
1Runtime Organization (Chapter 6)

Project

• there are a couple of 3 person teams
– regroup
– or see me
– or forever hold your peace

• a new drop with new type checking is coming
– using it is optional

2Runtime Organization (Chapter 6)

Compiler Architecture

parsing
analysis
code generation

source
code

compiled
code

Abstract
Syntax
Tree

runtime

hardware

Now we jump
over code
generation

3Runtime Organization (Chapter 6)

Overview of Runtime Lectures

A compiler translates a program from a high-level language into an
corresponding program in a low-level language.
A compiler translates a program from a high-level language into an
corresponding program in a low-level language.

The low level program must correspond to the high-level program.
=> High-level concepts must be modeled in terms of the low-level
machine.

These lectures are not about compilation itself
instead are about compiled code
and how to use compiled code to implement high level constructs

=> We need to know this before we can talk about code generation.

4Runtime Organization (Chapter 6)

Overview of Runtime Lectures

• Expression Evaluation: How to organize computing the values of
expressions (taking care of intermediate results)

• even x + y * z is surprisingly ‘high-level’
• Routines: How to implement procedures, operators (and how to

pass their parameters and return values)
• Data Representation: how to represent values of the source

language on the target machine.
• Storage Allocation: How to organize storage for variables

(considering different lifetimes of global, local and heap variables)

• A runtime design involves all of these, in delicate balance.
there is no forward reference free order to present this

5Runtime Organization (Chapter 6)

Different Levels of Machines

portable, objects, type
checking, modules, lexical
scoping, gc, tree structured
code…

machine-specific, flat code,
flat memory

???

Java

virtual machine

native binary

compile

compile

interpret

6Runtime Organization (Chapter 6)

Different Levels of Machines

portable, objects, type
checking, modules, lexical
scoping, gc, tree structured
code…

machine-specific, flat code,
flat memory

JVM: GC, stack machine, flat
code, type safe

Java

virtual machine

native binary

compile

compile

interpret

7Runtime Organization (Chapter 6)

Virtual Machine Code

• Examples:
– P-code for early Pascal interpreters
– Smalltalk virtual machines
– Lisp Machine instruction set
– Java byte codes, CLR byte codes

• Advantages
– easy to generate byte code
– code is architecture independent
– code can be more compact

• Disadvantage
– true interpretation is slower

8Runtime Organization (Chapter 6)

Compiling Virtual Machine Code

• Example:
– gcc works in two steps

• first compiles to RTL
then compiles RTL to native code

• Advantages:
– exposes key properties of underlying architecture
– abstracts over true details of underlying architecture
– facilitates writing code generators for multiple target machines

• Disadvantages
– code bloat
– have to write code generator for each target architecture

9Runtime Organization (Chapter 6)

Interpreting and Compiling Byte Code

• Modern virtual machines do both
• Interpret byte code
• Selectively compile byte-code to native machine code

– aka Just-in Time (JIT) compiler

• Attempt to get best of both worlds
– compact code and fast code

• Requires subtle decisions about when to compile
• Originally Smalltalk VM, later Self, now all VMs

– the Sun “HotSpot VM” uses “just-in time” compiling

10Runtime Organization (Chapter 6)

Java Virtual Machine

• Has:
– garbage-collected memory
– registers
– condition codes
– execution unit

11Runtime Organization (Chapter 6)

JVM memory

• stack
– method (procedure) call frames

• heap
– used for dynamically allocated memory (objects and arrays)

• constant pool
– shared constant data

• code segment
– JVM instructions of all loaded classes

12Runtime Organization (Chapter 6)

JVM registers

• no general purpose registers
• byte code has limited control over registers
• stack pointer (sp)

– points to top of stack
• local stack pointer (lsp)

– points to location in current frame
– used for intermediate values in this stack frame

• program counter (pc)
– current instruction

13Runtime Organization (Chapter 6)

JVM condition codes

• stores result of last instruction that sets condition codes
– used for branching

14Runtime Organization (Chapter 6)

JVM execution unit

• reads instruction at PC
– decodes and executes instruction

• state of machine may change
– memory, registers, condition codes

• pc is incremented after executing instruction
• method calls and branches explicitly change pc

15Runtime Organization (Chapter 6)

JVM stack frames

• locals
– reference to current object (this)
– method arguments
– local variables

• local stack for intermediate results
– returned from calls and operations
– ready to be passed to other calls and operations
– or ready to be stored in locals

• number of locals and size of local stack fixed at compile
time

16Runtime Organization (Chapter 6)

static void foo(int x, int y) {
int c = x + y;
...

