
Doxpects: Aspects Supporting
XML Transformation Interfaces

Eric Wohlstadter
University of British Columbia

Vancouver, BC Canada
wohlstad@cs.ubc.ca

 Kris De Volder
University of British Columbia

Vancouver, BC Canada
kdvolder@cs.ubc.ca

ABSTRACT
In the web services environment software development can
involve writing both object-oriented programs and XML
transformations. This can be seen in the popular Web Services
architecture. In this architecture, crosscutting concerns are often
manifest as transformations on XML messages; encrypting
messages, adapting between schemas types or adding extra-
functional elements such as transaction contexts can be seen as
prime examples. Some existing middleware platforms provide
support for Handlers where crosscutting message transformation
concerns can be addressed. Although handlers localize some
concerns, they do not support the sound software-engineering
principle of “programming to an interface”. This prevents a
clean mapping from design to implementation and inhibits
useful static checking which could take advantage of a well
specified interface. To address this and similar design
challenges, we have developed Doxpects, which solve many
problems with the existing handler approach to implementing
these new crosscutting concerns. We describe an AOP
abstraction called the content-based pointcut which integrates
support for XML transformation to enable implementation of
crosscutting concerns with good modularity properties. We
present examples based on XML encryption and service
interoperability implemented on top of the Apache Axis Web
Services middleware.

1. INTRODUCTION
In the web services environment software development can
involve writing both object-oriented programs and XML
transformations. XML-based protocols such as SOAP provide
the substrate on which Web Services are built. Now,
programmers are often confronted with mitigating conceptual
mismatches between two different primary decompositions in
their code: the object-oriented design and the XML document
structure. As pointed out in the literature this causes frustration
[2,11].

In a Web Service implementation many concerns tend to
crosscut the document-oriented decomposition. As one
particular example, a programmer may be concerned with
protecting sensitive credit card information which is used in
several operations of a web service. The programmer might
want to protect just this element no matter where it appeared in
any web service message, even if it wasn’t explicitly given as a
method argument (this is called element-wise encryption [27]).

The existing approach to modularizing document-oriented
concerns in Web Services is through the use of specialized
APIs. For example, the Java XML Remote Procedure Call

(JAX-RPC)1 standard allows Handlers to be installed into the
flow of XML message processing. These handlers may intercept
and also transform messages. Although handlers localize some
concerns, they do not support the sound software-engineering
principle of “programming to an interface”. They provide only a
very coarse-grained interface to applications, making the design
of concerns difficult to map to implementation and preventing
useful static checking by a language compiler (e.g. checking
whether two advice may interact [20]).

interface Handler {

 boolean handleRequest(MessageContext mc);

 boolean handleResponse(MessageContext mc);

 boolean handleFault(MessageContext mc);

}

Figure 1 : The JAX-RPC Handler interface.

In Figure 1, we see the Handler interface which is
implemented by a handler implementation. Each handler exports
the same interface with one method to intercept incoming
messages, one method to intercept outgoing messages, and one
method to intercept exceptions (other infrastructure methods not
shown). Each method takes an argument which gives access to
the message content in a standard dynamically typed format
called the Document Object Model (DOM). Although this
allows programmers to localize crosscutting XML
transformation concerns, we argue it does not adequately
address many of the other criteria for good modularity, as
described by Kiczales and Mezini [10], including: “a well-
defined interface that describes how it interacts with the rest of
the system” and “an automatic mechanism enforces that every
module satisfies its own interface and respects the interface of
all other modules”. We propose to bring these properties to
modules which implement crosscutting document-oriented
concerns.

Unlike traditional distributed object middleware, web
services middleware uses a high-level XML representation of
messages. In this sense, web services middleware goes beyond
traditional middleware, which has a much more static, fixed
view of message structure. Features such as element-wise
encryption (section 2.1) or schema transformation (section 2.2)
simply cannot be handled by traditional OO middleware. It is
not possible to implement these types of features using

1 JAX-RPC: http://java.sun.com/webservices/jaxrpc/index.jsp.

traditional distributed object meta-programming [16,21]
(Interceptors) and would require changes to the lowest layers of
standard middleware. Aspect-oriented middleware, such as
JBoss [8] or our own earlier work on DADO[23], is firmly
ensconced in the world of fixed message structures, and does
not address, for example, the aforementioned encryption feature.
We have therefore developed a new aspect-oriented
programming model, called Doxpects, which specially deals
with crosscutting features in the world of dynamic, distributed,
flexible applications enabled by web services middleware.

In this paper, we show that the implementation of aspects
to address document-oriented concerns is improved by first-
class support for pointcuts defined on document content.
Content-based pointcuts provide a statically-declared fine-
grained interface between aspects and applications. These
pointcuts build on XPath to express properties of document
structures which define when aspects are activated. Our
implementation integrates XPath with XMLBeans [26] (an
XML to OO mapping) to provide a natural Java based
programming model for document-oriented aspects.
Transformations are achieved simply by replacing some bean
instances with others. In this paper we focus specifically on the
use of content-based pointcuts in the Web Services setting.

