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Basic compilation (. java — .class):

e Java programs are developed as a
collection of Java classes;

e each class is compiled into Java Virtual
Machine (JVM) bytecode;

e bytecode is interpreted or (JIT) compiled
using some implementation of the JVM;

e Java supports GUI; and

e many browsers has java plugins for
executing JVM bytecode.

COMP 520 Fall 2004 The JOOS language (2)

The Java language:

was originally called Oak;

was developed as a small, clean, OO
language for programming consumer
devices;

was built into the Webrunner browser;

matured into Java and HotJava; and

is now supported by many browsers,
allowing Java programs to be embedded in
WWW pages.
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Major benefits of Java:

it’s object-oriented;

it's a “cleaner” OO language than C++;
it’s portable (except for native classes);
it’s distributed and multithreaded;

it’s secure; and

it supports windowing and applets.
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Java security has many sources:

programs are strongly type-checked at
compile-time;

array bounds are checked at run-time;
null pointers are checked at run-time;
there are no explicit pointers;

dynamic linking is checked at run-time;
and

class files are verified at load-time.
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Goals in the design of JOOS:

extract the essence of the object-oriented
subset of Java;

make the language small enough for a
course project, yet large enough to be
interesting;

provide a mechanism to link to existing
Java code; and

ensure that every JOOS program is a valid
Java program.
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Major drawbacks of Java:

. ZZZZ

e it's slow; Z

e it misses some language features, e.g.
genericity;

e it does not have a standard yet
(JDK 1.0.2vs. JDK 1.1.xvs....); and

e it’s not JOOS.
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Programming in JOOS:

e each JOOS program is a collection of
classes;

e there are ordinary classes which are used
to develop JOOS code; and

e there are external classes which are used
to interface to Java libraries.

An ordinary class consists of:
e protected fields;
e constructors; and

e public methods.
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public class Cons {
protected Object first;
protected Cons rest;

public Cons(Object f, Cons r)
{ super(); first = f; rest = r; }

public void setFirst(Object newfirst)
{ first = newfirst; }

public Object getFirst()
{ return first; }

public Cons getRest()
{ return rest; }

public boolean member (Object item)
{ if (first.equals(item))
return true;
else if (rest==null)
return false;
else
return rest.member (item);

}

public String toString()
{ if (rest==null)
return first.toString();
else

return first + " " + rest;
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The class hierarchies in JOOS and Java are both
single inheritance, i.e. each class has exactly
one superclass, except for the root class:

4
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The root class is called Object, and any class
without an explicit extension is a subclass of
Object.
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Notes on the Cons example:

e fields in JOOS must be protected: they can
only be accessed via objects of the class or
its subclasses;

e constructors in JOOS must start by
invoking a constructor of the superclass;

e methods in JOOS must be public: they can
be invoked by any object; and

e only constructors (not methods) in JOOS
may be overloaded.
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The definition of Cons is equivalent to:

public class Cons extends Object

{...}

which gives the tiny hierarchy:

Object

public String toString();

public boolean equals(Object obj);

public void setFirst(Object newfirst);

Cons

public Object getFirst();
public Cons getRest();

public boolean member(Object item);

public String toString();
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The class Object has two methods:

e toString returns a string encoding the
type and object id; and

e equals returns true if the object reference
denotes the current object.

These methods are often overridden in
subclasses:

e toString encodes the value as a string; and

e equals decides a more abstract equality.

When overriding a method, the argument and
return types must remain the same.
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The extended hierarchy:

Object

public String toString();

public boolean equals(Object obj);

public void setFirst(Object newfirst);

Cons

public Object getFirst();
public Cons getRest();

public boolean member(Object item);

public String toString();

public void setIntField(int i);

ExtCons

public int getIntField();
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Extending the Cons class:

public class ExtCons extends Cons {
protected int intField;

public ExtCons(Object f, Cons r, int i)
{ super(f,r);

intField = i;
}

public void setIntField(int i)
{ intField = i; }

public int getIntField()
{ return(intField); }
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Using the Cons class:

import joos.lib.x*;
public class UseCons {
public UseCons() { super(); }

public static void main(String argv[])
{ Cons 1;
JoosIO £;

1 = new Cons("a",new Cons("b",new Cons("c",null)));
f = new JoosIOQ);

f.println(l.toString());

f.println("first is " + 1l.getFirst());
f.println("second is " + l.getRest().getFirst());
f.println("a member? " + l.member("a"));
f.println("z member? " + l.member("z"));

}

A Java program (not an applet) requires a main
method.

It is necessary to import library functions such

as println.
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The UseCons program builds these objects:

\equa1s(>/ \equals<>/

equals()/

The output of the program is:

abc

first is a
second is b

a member? true

z member? false

COMP 520 Fall 2004 The JOOS language (19)

Types in Java and JOOS:

e Java is strongly-typed;

Java uses the name of a class as its type;

e given a type of class C, any instance of class
C or a subclass of C is a permitted value;

e there is “down-casting” which is
automatically checked at run-time;

e there is an explicit instance_of check; and

e some type-checking must be done at
run-time.
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Types in JOOS are either primitive types:
e boolean: true and false;
e int: —231,,.231 _ 1,
e char: the ASCII characters;

or user-defined class types;

or externally defined class types:
e Object;
e Boolean;
e Integer;
e Character;
e String;
e BitSet;
e Vector;

e Date.