}

iload_0 // push the int in local variable 0
iload_1 // push the int in local variable 1
iadd // pop two ints, add them, push result
istore_2 // pop int, store into local variable 2

picture from Artima.com

17Runtime Organization (Chapter 6)

iadd Instruction (from http://mrl.nyu.edu/~meyer/jvmref/)

(also see http://java.sun.com/docs/books/vmspec/2nd-edition/html/Instructions2.doc.html)
add two integers
• Stack

– Before After
value1 result
value2 ...
...

• Description
Pops two integers from the operand stack, adds them, and pushes the

integer result back onto the stack. On overflow, iadd produces a result
whose low order bits are correct, but whose sign bit may be incorrect.

• Example
bipush 5 ; push first int
bipush 4 ; push second int
iadd ; add integers

; the top of the stack now
; contains the integer 9

18Runtime Organization (Chapter 6)

Simple Java Methodpublic int abs(int x) {
if(x < 0)
return x * -1;

else
return x;

.method public abs(I)I // (int)->int

.limit stack 2

.limit locals 2
// --locals-- --stack--

iload_1 // [] []
ifge Label1 // [] []
iload_1 // [] []
iconst_m1 // [] []
imul // [] []
ireturn // [] []
Label1:
iload_1 //
ireturn //
.end method

19Runtime Organization (Chapter 6)

Simple Java Methodpublic int abs(int x) {
if(x < 0)
return x * -1;

else
return x;

.method public abs(I)I // (int)->int

.limit stack 2

.limit locals 2
// --locals-- --stack--

iload_1 // [] []
ifge Label1 // [] []
iload_1 // [] []
iconst_m1 // [] []
imul // [] []
ireturn // [] []
Label1:
iload_1 //
ireturn //
.end method

iload_1

iload 3

20Runtime Organization (Chapter 6)

Simple Java Methodpublic int abs(int x) {
if(x < 0)
return x * -1;

else
return x;

.method public abs(I)I // (int)->int

.limit stack 2

.limit locals 2
// --locals-- --stack--

iload_1 // [o -3] [-3 *]
ifge Label1 // [o -3] [* *]
iload_1 // [o -3] [-3 *]
iconst_m1 // [o -3] [-3 -1]
imul // [o -3] [3 *]
ireturn // [o -3] ----------
Label1:
iload_1 //
ireturn //
.end method

iload_1

iload 3

21Runtime Organization (Chapter 6)

Sketch of Interpreter
pc = code.start;
while(true) {

npc = pc + instructionLength(code[pc]);
switch(opcode(code[pc])) {
case ILOAD_1: push(local[1]);

break;
case ILOAD: push(local[code[pc+1]]);

break;
case ISTORE: t = pop();

local[code[pc+1]] = t;
break;

case IADD:

case IFEQ: t = pop();
if(t == 0) npc = code[pc+1];
break;

...
}
pc = npc;

}

22Runtime Organization (Chapter 6)

what
happens
to stack

23Runtime Organization (Chapter 6)

24Runtime Organization (Chapter 6)

25Runtime Organization (Chapter 6)

26Runtime Organization (Chapter 6)

27Runtime Organization (Chapter 6)

28Runtime Organization (Chapter 6)

29Runtime Organization (Chapter 6)

30Runtime Organization (Chapter 6)

Overview of Runtime Lectures

• Expression Evaluation:
• organize computing values of expressions
• taking care of intermediate results

• Routines:
• implement procedures, operators
• pass parameters and return values

• Data Representation:
• represent values of source language

• Storage Allocation:
• organize storage for variables (considering different lifetimes of global,
local and heap variables)

• JVM is
• a stack machine
• typed instructions
• garbage collected object-level memory

How does
this answer
these?

31Runtime Organization (Chapter 6)

static void foo(int x, int y) {
int c = x + y;
...

}

iload_0 // push the int in local variable 0
iload_1 // push the int in local variable 1
iadd // pop two ints, add them, push result
istore_2 // pop int, store into local variable 2

picture from Artima.com

Operands passed on
stack

(most) operators single
JVM instructions

32Runtime Organization (Chapter 6)

public static int runClassMethod(int i, long l,
float f, double d, Object o, byte b) {

return 0;
}

public int runInstanceMethod(char c, double d,
short s, boolean b) {
return 0;

}

picture from Artima.com

33Runtime Organization (Chapter 6)

public static void runtwoLoops() {
for (int i = 0; i < 10; ++i) {
System.out.println(i);

}

for (int j = 9; j >= 0; --j) {
System.out.println(j);

}
}

compiler MAY share space for locals…

34Runtime Organization (Chapter 6)

35Runtime Organization (Chapter 6)

36Runtime Organization (Chapter 6)

37Runtime Organization (Chapter 6)

public static void addAndPrint() {
double result = addTwoTypes(1, 88.88);
System.out.println(result);