The contribution of this paper is the formulation of an
aspect language for XML transformations which promotes this
fine–grained interface between aspects and applications. The
interface is expressed through the explicit binding between
content-based pointcuts and AOP style advice. The interface
provides the following concrete benefits:

1. Enhanced traceability of design level requirements to
implementation (Section 2).

2. Statically checked XML to Java argument binding from
content-based pointcuts to XMLBeans (Section 4.2.2).

3. Replacement types provide a simple model for
transformation, by replacement of bean instances (Section
4.3.1).

4. Certain advice interactions are discovered statically
(Section 4.3.2).

This paper is organized as follows: in Section 2 we further
motivate the problem space with an example, in Section 3 we
describe background and delve into details in Section 4; in
Section 5 we continue with a further example, in Section 6 we
present related work and conclude in Section 7.

2. MOTIVATING EXAMPLE
Consider a component of a parcel tracking and shipping
dispatch service as presented in Figure 2. This service would be
used by various business partners that took part in the shipment
process and would also be used from some brick-and-mortar
outlets to schedule shipments. In this paper we consider two
different aspects which may be needed as part of message
processing between these partners.

2.1 Encryption Aspect
Deploying services in an open environment such as the web
requires careful consideration for the implementation of
crosscutting non-functional concerns such as security. Here we
are concerned with protecting some sensitive pieces of
documents exchanged between the shipping application web
service partners. Using element-wise encryption, documents are
protected from both malicious tampering and unauthorized

disclosure. Specific components (called elements in XML) of a
message may be hidden, instead of or in addition to, the entire
document. This feature is especially useful when messages may
traverse several intermediate services. An intermediate service
can make use of the unencrypted information for routing,
logging, access control, etc. before the message arrives at the
service endpoint that actually needs to use the sensitive
information.

+ship(Address, Address, Package[], AccountInfo)() : TrackingNumber
+track(TrackingNumber)() : Location
+newLocation(TrackingNumber, Location)()
+dailyPickup(Address, AccountInfo)()
+accountDetails(TrackingNumber)() : AccountInfo

«wsdl:portType»
ShippingAndTracking

-date
-time

Location -Line1
-Line2
-City
-State
-Zip

Address

1 1

Figure 2: UML Diagram mock-up showing part of the original
shipping and tracking service. Actual design is specified in
WSDL and XML Schema.

The implementation of software to address this concern
requires additional functions to be executed along with the
original web service functions. Three different pieces of
behavior are required. First, a function is required which
provides decryption of incoming document elements. Second, a
function is required which provides encryption of sensitive
document elements. For example, we may want to encrypt just
the PaymentInfo information (definition not shown) which is
part-of the AccountInfo type (for example in the ship
operation). Finally, a function is necessary to set up certain
state, called a security context, to properly parameterize the
encryption of messages to the client. Different behavior will be
appropriate at different times and the behavior to execute
depends upon the content of the messages being exchanged.

If we are able to implement each function as a different
advice and use pointcuts to identify when each advice is
applicable, then these high-level design requirements can
seamlessly be captured in our implementation. Still, there are
some issues which could easily be overlooked. How can our
programming model provide an equally seamless integration
between XML transformation concerns and AOP? In this
particular example there are other more subtle implementation
issues. For example, it may be natural to identify encrypted
messages using a pointcut style abstraction and use advice to
implement decryption. But, what if there are encrypted elements
inside of encrypted elements (called super-encryption [27])? For
example, a client may encrypt all the PaymentInfo types to
ensure credit card information is only available to services with
which it has established trust. However, later the entire message
might be encrypted at a firewall. Will the decryption advice be
activated just once or should decryption advice be managed
recursively in this case? Using a language based approach we

Gregor Kiczales
Line

are able to warn programmers about these subtle advice
interactions (this particular interaction is addressed in Section
5).

2.2 Interoperability Aspect
Now, consider an interoperability example inspired by

[19]. To bridge syntactic mismatches between otherwise
semantically compatible clients and web services, an adapter
can be written to transform SOAP requests. This type of
packaging mismatch [6] is common whenever interfaces are
evolved independently [17] by disparate organizations.

-date
-time
-locationID

LocationExt -Line1
-Line2
-City
-State
-Zip
-ZipExt

AddressExt

1 1

Figure 3 : UML Diagram mock-up showing part of the evolved
shipping and tracking service types.

Looking at Figure 2, as part of the XML data comprising the
application, a Location is composed of an Address
where a package was processed and also the time and date of
processing. At a high-level there are two transformation
concerns to be addressed to ensure interoperability which should
each be traceable to implementation. First, by comparing
Figures 2 and 3 we need to transform all the Address data
types to a new format, AddressExt; looking at Figure 2,
Address appears as an argument in more than one operation.
The upgraded version includes a separate element for two postal
code (so-called Zip code) components. Second, we need to
transform all the Location information types to include a
locationID. This information was added to easily identify
package handling and outlet locations. By implementing both of
these transformations as advice (which we refer to as the
Location and Address advice) in a single aspect we are
able to map both concerns into implementation, making the
code look like the design we are trying to capture.

Although, on further inspection we see that the Address
type is part-of the Location type (or equivalently,
Location has-a Address). So, the Location advice
requires that the Address advice be executed as part of the
overall Location transformation. This makes it dependent
on the other advice, another form of advice interaction
(addressed in Section 4.3.3.2). By using a language based
approach we can perform automatic checking in the compiler to
ensure a proper nesting of advice.

