COMP 520 Fall 2004

Native code generation (1)

COMP 520 Fall 2004

Native code
generation

Native code generation (3)

Interpreters:
e are easier to implement;
e can be very portable; but

e suffer an inherent inefficiency:

pc = code.start;
while (true)
{ npc = pc + instruction_length(codelpcl);
switch (opcode(codelpcl))
{ case ILOAD_1: push(local[1]);
break;
case ILOAD: push(locall[codel[pc+1]]);
break;
case ISTORE: t = pop();
local[code[pc+1]] = t;

break;

case IADD: tl = pop(); t2 = pop();
push(tl + t2);
break;

case IFEQ: t = pop();

if (t == 0) npc = codel[pc+1];
break;

COMP 520 Fall 2004

Native code generation (2)

COMP 520 Fall 2004

JOOS programs are compiled into bytecode.

This bytecode can be executed using:
e an interpreter;
e an Ahead-Of-Time (AOT) compiler; or

e a Just-In-Time (JIT) compiler.

Bytecode is here compiled into native code.

Native code generation (4)

Ahead-of-Time compilers:

e translate the low-level intermediate form
into native code;

e create all object files, which are then
linked, and finally executed.

This is not so useful for Java and JOOS:
o method code is fetched as it is needed;
e from across the internet; and

e from multiple hosts with different native
code sets.

COMP 520 Fall 2004

Native code generation (5)

COMP 520 Fall 2004

Just-in-Time compilers:

e merge interpreting with traditional
compilation;

e have the overall structure of an
interpreter; but

e method code is handled differently.

When a method is invoked for the first time:
e the bytecode is fetched;
e it is translated into native code; and

e control is given to the newly generated
native code.

When a method is invoked subsequently:

e control is simply given to the previously
generated native code.

Native code generation (7)

Problems in generating native code:

e instruction selection:
choose the correct instructions based on
the native code instruction set;

e memory modelling:
decide where to store variables and how to
allocate registers;

e method calling:
determine calling conventions; and

e branch handling:
allocate branch targets.

COMP 520 Fall 2004

Native code generation (6)

COMP 520 Fall 2004

Features of a JIT compiler:

e it must be fast, because the compilation
occurs at run-time (Just-In-Time is really
Just-Too-Late);

e it does not generate optimized code;

e it does not compile every instruction into
native code, but relies on the runtime
library for complex instructions;

e it need not compile every method; and

e it may concurrently interpret and compile
a method (Better-Late-Than-Never).

Native code generation (8)

Compiling JVM bytecode into VirtualRISC:

map the Java local stack into registers and
memory;

do instruction selection on the fly;

allocate registers on the fly; and

allocate branch targets on the fly.

This is successfully done in the Kaffe system.

COMP 520 Fall 2004

Native code generation (9)

COMP 520 Fall 2004

The general algorithm:

e determine number of slots in frame:
locals limit + stack limit + #temps;

e find starts of basic blocks;
e find local stack height for each bytecode;
e emit prologue;

e emit native code for each bytecode; and

e fix up branches.

Native code generation (11)

Example:

public void foo() {
int a,b,c;

a=1;
b = 13;
c=a+b;

}

Generated bytecode:

.method public foo()V
.1limit locals 4
.1limit stack 2
iconst_1 H
istore_1 H
1ldc 13 H
istore_2 H
iload_1 H
iload_2 H
iadd H
istore_3 H
return H

O O NP O P O

e compute frame size = 4 + 2 + 0 = 6;
e find stack height for each bytecode;

e emit prologue; and

e emit native code for each bytecode.

COMP 520 Fall 2004

Native code generation (10)

COMP 520 Fall 2004

Naive approach:

e each local and stack location is mapped to
an offset in the native frame;

e each bytecode is translated into a series of
native instructions, which

e constantly move locations between
memory and registers.

This is similar to the native code generated by
a non-optimizing compiler.