Note that boolean and Boolean are different.
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Statements in JOOS:

e expression statements:

X =y +z;

X =y =2z
a.toString(l);

new Cons("abc",null);

e block statements:

{ int x;
x = 3;

}
e control structures:

if (1.member("z")) {
// do something
};

while (1 !'= null) {
// do something
1 = l.getRest();
}

e return statements:

return;

return true;
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Expressions in JOOS:

e constant expressions:

true, 13, ’\n’, "abc", null

e variable expressions:

i, first, rest

e binary expressions:

Il
&&

< > <= >= instanceof
+ -

x /%
e unary expressions:
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Abstract methods and classes:

e a method may be abstract, where no
implementation is given;

e if a class contains one or more abstract
methods, it must be defined as an
abstract class;

e the constructor of an abstract class cannot
be invoked;

e abstract classes are used to define
“frameworks”.

COMP 520 Fall 2004 The JOOS language (22)

Expressions in JOOS:
e class instance creation:
new Cons("abc",null)

e cast expressions:

(String) getFirst(list)
(char) 119

e method invocation:

1.getFirst()
super.getFirst();
l.getFirst () .getFirst();
this.getFirst();
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import joos.lib.*;
public abstract class Benchmark {

protected JoosSystem s; // JO0S interface to
// the Java System Class

public Benchmark()
{ super();
s = new JoosSystem();

}

// Hook for actual benchmark
public abstract void benchmark();

// driver to time repeated executions
public int myrepeat(int count)
{ int start;

int i;

start = s.currentTimeMillis();

i=0;

while (i < count) {
this.benchmark() ;
i = i+1;

}

return s.currentTimeMillis()-start;
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import joos.lib.*; Final methods and classes:

public class ExtBenchmark extends Benchmark {

public ExtBonchmerk() { e a final method cannot be overridden by

super () ; subclasses;
}
o N e it is used when no modification in the
) public void benchmark() {} // timing an empty method functionality is allowed;
public class UseBenchmark { e a final class cannot be extended;
public UseBenchmark() { super(); } e all methods in a final class are assumed

to be final; and

public static void main(String argv[])
{ ExtBenchmark b;

JoosIO £; e final classes are typically libraries:
int reps; Boolean, Integer, and String.
int time;

new ExtBenchmark();
f = new JoosIO();

f.print ("Enter number of repetitions: ");
reps = f.readInt();

time = b.myrepeat(reps);

f.println("time is " + time + " millisecs");
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Synchronized methods: public class SyncBox {
protected Object boxContents;

e Java and JOOS programs can start multiple public SyncBox() { super(; }

threads;
// return contents of the box, set contents to null
e sometimes accessing a resource must be in public synchronized bject get()
. . {
a critical section, so only one thread can be Object contents:
in the critial section; contents = boxContents;
boxContents = null;

e each object has a lock and JOOS provides return contents;

}
synchronized methods; and

// put something in the box,

e when a thread invokes a synchronized // if the box already has something in it, return false
. . // else fill the box, return true
methOd onan Ob]eCt' the thread acquires public synchronized boolean put (Object contents)
the lock until the method completes. {

if (boxContents != null) return false;
boxContents = contents;

return true;
}
}
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External classes in Java:

e Java compiles programs with respect to a
set of libraries of precompiled class files;
and

e when a Java compiler encounters an
unknown method, it searches the
precompiled bytecode for an
implementation.

External classes in JOOS:

e JOOS compiles programs with respect to a
set of libraries of precompiled class files;
but

e external classes must be explicitly
presented to the JOOS compiler;
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External declarations for Java libraries:
e javalib. joos
e appletlib. joos
e awtlib.joos
e netlib. joos
External declarations for JOOS libraries:

e jooslib. joos
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// java.lang.String
extern public final class String in "java.lang" {
public String(String value);
public String toString();
public boolean equals(Object obj);
public int length();
public boolean equalsIgnoreCase(String anotherString);
public int compareTo(String anotherString);
public boolean startsWith(String prefix, int toffset);
public boolean endsWith(String suffix);
public int indexOf (String str, int fromIndex) ;
public int lastIndexOf (String str, int fromIndex);
public boolean regionMatches(
boolean ignoreCase, int toffset,
String other, int ooffset, int len);
public String substring(int beginIndex, int endIndex);
public String concat(String str);

public String toLowerCase() ;
public String toUpperCase();
public String trim();
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Example JOOS programs:

e AppletGraphics: simple graphics programs
to be displayed via a browser;

e AwtDemos: examples of using the Abstract
Windows Toolkit;

e ImageDemos: two techniques for displaying
an animation;

e Network: simple examples of interacting
over the network;

e Simple: a relatively large collection of
simple Java programs;

e Threads: simple, multi-thread programs;
and

e WIiGapplets: examples of WIG applets.
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JOOS compared to Java:

does not support packages, interfaces,
exceptions, some control structures, mixed
statements and declarations;

has only protected fields and public
methods;

does not allow overloading of methods;
does not support arrays;
does not allow static functions;

supports only int, boolean, and char for
basic types; and

uses external class declarations.