2.3 Discussion
Considering the encryption example, the current approach

to encryption/decryption would be based on handlers. Using, the

Apache Axis2 middleware, these handlers can be installed on a
per-service basis (or globally). Handlers do not support specific,
explicit deployment of a feature for specific document contents.
Thus, handlers do not allow the programmer to clearly commit
to a document-based interface between the handler and the
application. This a) reduces design transparency b) precludes
any type of static checking and c) inhibits maintainability.

The design and implementation of an aspect-like way to
express the same concern would be improved in the following
ways. First, decomposition would be based on advice associated
with pointcuts which expressed crosscutting properties of
program execution, not limited to service deployment, and
enriched with the expression of document content properties.
Second, information bound from the pointcuts would be made
available through a statically checked interface and would
automatically map XML based content into their Java
equivalents. Finally, declaring the types of elements to be
replaced and the types of the replacement elements in the advice
signature (we call these replacement types) allows lightweight
checking for interaction between advice.

3. BACKGROUND
The collection of supporting XML technologies for Java and
Web service programming continues to expand rapidly. Here we
begin by reviewing the existing technologies on top of which
our solution is built.

3.1 Web Services
Nowhere is XML message processing more prevalent than

in the area of Web Services, built on SOAP (Simple Object
Access Protocol) messages. Programmers describe the interface
of a service using WSDL (Web Service Definition Language)
specifications. These specifications may reference XML
Schemas which specify the types of XML data elements passed
to and from services. SOAP provides a standard envelope in
which these custom messages are transported. We have
implemented Doxpects in the context of the Apache Axis Web
Service middleware which supports the JAX-RPC standard.

3.2 XPath
XPath is a domain specific language used primarily to drive
traversal over document structures. At its core, an XPath
expression consists of a list of element names (separated by “/”)
specifying a path from the root document element to

2 Apache Axis: http://ws.apache.org/axis/.

[1] doxpect ShippingInterop
[2] {
[3] private static final LOCATION_ID = 13546343;
[4]

[5] request(Location->LocationExt location, AddressExt<-Address addr) :
[6] body(/newLocation/Location, location) && body(/newLocation/Location/Address, addr)
[7] {
[8] locationPrime.setLine1(location.getLine1());

[9] /*Elided, similar to above, copy over identical fields*/

[10] locationPrime.setLocationID(LOCATION_ID); /*Fill in missing locationID*/
[11] locationPrime.setAddress(addr); /*addr is of type AddressExt*/

[12] }
[13]
[14] request each(Address->AddressExt address) :
[15] body(//Address, address)
[16] {
[17] String[] zipParts = address.getZip().split(“-“);

[18] addressPrime.setZip(zipParts[0]);

[19] addressPrime.setZipExt(zipParts[1]);

[20] /*Elided, copy over identical fields*/

[21] }
[22] }

Figure 4 : Doxpect implementation for Interoperability example. XMLBean types shown in bold. XPath shown in italics.
Advice for reverse transforming incoming content not shown.

specific elements of interest. Two special operators are available
to quantify over multiple possible elements, these are the “*”
and “//” operators. A “*” fills in as a wildcard for any possible
document element while the “//” fills in as a wildcard for any
possible document sub-tree (essentially a closure over
the “*” operator). We use XPath in a novel way, to separate the
specification of when documents are processed and what the
function does which processes the documents.

3.3 XMLBeans
As described above, manipulating documents using the

dynamically typed DOM representation has distinct
disadvantages including decreased readability of code and no
support for static type-checking. To deal with these problems, a
number of static XML to object structure mappings have been
proposed, including XMLBeans. In our programming model,
document elements which are captured in a content-based
pointcut are automatically made available to programmers using
a statically typed XMLBean representation. XMLBean data is
accessed or mutated using the standard “get” and “set”
JavaBean pattern. This feature provides the bridge necessary
where pointcuts are expressed in one language (XPath) and
behavior is expressed in another language, Java. Another bean,
called the replacement, is made automatically available to
advice so that transformation is achieved simply by filling in the
values of the new replacement bean.

4. DETAILS
Here we present the details of our Doxpect language. To ground
the discussion we showcase concepts as applied in the

implementation of the ShippingInterop doxpect as
discussed in Section 2.2.

Doxpect
Compiler

XMLBean
Compiler

Doxpect

WSDL +

Schema
XML

Beans

Generated
Handler

Step1

Step 2

Figure 5: Doxpect Tool Process (From left to right,
programming artifacts, tools, binary output).

4.1 Doxpects
A programmer who needs to address a crosscutting XML
transformation concern can write a doxpect as in Figure 4, line
1. An doxpect can include pointcuts, advice, fields and methods
just like a standard AspectJ aspect. However, the pointcuts we
use are different (Section 4.2) and the semantics of executing
advice (Section 4.3) is tailored for the special case of XML
transformations. Here we see the ShippingInterop
doxpect consisting of two advice (lines 5 and 14) for
transforming outgoing content and one field (line 3) used to fill
in for the missing locationID.