}
public static double addTwoTypes(int i, double d) {
return i + d;

}

38Runtime Organization (Chapter 6)

picture from Artima.com

39Runtime Organization (Chapter 6)

public static void foo() {
int x = 1, y = 2;
System.out.println(bar(x, y));
}
public static int bar(int i, int j) {
int result = i + j;
return result;

}

fp
sp
pc

fp
sp
pc

1
2

1
2

1
2

1
2

1
2
3

3

3

40Runtime Organization (Chapter 6)

Sketch of Interpreter
int fp, sp, pc;
invoke(..find the main routine..)
while(true) {

npc = pc + instructionLength(code[pc]);
switch(opcode(code[pc])) {
case ILOAD_1: push(local[1]);

break;
case ILOAD: push(local[code[pc+1]]);

break;
case ISTORE: t = pop();

local[code[pc+1]] = t;
break;

case IADD:

case IFEQ: t = pop();
if(t == 0) npc = code[pc+1];
break;

...
}
pc = npc;

}

41Runtime Organization (Chapter 6)

Overview of Runtime Lectures

• Expression Evaluation:
• organize computing values of expressions
• taking care of intermediate results

• Routines:
• implement procedures, operators
• pass parameters and return values

• Data Representation:
• represent values of source language

• Storage Allocation:
• organize storage for variables (considering different lifetimes of global,
local and heap variables)

• JVM is
• a stack machine
• typed instructions
• garbage collected object-level memory

42Runtime Organization (Chapter 6)

Register Machines

x + a * b

iload_1
iload_2
iload_3
imult
iadd

ld [fp-32], r0
ld [fp-64], r1

mul(r0, r1, r0)
ld [fp-0], r1
add(r0, r1, r1)

fixed set of general-purpose registers
compiled code reads/writes to them explicitly
registers are simple and fast

- a push requires write, read/+/write
opportunity to call routines in registers
- still call procedures on a stack

43Runtime Organization (Chapter 6)

Heap Storage Allocation

RECAP: we have mentioned 2 storage allocation models so far:
• heap allocation

• objects
• exist “forever”

• stack allocation
• local variables and arguments for procedures (methods)
• lifetime follows procedure activation

NEXT:
Heap allocation – allocation of indefinite lifetime values
(C malloc, C++ / Pascal / Java new operation).

Example: (Java)

int[] nums = new int[computedNeededSize];int[] nums = new int[computedNeededSize];

44Runtime Organization (Chapter 6)

Heap Storage Allocation

Explicit versus Implicit Deallocation

Examples:
• Implicit: Java, Scheme
• Explicit: Pascal and C

To free heap memory a specific operation must be called.
Pascal ==> dispose
C ==> free

In explicit memory management, the program must explicitly call
an operation to release memory back to the memory management
system.

In implicit memory management, heap memory is reclaimed
automatically by a garbage collector.

45Runtime Organization (Chapter 6)

Heap Storage Allocation

Memory managers (both implicit as well explicit) have been studied
extensively.
=> algorithms for fast allocation / deallocation of memory and
efficient representation (low memory overhead for memory
management administration).

=> There are many complicated, sophisticated and interesting
algorithms. We could dedicate an entire course to this topic alone!

We will look at memory management only superficially. Maybe at the
end of the course we might cover some algorithms in detail.

Now we will look at superficially at the kind of algorithms/issues are
associated with explicit and implicit memory management.

46Runtime Organization (Chapter 6)

Where to put the heap?

The heap is an area of memory which is dynamically allocated.
Like a stack, it may grow and shrink during runtime.
(Unlike a stack it is not a LIFO => more complicated to manage)

In a typical programming language implementation we will have both
heap-allocated and stack allocated memory coexisting.
Q: How do we allocate memory for both

A simple approach is to divide the available memory at the start of
the program into two areas: stack and heap.
Another question then arises =>
- How do we decide what portion to allocate for stack vs. heap ?

=> Issue: if one of the areas is full, then even though we still have
more memory (in the other area) we will get out-of-memory errors.

Q: Isn’t there a better way?

47Runtime Organization (Chapter 6)

Where to put the heap?

Q: Isn’t there a better way?
A: Yes, there is an often used “trick”: let both stack and heap share
same memory area, but grow towards each other from opposite ends.

ST

SB

HB

HT

Stack memory area

Heap memory area

Stack grows downward

Heap can expand upward

48Runtime Organization (Chapter 6)

How to keep track of free memory?

Stack is LIFO allocation => ST moves up/down everything above ST
is in use/allocated. Below is free memory. This is easy! But …
Heap is not LIFO, how to manage free space in the “middle” of the
heap?