Native code generation (12)

Assignment of frame slots:

name offset location
a 1 [fp-32]1
b 2 [fp-36]
c 3 [fp-40]1
stack 0 [fp-44]
stack 1 [fp-48]

Native code generation:

save sp,-136,sp
a=1; iconst._1 mov 1,R1
st R1, [fp-44]
istore_1 14 [fp-44],R1
st R1, [fp-32]
b = 13; ldc 13 mov 13, R1
st R1, [fp-44]
istore2 1d [fp-44], R1
st R1, [fp-36]
c=a+ b; iload._1 1d [£fp-321,R1
st R1, [fp-44]
iload-2 1d [fp-36],R1
st R1, [fp-48]
iadd 1d [fp-481,R1
1d [fp-44],R2
add R2,R1,R1
st R1, [fp-44]
istore_3 14 [fp-44],R1
st R1, [fp-40]
return restore

ret

COMP 520 Fall 2004 Native code generation (13) COMP 520 Fall 2004 Native code generation (14)

The naive code is very slow: The fixed register allocation scheme:
e many unnecessary loads and stores, which e assign m registers to the first m locals;
e are the most expensive operations. e assign n registers to the first n stack
locations;
. e assign k scratch registers; and
We wish to replace loads and stores: 8 g ’
c=a+b; iloadl 1d [£p-32],R1 e spill remaining locals and locations into
st R1, [fp-44]
iload-2 1d [£fp-361,R1 memOI'Y.
st R1, [fp-48]
iadd 1d [fp-481,R1
1d [fp-44],R2
add R2,R1,R1 Example for 6 registers (m = n = k = 2):
st R1, [fp-44]
istore .3 1d [fp-44].R1 name offset location register
st R1,[£p-40]
. . a 1 RL
by registers operations: b 2 R2
c 3 [£p-40]
c =a + b; iload_1 14 [fp-32],R1
iload-2 1d [fp-361,R2 stack 0 R3
iadd add R1,R2,R1 stack 1 RA
istore.3 st Ri,[fp-40]
scratch 0 R5
where R1 and R2 represent the stack. scratch 1 R6

COMP 520 Fall 2004 Native code generation (15) COMP 520 Fall 2004 Native code generation (16)
Improved native code generation: Summary of fixed register allocation scheme:
save sp,-136,sp e registers are allocated once; and

a=1; iconst_1 mov 1,R3
istore_1 mov R3,R1 th ll t. d t h .th.

b = 13; lde 13 mov 13.R3 e the allocation does not change within a
istore_2 mov R3,R2 method.

c =a+b; iload-1 mov R1,R3
iload-2 mov R2,R4
iadd add R3,R4,R3 Advantages:
istore_3 st R3, [fp-40]
return restore e it’s simple to do the allocation; and

ret

e no problems with different control flow

paths.
This works quite well if:
Disadvantages:
e the architecture has a large register set;
e assumes the first locals and stack locations

e the stack is small most of the time; and are most important; and

e the first locals are used most frequently. e may waste registers within a region of a

method.

COMP 520 Fall 2004 Native code generation (17) COMP 520 Fall 2004 Native code generation (18)

The basic block register allocation scheme: At the beginning of a basic block, all slots are

. . in memory.
e assign frame slots to registers on demand

within a basic block; and

) Basic blocks are merged by control paths:
e update descriptors at each bytecode.

a R1 a R3
b R2 b R4
The descriptor maps a slot to an element of
the set {L, mem, Ri, mem&Ri}:
a R2 a ?
b mem b ?
c mem&R4
s_0 R1
s-1 €L

Registers must be spilled after basic blocks:

We also maintain the inverse register map: T < s
R1 s.0 b R2 b | R4
"2 N st R1, [fp-32] st R3, [fp-32]
st R2, [fp-36] st R4, [fp-36]
R3 L
R4 c
R5 L
- mem ‘

mem ‘

COMP 520 Fall 2004 Native code generation (19) COMP 520 Fall 2004 Native code generation (20)
R1 L a mem
R2 €L b mem
save sp,-136,sp R3 €L c mem
R4 1 50 1
RS €L s-1 €L
R1 5.0 a mem
R2 €1 b mem
iconst_1 mov 1,R1 R3 i c mem
R4 €L 50 R1
RS €L s-1 €L
R1 1 a R2
R2 a b mem
istore_1 mov R1,R2 R3 i c mem
R4 1 50 1
RS €L s-1 €L
R1 50 a R2
R2 a b mem
1ldc 13 mov 13,R1 R3 i c mem
R4 €L 50 R1
RS €L s-1 €L
R1 1 a R2
R2 b R3
istore_2 mov R1,R3 R3 c mem

COMP 520 Fall 2004 Native code generation (21) COMP 520 Fall 2004 Native code generation (22)