As shown in figure 5, the development of a doxpect begins
in step 1 by compiling the WSDL service definitions and the
XML schema types referenced in the service interface. In our
example, this would include the definitions for both the original
and the evolved shipping services. The definitions are used by
the off-the-shelf XMLBean compiler to generate equivalent Java
class definitions. Next, in step 2, a programmer writes a doxpect
which may crosscut some of the service and schema definitions.
The Doxpect compiler performs three tasks. First, it ensures
type compatibility of variables matched by content-based
pointcuts and generates the code to deserialize message
fragments into equivalent XMLBeans. Second, it performs
interaction checking to ensure that doxpect advice do not
conflict. Third, it generates pointcut matching and advice
dispatching code in a standard JAX-RPC handler which can
now be deployed safely.

4.2 Doxpect Pointcuts
We expand upon the standard AspectJ joinpoint model by
including first class support for document content properties.
Here we describe the semantics in terms of AspectJs joinpoint
model.

4.2.1 Joinpoint Semantics
AspectJ provides support for specifying the execution of

advice in terms of properties on joinpoints. During program
execution different joinpoints are executed in sequence.
Pointcuts specify properties of joinpoints so that when a
joinpoint matching that property is encountered any associated
advice will be executed. AspectJ provides extensive support for
the specification of program execution properties such as field
access, method calls, and control-flow. AspectJ is not limited
however to the expression of these “program execution”
properties. Using the if pointcut, advice may be predicated
upon the data values of variables captured in the pointcut. The
if pointcut can include any Java code, using these variables,
which evaluates to a boolean expression. Our model is similar to
using the if pointcut, capturing a Java representation of some
XML document of interest, and then predicating on its content.
Although that approach provides the right semantics for our
intended model, the cross-language nature of XML and Java
programming demands a specially tailored approach.
Essentially, AspectJ’s if pointcuts do not respect the
specification of XML documents as described in their schema.
This prevents a satisfactory integration providing our desired
benefits.
4.2.2 Content-Based Pointcuts
The content-based pointcut provides the programmer a
convenient way to express properties of joinpoints where SOAP
messages are being processed. A property of a message is
expressed in the pointcut using XPath expressions which may be
joined together using the standard pointcut logical operators. An
example can be seen in Figure 4, line 6. Here we want to match
the Location data type and the associated Address which
are passed in a call to the newLocation web service
operation. Another example is shown on line 15. This pointcut
matches all Address types as part of any web service
operation. Notice that both advice will match an Address in
the newLocation operation. In section 4.3.1, we explain
how the first advice expresses a dependency that another advice

will perform transformation on the Address element the first
advice matches.

XPath wildcard quantifiers provide the means to express
properties which are structure shy[13,14]; enabling
transformation to be performed across many different service
operations. Additionally, only certain pieces of those messages
may be of interest to the advice. This allows a concise means to
implement those aspects which crosscut the WSDL service and
schema type definitions.

As a convenience two pointcut designators are available:
header and body, which predicate on properties of either
the SOAP message header or body. The SOAP message header
is often used to carry invocation context information to be
processed by middleware components implementing non-
functional concerns. For example in the encryption example, the
header carries a shared-key identifier.

The SOAP message body includes the data which is passed
in the message including the name of a Web service operation to
be invoked and the XML data for each of the arguments.
Doxpects may to need to monitor or transform both the header
and body elements across different web service invocations.

A distinct advantage of the content-based pointcut is that
elements matched in the XPath expression can be made directly
available to doxpect advice, providing a fine-grained interface
between documents and doxpects. Each pointcut designator can
include the name of an argument from the advice signature
which binds the result of XPath evaluation to that argument.
Naturally, pointcuts joined using the OR operator (not shown)
are all required to have bindings for the same arguments.
Arguments are made available automatically to advice as
equivalent XMLBeans through generated code which
deserializes the result of XPath evaluation. For example, on line
14 an Address in any message is made available as the
variable address on line 15 in the advice signature.

4.3 Doxpect Advice
Doxpect advice provides a strongly typed environment in

which XML transformations take place. This helps to ensures
that the implementation adheres to the contract of the interface.
In this section we discuss our model for transformation using
XMLBean replacement, static checking for advice interactions,
and the semantics for Doxpect advice execution.

Currently, each advice is executed before the sending or
receiving of a particular asynchronous SOAP message (i.e.
synchronous invocations are not treated specially). This is
implemented by a programmer using either the request or
response advice forms which replace the familiar
before, after, and around advice forms.

XML transformations are particularly sensitive to the order
in which advice are executed because each advice is allowed to
mutate the current message. As in AspectJ, advice in a single
doxpect execute in the order they appear textually. We say an
advice which is declared before another advice is dominating
and the second advice is dominated. We provide special
compiler support (Section 4.3.3.) to help ensure that the
programmer specified order makes sense.
4.3.1 Replacement Types
Although doxpect advice may behave just like standard AspectJ
advice by executing extra code, doxpect advice are specially
suited to perform transformation over captured document

content. Each argument captured in the advice signature can
also include a replacement type. Three kinds of replacement
types are the provided, optional, and required replacement.

