on the
WWW;

e used to teach by example;

e the A# source code will be studied;

e and you will upgrade it into an A’\"
version.

COMP 520 Fall 2004 Introduction (14)

The phases of a modern compiler:

—» SCAN [—»| PARSE [—¥»| WEED

.

RESOURCE[¢—] TYPE [«4— SYMBOL

-

CODE [—» OPTIMIZE[—» EMIT [—»=

The individual phases:
e are modular software components;
e have their own standard technology; and

e are increasingly being supported by
automatic tools.

Advanced backends may contain an additional
5-10 phases.

COMP 520 Fall 2004

The ‘Hé project:

e Web Interface Generator;

Introduction (16)

e compiled into C-based CGI-scripts;
e illustrates a domain-specific language;

e shows server-side programming on the
WWW;

e used to get hands-on experience;

e and you will implement the language from
scratch.

COMP 520 Fall 2004 Introduction (17) COMP 520 Fall 2004 Introduction (18)

The top 10 list of reasons why we use C for Should you program in “Optimized C”?
compilers:

If you want a fast C program, should you use
10) it’s tradition; LOOP #1 or LOOP #2?

/* LOOP #1 */

for (i = 0; i < N; i++) {
. . ali]l = a[i] * 2000;
8) it’s efficient; alil = al[i] / 10000;

}

9) it’s (truly) portable;

7) it has many different uses;
/% LOOP #2 %/

6) ANSI C will never change; b= a;
for (i = 0; 1 < N; i++) {
5) you must learn C at some point; *b = *b * 2000;
*b = *b / 10000;

b++

4) it teaches discipline (the hard way); N

3) methodology is language independent;

What would the expert programmer do?

2) we have flex and bison; and

1) you can say that you have implemented a
large project in C.

COMP 520 Fall 2004 Introduction (19) COMP 520 Fall 2004 Introduction (20)
If you said LOOP #2 ... you were wrong! The top 10 list of reasons why we use Java for
compilers:
| Looe || opt. level | sPARC [MIPS | Alpha ||
#1 (array) no opt 20.5 21.6 7.85 10) you already know Java from previous courses;
#1 (array) opt 8.8 12.3 3.26)) . .
#1 array) super 79 1.2 2.96 9) run-time errors like null pointer exceptions are
#2 (ptr) no opt 195 | 176 | 7.55 easy to locate;
#2 (ptr) opt 12.4 154 | 4.09 8) it is strongly typed, so many errors are caught
#2 (ptr) super 10.7 12.9 3.94

at compile time;

7) you can use the large Java libraray (hash tables

e Pointers confuse most C compilers; don’t i

use pointers instead of array references. 6) Java bytecode is portable and can be executed

without recompilation;

e Compilers do a good job of register
allocation; don’t try to allocate registers in
your C program. 4) it allows you to use object-orientation;

5) you don’t mind slow compilers;

e In general, write clear C code; it is easier 3) methodology is language independent;

for both the programmer and the compiler 2) we have sablecc which was developed at
to understand. McGill;

1) you can say that you have implemented a large
project in Java.

COMP 520 Fall 2004 Introduction (21)

How to bootstrap a compiler:
e we are given a machine M; and

e a programming language L.

We need the following:

source | L M| target

M

implementation

The direct approach is hard and difficult, and
we really want to implement L in L itself.

COMP 520 Fall 2004 Introduction (23)

Combining the two compilers, we get:

L M [L M
Ll my MY
M

which is an inefficient compiler generating
efficient code.

A final combination gives us what we want:

L M L M
L ML MM
Ll my MY
M

the bootstrapping of an efficient compiler.

COMP 520 Fall 2004 Introduction (22)

Define the following:
e Lt is a simple subset of L; and

e M+ is inefficient M-code.

We can easily implement:

L+ M
M

and (in parallel) implement:

L M
[

using basically our favorite language.

