COMP 520 Fall 2004 The JOOS language (1)

The

language

COMP 520 Fall 2004 The JOOS language (3)

Basic compilation (. java — .class):

e Java programs are developed as a
collection of Java classes;

e each class is compiled into Java Virtual
Machine (JVM) bytecode;

e bytecode is interpreted or (JIT) compiled
using some implementation of the JVM;

e Java supports GUI; and

e many browsers has java plugins for
executing JVM bytecode.

COMP 520 Fall 2004 The JOOS language (2)

The Java language:

was originally called Oak;

was developed as a small, clean, OO
language for programming consumer
devices;

was built into the Webrunner browser;

matured into Java and HotJava; and

is now supported by many browsers,
allowing Java programs to be embedded in
WWW pages.

COMP 520 Fall 2004 The JOOS language (4)

Major benefits of Java:

it’s object-oriented;

it's a “cleaner” OO language than C++;
it’s portable (except for native classes);
it’s distributed and multithreaded;

it’s secure; and

it supports windowing and applets.

COMP 520 Fall 2004

The JOOS language (5)

COMP 520 Fall 2004

Java security has many sources:

programs are strongly type-checked at
compile-time;

array bounds are checked at run-time;
null pointers are checked at run-time;
there are no explicit pointers;

dynamic linking is checked at run-time;
and

class files are verified at load-time.

The JOOS language (7)

Goals in the design of JOOS:

extract the essence of the object-oriented
subset of Java;

make the language small enough for a
course project, yet large enough to be
interesting;

provide a mechanism to link to existing
Java code; and

ensure that every JOOS program is a valid
Java program.

COMP 520 Fall 2004

The JOOS language (6)

Major drawbacks of Java:

. ZZZZ

e it's slow; Z

e it misses some language features, e.g.
genericity;

e it does not have a standard yet
(JDK 1.0.2vs. JDK 1.1.xvs....); and

e it’s not JOOS.

COMP 520 Fall 2004

The JOOS language (8)

Programming in JOOS:

e each JOOS program is a collection of
classes;

e there are ordinary classes which are used
to develop JOOS code; and

e there are external classes which are used
to interface to Java libraries.

An ordinary class consists of:
e protected fields;
e constructors; and

e public methods.

COMP 520 Fall 2004 The JOOS language (9)

public class Cons {
protected Object first;
protected Cons rest;

public Cons(Object f, Cons r)
{ super(); first = f; rest = r; }

public void setFirst(Object newfirst)
{ first = newfirst; }

public Object getFirst()
{ return first; }

public Cons getRest()
{ return rest; }

public boolean member (Object item)
{ if (first.equals(item))
return true;
else if (rest==null)
return false;
else
return rest.member (item);

}

public String toString()
{ if (rest==null)
return first.toString();
else

return first + " " + rest;

COMP 520 Fall 2004 The JOOS language (11)

The class hierarchies in JOOS and Java are both
single inheritance, i.e. each class has exactly
one superclass, except for the root class:

4
T

[]

The root class is called Object, and any class
without an explicit extension is a subclass of
Object.

COMP 520 Fall 2004 The JOOS language (10)

Notes on the Cons example:

e fields in JOOS must be protected: they can
only be accessed via objects of the class or
its subclasses;

e constructors in JOOS must start by
invoking a constructor of the superclass;

e methods in JOOS must be public: they can
be invoked by any object; and

e only constructors (not methods) in JOOS
may be overloaded.

COMP 520 Fall 2004 The JOOS language (12)

The definition of Cons is equivalent to:

public class Cons extends Object

{...}

which gives the tiny hierarchy:

Object

public String toString();

public boolean equals(Object obj);

public void setFirst(Object newfirst);

Cons

public Object getFirst();
public Cons getRest();

public boolean member(Object item);

public String toString();

COMP 520 Fall 2004 The JOOS language (13)

The class Object has two methods:

e toString returns a string encoding the
type and object id; and

e equals returns true if the object reference
denotes the current object.

These methods are often overridden in
subclasses:

e toString encodes the value as a string; and

e equals decides a more abstract equality.