A provided replacement specifies a contract that an
element matched by a pointcut will be replaced by another
element of a different type in the advice. For the type of the
argument a programmer includes two XMLBean types,
separated by an arrow “→”, called the matched type and
replacement type respectively. For example, in Figure 4 , line 5
we see that Location will be replaced by LocationExt
(note: the second argument with the arrow reversed is explained
below). The advice interface along with the pointcut tells us not
only how the types will be converted but also, from the pointcut,
where in the document this will take place.

A special variable representing the replacement is made
available in the scope of the advice. This variable is given the
same name as the matched argument with the suffix “Prime”.
For example, on line 8, the Line1 field from the matched
location argument is copied over to the
locationPrime replacement. Programmers can fill in the
data of the special variable and the transformation is
automatically executed on the underlying document when the
advice exits.

An optional replacement provides similar semantics except
transformation does not occur if the special variable is set to
null. In this case, the replacement mechanism provides a
convenience to the programmer, but is not a contract. This is
specified syntactically by including a question mark after the
matched and replaced type. Optional replacements are used
when the advice must make a run-time decision whether
transformation will occur (demonstrated in Section 5). They
cannot be used to provide a replacement for a required
replacement type, discussed next.

Required replacements are used to delegate transformation
of specific elements to other advice which provides
transformation. The semantics can be viewed as the execution of
a proceed statement where some guarantee is made on the
new structure of the document when the executing proceed
has returned. This expresses a dependency from a dominating
advice to some advice it dominates. The syntax is a reverse of
the provided replacement. Here, only the named argument
variable (matching the type on the left side of “←“) is made
available in the context of the advice. For example, on line 5 a
variable named addr of type AddressExt is made
available. The value of this variable is the result of
transformation by another advice. The element to transform is
expressed by the pointcut and matches the type of the right hand
side of the “←“. So, in the example the value of addr is
derived from an element of type Address which is delegated
to and transformed by some other advice. An analysis of the
pointcuts is used to match up required and provided
replacements, so dependent advice do not need to explicitly
refer to advice providing replacement, but the compiler
statically ensures that one exists. Further motivation for the use

of required and provided replacements and this matching is
explained in the section on advice inhibition (Section 4.3.2.2).
4.3.2 Advice Interaction
Sometimes different advice will match the same document,
however since advice can mutate the document, this could
interfere with the other advice. Programmers will need to be
sensitive to the order that advice executes. We have identified
three types of content-based advice interactions which we call
corruption, inhibition, and activation. Each explanation is given
by describing a particular use of replacement types in a pair of
dominating and dominated advice that interact. Note that we
have currently only implemented interaction checking in the
context of a single aspect and not yet interaction between advice
across aspects, although we feel that an extension will be
straightforward.

4.3.2.1 Advice Corruption
In this situation a dominating advice replaces an element type,
A, with another B (i.e. A→B). The dominated advice matches
some type, C , which contains as one of its parts an element of
type A (i.e. C has-a A, transitively). Now, when the
dominated advice executes, C is no longer properly typed
(because it should not contain an element of type B) and cannot
be properly represented as a static Java type. When the two
advice match the same document, this is always an error and it
is straightforward to detect when this may occur (simply by
using the rules above). Since the pointcuts of two advice might
never match the same document, our analysis is overly
conservative because it uses only type information in detection.
This is achieved by a traversal of the WSDL and XML Schema
definitions.

An example of corruption would occur in the
ShippingInterop example if the two advice were
switched. If all Address were replaced with AddressExt,
then a match of Location would create a type error. We
provide a type-safe way for advice to cooperate using required
and provided replacements which are discussed next in the
context of advice inhibition.
4.3.2.2 Advice Inhibition
In this situation a dominating advice replaces an element type,
A, with another, B, (i.e. A→B) so that a dominated advice is
prevented from matching A or one of A’s parts. The doxpect
compiler warns programmers in case this behavior is an error.

This exact situation could occur in the
ShippingInterop aspect. When Location is replaced
by LocationExt, the second advice will be prevented from
matching the Address type that is part of Location. If we
switched the order of the advice, we would be back in the
corruption situation.

Now, the problem solved by our use of required and
provided replacements should become apparent. In order to
allow this cooperation of advice in a type-safe, statically

[1] doxpect EncryptionDecryption per(request) /*Server-side implementation*/
[2] {
[3] Identifier contextID;
[4]
[5] request(Identifier id) : header(/SecureConversation/Identifier, id)
[6] {
[7] contextID = id; /*Set request scoped security context identifier*/
[8] }
[9]
[10] request each*(EncryptedData->XmlObject? encrypted): body(//EncryptedData, encrypted)
[11] {
[12] byte[] cipherValue = encrypted.getCipherData().getCipherValue(); /*Get raw data*/
[13] String keyName = encrypted.getKeyInfo().getKeyName(); /*Lookup key*/
[14] Key key = KeyStore.getInstance(“JKS”).getKey(keyName, Constants.PASSWORD));
[15] if(key != null) { /*Check if key exists*/
[16] encryptedPrime = decrypt(cipherValue,key); /*Decrypt data using key*/
[17] } else
[18] encryptedPrime = null; /*If not a known key, abort transformation*/
[19] }
[20]
[21] response(PaymentInfo->EncryptedData? payment) : body(//PaymentInfo, payment)
[22] {
[23] /*Lookup key associated with the security context*/
[24] String keyName = SecurityContext.getKeyName(contextID);
[25] Key key = KeyStore.getInstance(“JKS”).getKey(keyName, Constants.PASSWORD);
[26] if(key != null) {
[27] /*If key is valid, fill in replacement with encrypted data*/
[28] paymentPrime.getCipherData().setCipherValue(encrypt(payment,key));
[29] } else {
[30] paymentPrime = null; /*Abort transformation*/
[31] throw new SOAPFaultException(...);
[32] }
[33] }
[34] }