Rt [so a | m So far, this is actually no better than the fixed
R2 a b R3
iload_1 mov R2,R1 R3 b < mem scheme.
R4 4 s.0 R1
R5 4 s-1 4
But if we add the statement:
R1 5.0 a R2
R2 a b R3 c=cCc*xc+c;
iload_2 mov R3,R4 R3 b c mem
Re | st so | m then the fixed scheme and basic block scheme
R5 4 s-1 R4
generate:
RL s-0 bl R2 Fixed Basic block
R2 a b R3
iadd dd R1,R4,R1 .
a & L ¢ | mem iload_3 1d [£p-40]1,R3 mv R4, R1
R4 4 s.0 R1
dup 1d [fp-40],R4 mv R4, R5
R5 4 s-1 4
imul mul R3,R4,R3 mul R1, R5, R1
iload_3 1d [fp-40],R4 mv R4, R5
ML 2 R2 iadd add R3,R4,R3 add R1, R5, R1
R2 a b R3 .
istore.3 st R1,R4 - b - ” istore_3 st R3, [fp-40] mv R1, R4
R4 c s.0 4
R5 4 s-1 4
R1 4 a mem
st R2, [fp-32] v 5 —
st R3, [fp-36] R3 €L c mem
st R4, [fp-40] R | L 0 | L
R5 4 s-1 4
return restore
ret

COMP 520 Fall 2004 Native code generation (23) COMP 520 Fall 2004 Native code generation (24)
Summary of basic block register allocation We can optimize further:
scheme:
. save sp,-136,s save sp,-136,s
e registers are allocated on demand; and P P ? g
mov 1,R1 mov 1,R2
e slots are kept in registers within a bhasic mov R1,R2
block. mov 13,R1 mov 13,R3
mov R1,R3
Advantages:
mov R2,R1
. mov R3,R4
e registers are not wasted on unused slots; add R1.R4,R1 add R2,R3,R1
and st R1,[fp-40] st R1, [fp-40]
. . . . restore restore
e less spill code within a basic block. ret ret
Disadvantages:
e much more complex than the fixed register by not explicitly modelling the stack.

allocation scheme;

e registers must be spilled at the end of a
basic block; and

e we may spill locals that are never needed.

COMP 520 Fall 2004 Native code generation (25)

Unfortunately, this cannot be done safely on
the fly by a peephole optimizer.

The optimization:

mov 1,R3 =—> mov 1,R1
mov R3,R1

is unsound if R3 is used in a later instruction:

mov 1,R3 —> mov 1,R1
mov R3,R1
mov R3,R4 mov R3,R4

Such optimizations require dataflow analysis.

COMP 520 Fall 2004 Native code generation (27)

Consider a method invocation:

c = t.foo(a,b);

where the memory map is:

name offset location register
a 1 [fp-60] R3

b 2 [£p-56] R4

c 3 [fp-52]

t 4 [fp-48] R2

stack 0 [fp-36] R1

stack 1 [fp-40] R5

stack 2 [fp-44] R6
scratch 0 [fp-32] R7
scratch 1 [fp-28] R8

COMP 520 Fall 2004 Native code generation (26)

Invoking methods in bytecode:

e evaluate each argument leaving results on
the stack; and

e emit invokevirtual instruction.

Invoking methods in native code:

e call library routine soft_get method _code
to perform the method lookup;

e generate code to load arguments into
registers; and

e branch to the resolved address.

COMP 520 Fall 2004 Native code generation (28)

Generating native code:

aload 4 mov R2,R1
iload-1 mov R3,R5
iload-2 mov R4,R6

invokevirtual foo // soft call to get address
1d R7, [R2+4]

1d R8, [R7+52]

// spill all registers

st R3, [fp-60]

st R4, [fp-56]

st R2, [fp-48]

st R6, [fp-44]

st R5, [fp-40]

st Ri, [£p-36]

st R7, [fp-32]

st R8, [£p-28]

// make call

mov R8,RO

call soft_get-method_code

// result is in RO

// put args in R2, R1, and RO
1d R2, [fp-44] // R2 := stack-2
1d R1,[fp-40] // Rl := stack-1
st RO, [fp-32] // spill result
1d RO, [fp-36]1 // RO := stack-0
1d R4, [fp-32] // reload result
jmp [R4] // call method

e this is long and costly; and

e the lack of dataflow analysis causes
massive spills within basic blocks.

COMP 520 Fall 2004 Native code generation (29)

Handling branches:

e the only problem is that the target address
is not known;

e assemblers normally handle this; but

e the JIT compiler produces hinary code
directly in memory.

Generating native code:

if (a < b) iload-1 14 R1, [fp-44]
iload-2 1d R2, [fp-48]
if_icmpge 17 sub R1,R2,R3

bge 77

How to compute the branch targets:

e previously encountered branch targets are
already known;

e keep unresolved branches in a tahle; and

e patch targets when the bytecode is
eventually reached.