When overriding a method, the argument and
return types must remain the same.

COMP 520 Fall 2004 The JOOS language (15)

The extended hierarchy:

Object

public String toString();

public boolean equals(Object obj);

public void setFirst(Object newfirst);

Cons

public Object getFirst();
public Cons getRest();

public boolean member(Object item);

public String toString();

public void setIntField(int i);

ExtCons

public int getIntField();

COMP 520 Fall 2004 The JOOS language (14)

Extending the Cons class:

public class ExtCons extends Cons {
protected int intField;

public ExtCons(Object f, Cons r, int i)
{ super(f,r);

intField = i;
}

public void setIntField(int i)
{ intField = i; }

public int getIntField()
{ return(intField); }

COMP 520 Fall 2004 The JOOS language (16)

Using the Cons class:

import joos.lib.x*;
public class UseCons {
public UseCons() { super(); }

public static void main(String argv[])
{ Cons 1;
JoosIO £;

1 = new Cons("a",new Cons("b",new Cons("c",null)));
f = new JoosIOQ);

f.println(l.toString());

f.println("first is " + 1l.getFirst());
f.println("second is " + l.getRest().getFirst());
f.println("a member? " + l.member("a"));
f.println("z member? " + l.member("z"));

}

A Java program (not an applet) requires a main
method.

It is necessary to import library functions such

as println.

COMP 520 Fall 2004 The JOOS language (17)

The UseCons program builds these objects:

\equa1s(>/ \equals<>/

equals()/

The output of the program is:

abc

first is a
second is b

a member? true

z member? false

COMP 520 Fall 2004 The JOOS language (19)

Types in Java and JOOS:

e Java is strongly-typed;

Java uses the name of a class as its type;

e given a type of class C, any instance of class
C or a subclass of C is a permitted value;

e there is “down-casting” which is
automatically checked at run-time;

e there is an explicit instance_of check; and

e some type-checking must be done at
run-time.

COMP 520 Fall 2004 The JOOS language (18)

Types in JOOS are either primitive types:
e boolean: true and false;
e int: —231,,.231 _ 1,
e char: the ASCII characters;

or user-defined class types;

or externally defined class types:
e Object;
e Boolean;
e Integer;
e Character;
e String;
e BitSet;
e Vector;

e Date.

Note that boolean and Boolean are different.

COMP 520 Fall 2004 The JOOS language (20)

Statements in JOOS:

e expression statements:

X =y +z;

X =y =2z
a.toString(l);

new Cons("abc",null);

e block statements:

{ int x;
x = 3;

}
e control structures:

if (1.member("z")) {
// do something
};

while (1 !'= null) {
// do something
1 = l.getRest();
}

e return statements:

return;

return true;

COMP 520 Fall 2004 The JOOS language (21)

Expressions in JOOS:

e constant expressions:

true, 13, ’\n’, "abc", null

e variable expressions:

i, first, rest

e binary expressions:

Il
&&

< > <= >= instanceof
+ -

x /%
e unary expressions:

COMP 520 Fall 2004 The JOOS language (23)

Abstract methods and classes:

e a method may be abstract, where no
implementation is given;

e if a class contains one or more abstract
methods, it must be defined as an
abstract class;

e the constructor of an abstract class cannot
be invoked;

e abstract classes are used to define
“frameworks”.

COMP 520 Fall 2004 The JOOS language (22)

Expressions in JOOS:
e class instance creation:
new Cons("abc",null)

e cast expressions:

(String) getFirst(list)
(char) 119

e method invocation:

1.getFirst()
super.getFirst();
l.getFirst () .getFirst();
this.getFirst();

COMP 520 Fall 2004 The JOOS language (24)

import joos.lib.*;
public abstract class Benchmark {

protected JoosSystem s; // JO0S interface to
// the Java System Class

public Benchmark()
{ super();
s = new JoosSystem();

}

// Hook for actual benchmark
public abstract void benchmark();

// driver to time repeated executions
public int myrepeat(int count)
{ int start;

int i;

start = s.currentTimeMillis();

i=0;

while (i < count) {
this.benchmark() ;
i = i+1;