Figure 6 : Doxpect implementation for Encryption/Decryption example. XMLBean types shown in bold. XPath shown in italics. Library
functions and encrypt/decrypt helper functions not shown

checked, manner the first advice can use a required replacement.
The first advice will delegate an element matched by its pointcut
to be transformed by some other dominated advice. The result of
the transformation is then made available to the first advice. To
ensure that a dominated advice is always available to provide
the transformation we perform two checks. First, some
dominated advice must contain a provided type with exactly the
reverse signature of the required type. Second, we must ensure
that the pointcut for the provided type always matches in the
context of the dominating advice. This is achieved by checking
containment of XPath expressions.

One XPath expression, A, is said to contain another, B, if,
for all documents the set of elements matched by A is always a
superset of the elements matched by B. The doxpect compiler
checks for containment of XPath expressions to ensure that

there is always a match for a required replacment3. For
example, in Figure 4, the pointcut on line 15 contains the
pointcut on line 6, so it can safely provide the required
replacement (we can be sure it will execute at all the joinpoints
of the dominating advice).

By providing a checked mechanism for advice to
cooperate, doxpect programmers are free to decompose
pointcuts and advice directly to high-level transformation
concerns.
4.3.2.3 Inter(Intra)-Advice Missed Activation
In this situation a dominating advice matches some element, B,
but that element doesn’t appear until after the advice has
finished executing. Perhaps another dominated advice
transforms A to B (A→B) subsequently. We would like to warn
the programmer in case she would like to invert the ordering.
Otherwise, an advice may not match when it should have since
it executed before certain content appeared.

3 Checking of containment is achieved by a call to an external

tool called xviz [9].

An interesting situation arises when a single advice
performs a transformation which causes the same advice to
again become active. We can detect this by checking whether
the replacement type of any argument in the advice signature is
part-of (transitively) a matched type in the same advice
signature. This situation arises in the context of the encryption
example (when using super-encryption) which we will elaborate
in Section 5.
4.3.3 Advice Execution
Using content-based pointcuts a single pointcut may match a
single joinpoint in more than one way (i.e. it may match
multiple places in a document). For example, one example
pointcut matches an Address element anywhere in the
document. From our service definition, we know that
Address might appear in multiple argument positions or as
part of a Location. By default, if multiple matches are
possible (determined by the service and schema definitions) any
matched argument is required to be of an array type, to hold all
matches. An optional advice modifier called each (shown in
Figure 4, line 14), provides a simple means of iterating over all
such matches automatically.

Although this phenomenon may seem peculiar and limited
to our content-based scenario, a similar issue arises in standard
aspect languages such as AspectJ. Consider a programmer who
wants to write an aspect which converts all Strings passed to a
particular API to a specific format. One might write the
syntactically correct pointcut:

around(String x):

call(* apiName.*(.., String, ..)) &&
args(.., x, ..)

Here the semantics are similar but the AspectJ compiler will
issue an error about a compiler limitation because it can’t match
argument ``x” in more than one context. Since this scenario is
more common in a document-oriented decomposition we
provided special support through array types and the each
advice modifier.

5. Encryption Revisited
Here we expand on the encryption doxpect presented in Figure
6. This example further demonstrates the use of advice
interaction checking and optional replacements in the context of
the encryption crosscutting document concern.

We have refactored most of the actual encryption and
decryption functionality into helper functions (not shown) in
order to highlight the novel features of our language. We define
a doxpect called ElementWiseEncryption on line 1. This
doxpect is declared to be per(request)which provides a
mechanism for request and response advice to share
state. Each doxpect instance will be used to store the security
context identifier information for one request, as defined by the
field in line 3. This is achieved on lines 5-8; an advice is
declared which picks out messages containing a security context
element and stores the information in the field. This is an
element standardized by the WS-SecureConversation [22]
specification. It provides the server a way to identify a shared-
key to use in encrypting messages back to the client. This
doxpect applies only to the server-side of message exchange

because the semantics for the security context will be different
on the client.

Two more advice are declared on lines 10 and 21. On line
10 an advice is used to pick out messages with any encrypted
elements tagged by the EncryptedData element. This is a
standardized element defined by the XML Encryption [27]
specification. First, on line 12 the XMLBean named
encrypted which was captured by the advice is used to
access the raw encrypted bytes (called a CipherValue).
Next, on line 13 the name of the key for the encrypted data is
retrieved. Recall, that encrypted elements may be destined for
services other than the current service processing the message.
So, on lines 14 and 15, we check to see if the key is known to
our system. If it is (line 16) we fill in the replacement bean,
encryptedPrime, with the decrypted element through a
call to the helper function decrypt passing in the encrypted
bytes and the key.