HB

HT
Allocated

ST

SB

Free

Free

Mixed:
Allocated
and
Free

reuse?

49Runtime Organization (Chapter 6)

How to keep track of free memory?

How to manage free space in the “middle” of the heap?

HB

HT

=> keep track of free blocks in a data structure: the “free list”. For
example we could use a linked list pointing to free blocks.

Free Next

freelist

Free Next

Free Next

Where should free
list go?
Where should free
list go?

50Runtime Organization (Chapter 6)

Thread free-list through the blocks

HB

HT

Q: Where do we find the memory to store a freelist data structure?
A: Since the free blocks are not used for anything by the program =>
memory manager can use them for storing the freelist itself.

HF

HF free block size
next free

51Runtime Organization (Chapter 6)

Simple Explicit Memory Manager Algorithm

Our memory manager is intended for a programming language with
explicit deallocation of memory.

Q: What operations does the memory management library provide?

Pointer malloc(int size);
ask memory manager to find and allocate a
block of size. Returns a pointer to
beginning of that block.

void free(Pointer toFree,int size);
called when a block toFree is released by
the program and returned to the memory
manager.

52Runtime Organization (Chapter 6)

Simple Explicit Memory Manager Algorithm
Pointer malloc(int size) {

block = search the freelist until a block of at least size is found.
if (block is found) and (block.size == size) {

delete block from free list.
return pointer to start of block.

else if (block found) and (block.size>size) {
delete block from free list.
insert remainder of block into free list
return pointer to start of block.

else // no block found
try to expand heap by size
if (expansion succeeded) then

return HT;
else out of memory error

}

53Runtime Organization (Chapter 6)

Simple Explicit Memory Manager Algorithm
void free(Pointer toFree,int size) {

insert block(toFree,size) into the freelist
}

void free(Pointer toFree,int size) {
toFree[0] = size; // size at offset 0
toFree[1] = HF; // next at offset 1
HF = toFree;

}

This algorithm is rather simplistic and has some rather big problems.
Q: What are those problems? How could we fix them?

A bit more detail:

54Runtime Organization (Chapter 6)

Fragmentation

One of the biggest problems with the simplistic algorithm is memory
fragmentation.
• blocks are split to create smaller blocks to fit requested size.
• blocks are never merged
⇒blocks will get smaller and smaller.
⇒will run out of memory without really being out.

Better algorithm merges released blocks with neighboring
blocks that are free.
=> less fragmentation

Q1: Analyze impact on the performance (time taken for) the
allocation and release of blocks.
Q2: Does this solve the fragmentation problem completely?

55Runtime Organization (Chapter 6)

Heap Compaction

To fight fragmentation, some memory management algorithms
perform “heap compaction” once in a while.

HB

HT

HF
a

b
c

HB

HT
a

b

dd
c

before after

Q: Can compaction be done for all programming languages?

56Runtime Organization (Chapter 6)

Complication with Explicit Memory Allocation

Problems with explicit memory allocation algorithms:

Two common, nasty kinds of bugs in programs using explicit
memory management are

• Memory leaks
• Dangling pointers

Q1: What are memory leaks and dangling pointers?
Q2: Is it true that there can be no memory leaks in a garbage-
collected language?
Q3: Is it true that there can be no dangling pointer in a garbage-
collected language.
Q4: What is a weak reference?

57Runtime Organization (Chapter 6)

Automatic Storage Deallocation

Everybody probably knows what a garbage collector is.

Find data (objects) which are no longer referenced.
Reclaim that memory.

58Runtime Organization (Chapter 6)

Mark and Sweep Garbage Collection

HT
e

c

a
HB

SB

ST

b

d

before gc

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X

59Runtime Organization (Chapter 6)

Mark and Sweep Garbage Collection

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X

HT
e

c

a

SB

ST

b

d

HB

X

X

X
X
X

X

X

X

mark reachable
SB

ST

HB

HT
e

b

d

X

X

X

X

X

X

collect free

60Runtime Organization (Chapter 6)

Mark and Sweep Garbage Collection
Algorithm pseudo code:
void garbageCollect() {

mark all heap variables as free
for each frame in the stack

scan(frame)
for each heapvar (still) marked as free

add heapvar to freelist
}
void scan(region) {

for each pointer p in region
if p points to region marked as free then

mark region at p as reachable
scan(region at p)

}
Q: This algorithm is recursive. What do you think about that?

61Runtime Organization (Chapter 6)

Other Garbage Collection Schemes

• Incremental
– do a little at a time

• Generational
– young “objects” a more likely to be garbage

• Copying
– move (and compact) objects during collection

• Program directed
– programmer suggests what pattern object lifetime will follow