}

return s.currentTimeMillis()-start;

COMP 520 Fall 2004 The JOOS language (25) COMP 520 Fall 2004 The JOOS language (26)

import joos.lib.*; Final methods and classes:

public class ExtBenchmark extends Benchmark {

public ExtBonchmerk() { e a final method cannot be overridden by

super () ; subclasses;
}
o N e it is used when no modification in the
) public void benchmark() {} // timing an empty method functionality is allowed;
public class UseBenchmark { e a final class cannot be extended;
public UseBenchmark() { super(); } e all methods in a final class are assumed

to be final; and

public static void main(String argv[])
{ ExtBenchmark b;

JoosIO £; e final classes are typically libraries:
int reps; Boolean, Integer, and String.
int time;

new ExtBenchmark();
f = new JoosIO();

f.print ("Enter number of repetitions: ");
reps = f.readInt();

time = b.myrepeat(reps);

f.println("time is " + time + " millisecs");

COMP 520 Fall 2004 The JOOS language (27) COMP 520 Fall 2004 The JOOS language (28)

Synchronized methods: public class SyncBox {
protected Object boxContents;

e Java and JOOS programs can start multiple public SyncBox() { super(; }

threads;
// return contents of the box, set contents to null
e sometimes accessing a resource must be in public synchronized bject get()
. . {
a critical section, so only one thread can be Object contents:
in the critial section; contents = boxContents;
boxContents = null;

e each object has a lock and JOOS provides return contents;

}
synchronized methods; and

// put something in the box,

e when a thread invokes a synchronized // if the box already has something in it, return false
. . // else fill the box, return true
methOd onan Ob]eCt' the thread acquires public synchronized boolean put (Object contents)
the lock until the method completes. {

if (boxContents != null) return false;
boxContents = contents;

return true;
}
}

COMP 520 Fall 2004 The JOOS language (29)

External classes in Java:

e Java compiles programs with respect to a
set of libraries of precompiled class files;
and

e when a Java compiler encounters an
unknown method, it searches the
precompiled bytecode for an
implementation.

External classes in JOOS:

e JOOS compiles programs with respect to a
set of libraries of precompiled class files;
but

e external classes must be explicitly
presented to the JOOS compiler;

COMP 520 Fall 2004 The JOOS language (31)

External declarations for Java libraries:
e javalib. joos
e appletlib. joos
e awtlib.joos
e netlib. joos
External declarations for JOOS libraries:

e jooslib. joos

COMP 520 Fall 2004 The JOOS language (30)

// java.lang.String
extern public final class String in "java.lang" {
public String(String value);
public String toString();
public boolean equals(Object obj);
public int length();
public boolean equalsIgnoreCase(String anotherString);
public int compareTo(String anotherString);
public boolean startsWith(String prefix, int toffset);
public boolean endsWith(String suffix);
public int indexOf (String str, int fromIndex) ;
public int lastIndexOf (String str, int fromIndex);
public boolean regionMatches(
boolean ignoreCase, int toffset,
String other, int ooffset, int len);
public String substring(int beginIndex, int endIndex);
public String concat(String str);

public String toLowerCase() ;
public String toUpperCase();
public String trim();

COMP 520 Fall 2004 The JOOS language (32)

Example JOOS programs:

e AppletGraphics: simple graphics programs
to be displayed via a browser;

e AwtDemos: examples of using the Abstract
Windows Toolkit;

e ImageDemos: two techniques for displaying
an animation;

e Network: simple examples of interacting
over the network;

e Simple: a relatively large collection of
simple Java programs;

e Threads: simple, multi-thread programs;
and

e WIiGapplets: examples of WIG applets.

COMP 520 Fall 2004 The JOOS language (33)

JOOS compared to Java:

does not support packages, interfaces,
exceptions, some control structures, mixed
statements and declarations;

has only protected fields and public
methods;

does not allow overloading of methods;
does not support arrays;
does not allow static functions;

supports only int, boolean, and char for
basic types; and

uses external class declarations.