Unfortunately, the advice implementation is not so simple.
Recall, the advice missed activation interaction described in
Section (4.3.2.3): after an advice has completed execution, it
may match again at the same joinpoint. As described, this is
checked for statically, and can even occur within a single
advice. Considering, the optional replacement on line 10,
EncryptedData→XmlObject?. Here XmlObject is
the root of the XMLBean hierarchy so the replacement may
actual be (or contain) an EncryptedData element. We
would like programmers be able to mitigate these types of
interactions easily rather than requiring them to program an
explicit traversal of the document. This is achieved on line 10,
using our each* advice modifier. Using each* an advice is
executed recursively on the output replacement elements until it
fails to match. Now, these types of advice interactions can be
checked for statically and resolved through simple domain-
specific abstractions.

On line 23 we see the advice used to encrypt outgoing
elements. The pointcut picks outgoing messages (i.e. return
values) with a PaymentInfo element. Looking back at
Figure 1, this actually only occurs in the accountDetails
operation since PaymentInfo is part-of
AccountInfo. A client-side implementation of the
encryption/decryption concern would match PaymentInfo
in multiple places of different message types. Also, this pointcut
should really be defined as abstract to allow deployment
specialists to specialize the doxpect for different applications.
We are currently still implementing support for abstract
pointcuts.

The encryption work is done in lines 23-31 and follows
similarly to the decryption advice. An important difference is
shown on line 24. Here the advice can use contextID bean
which was saved from the incoming request. This shows how
doxpects are useful in implementing coordinated
transformations across multiple XML messages.

6. RELATED WORK
6.1 XML Transformation Languages
The standard language for XML transformation is the
eXtensible Stylesheet Language Transformation (XSLT).
Similar to Doxpect, XSLT provides support for modular
transformations through the use of the template. Templates
encapsulate only certain transformation sub-tasks and delegate

processing of other tasks using the apply-templates
operator. Unlike, Doxpects, XSLTs transform XML documents
into any type of content (e.g. LateX or plaintext). So, there is no
way to express the interface of a template in terms of its output.

Using replacements types we are able to perform useful
static checking to warn against certain common transformation
ordering mistakes and also to ensure replacements are provided
when required. As a pragmatic benefit, Doxpects integrate more
naturally with a standard OO language to provide management
of state (through fields) and easier access to standard Java
libraries (such as encryption). XSLT programmers are required
to learn an entirely new purely functional programming
language.

One design choice we made was to allow each advice to
individually mutate each message. This required support to
ensure advice did not accidentally interact. To avoid such
problems, the XSLT specification originally did not allow the
manipulation of transformation output. However, this made
programming many transformations extremely cumbersome [8]
and so support was provided in most popular XSLT processors
(using something called the node-set operator). Following
this demand we chose to allow mutation on document instances.

Several other projects focus on statically guaranteeing that
the implementation of an XML transformation with an input
document from one schema type always produces a document
conforming to another specific schema type. A variety of
approaches have been taken including type-inference [2] and
whole program data-flow analysis [11]. Although the checking
they do is more sophisticated than in Doxpect, they make no
contribution to the design, traceability, and maintenance of
crosscutting concerns. All information about the transformation
is simply part of the implementation. We provide an explicit,
lightweight approach by promoting a transformation interface.

6.2 Aspects and XPath
Previous work [3,5] has leveraged XPath as a pointcut
designator for adapting business process workflow descriptions
which are written in XML. This work is closer to standard AOP,
where pointcuts match program execution events and not data
content. The BAT project [7] uses XQuery, a functional
programming language built on XPath, to implement pointcuts
on an XML representation of Java byte-code. We have proposed
using XPath to match properties of actual XML message
instances and not descriptions of program structures. This
requires a completely different solution to deal with messages
which are transformed at run-time.

6.3 Middleware Meta-programming
Middleware platforms have a long tradition of enabling flexible
customizations [4] in various middleware layers. The use of the
Interceptor [16,21] became popular as a way to capture a
reflective representation of base program execution. Similar to
the Handler approach, these approaches are completely generic
and do not promote an interface which is typed in the
environment of the base program. In our work, we have
followed a model closer to AspectJ where each advice specifies
a narrow interface using a concrete syntax at the level of the
base program and not at the meta-level. This allows
programmers to express crosscutting properties explicitly and
more naturally.

6.4 Web Service Middleware
Our shipping interoperability doxpect is inspired by

previous work on service interoperability in Web Services. In an
on-line article, Provost [19] implemented a schema
transformation with a similar motivation to the example we
presented using XSLT.

Ponnekanti [17] presented a taxonomy of web service
interface mismatches that can occur when interfaces are allowed
to evolve independently as well as an analysis to discover
mismatches using WSDL.

In previous work, we extended the handler mechanism of
Apache Axis with support for dynamically negotiated policies.
At run-time clients and servers would decide which handlers
should be activated. However, in that work we made no
contribution to the actual programming of handlers. A similar
approach is taken by [1]. WSS4J [25] is a publicly available
library of handlers for web services security, but not does make
any contributions to the design of handlers.

7. CONCLUSION
We have explored the concept of modularity in crosscutting
document concerns, provided an approach using content-based
pointcuts and demonstrated some illustrative examples. Our
research was motivated to address new concerns which appear
uniquely in the web service setting. The previous approach
using handlers inadequately addressed important software
engineering practices such as “programming to an interface”.

In the future our Doxpect language could be integrated
with AspectJ. Currently, Doxpect is implemented separately as a
source to source translator on top of the Apache Axis Web
Service middleware without the full power of AspectJ pointcuts
or inter-type declarations.

Our experience with Doxpects has been primarily example
driven. We have focused our attention on building those pieces
of the language which addressed the programming difficulties
encountered for those examples. We believe the current version
to be suitable for addressing a wide variety of concerns
encountered in the web services area which we intend to
investigate such as reliable messaging, batch processing,
caching, and transactions.

8. REFERENCES
[1] Baligand, F. and Monfort, V. A Concrete Solution for Web

Services Adaptability using Policies and Aspects. In Proc.
of the International Conference on Service-oriented
Computing, 2004.

[2] Benzaken, V., Castagna, G., and Frisch, A. CDuce: An
XML-Centric General Purpose Language. In Proceedings
of the ACM International Conference on Functional
Programming, 2003.

[3] Charfi, A. and Mezini, M. Aspect-Oriented Web Service
Composition with AO4BPEL. In Proc. of the European
Conference on Web Services, 2004.

[4] Clarke, M., Blair, G., Coulson, G. and Parlavantzas, N.
An efficient component model for the construction of
adaptive middleware. In Proc. of the International
Conference on Distributed Systems Platforms
(Middleware), 2001.

[5] Courbis, C. and Finkelstein, A. Towards Aspect Weaving
Applications. In Proc. of the International Conference on
Software Engineering, 2005.

[6] De Line, R. Avoid packaging mismatch with flexible
packaging. In Proc. of the International Conference on
Software Engineering, 1999.

[7] Eichberg, M., Mezini, M, and Ostermann, K. Pointcuts as
functional queries. In Proc. of the Asian Symposium on
Programming Languages and Systems, 2004.

[8] Fleury, M. and Reverbel, F. The JBoss Extensible Server.
In Proc. of the International Middleware Conference,
2003.

[9] Handy, B. and Suciu, D. XViz: a tool for visualizing
XPath expressions. In Proc. of the XML database
symposium, 2003.

[10] Kiczales, G. and Mezini, M. Aspect-Oriented
Programming and Modular Reasoning. In Proc. of the
International Conference on Software Engineering, 2005.

[11] Kirkegaard, C., Moller, A. and Scwartzback, M. Static
Analysis of XML Transformations in Java. IEEE
Transactions on Software Engineering.

[12] Kosek, Jirka. Understanding the node-set() Function.
<www.xml.com/pub/a/2003/07/16/nodeset.html>

[13] Laemmel, R. and Visser, E. Strategic Programming Meets
Adaptive Programming. In Proc. of the International
Conference on Aspect-Oriented Programming, 2003.

[14] Lieberherr, K., Patt-Shamir, B. and Orleans, D. Traversals
of object structures: Specification and Efficient
Implementation. ACM Transactions on Programming
Languages and Systems, 2004.

[15] Miklau, G. and Suciu, D. Containment and equivalence for
a fragment of XPath. Journal of the ACM, 51:1, 2004.

[16] Narasimhan, P. Moser, L.E. and Melliar-Smith, P.M. Using
interceptors to enhance CORBA. IEEE Computer, 32(7):
62-68, 1999.

[17] Ponnekanti, S. and Fox, A. Interoperability among
Independently Evolving Web Services. In Proc. of the
International Conference on Middleware, 2004.

[18] Popovici, A. Gross, T. Alonso, G. Dynamic Weaving for
Aspect Oriented Programming. In Proc. of the
International Conference on Aspect-Oriented Software
Development, 2002.

[19] Provost, Will. Integrating Services with XSLT. O’Reilly
WebServices.XML.
<http://webservices.xml.com/pub/a/ws/2003/09/30/integrati
ng.html>.

[20] Rinard, M., Salcianu, A., Bugrara, S. A Classification
System and Analysis for Aspect-Oriented Programs. In
Proc. of the Symposium on Foundations of Software
Engineering, 2004.

[21] Wang, N., Parameswaran, K., and Schmidt, D. The Design
and Performance of Meta-Programming Mechanisms for
Object Request Broker Middleware.

[22] Web Services Secure Conversation Language. 2005.
<http://specs.xmlsoap.org/ws/2005/02/sc/WS-
SecureConversation.pdf>.

[23] Wohlstadter E., Jackson S., and Devanbu P. DADO:
Enhancing Middleware to Support Cross-Cutting Features
in Distributed, Heterogeneous Systems. In Proc. of the
International Conference of Software Engineering, 2003.

[24] Wohlstadter, E. Tai, S. Mikalsen, T. Rouvellou, I. and
Devanbu, P. GlueQoS: Middleware to sweeten quality
services policy interactions. In Proc. of the International
Conference on Software Engineeering, 2004.

[25] WSS4J <http://ws.apache.org/wss4j/>.
[26] XMLBeans. Version 2. <http://xmlbeans.apache.org/>
[27] XML Encryption. W3C. 2001.

<http://www.w3.org/Encryption/2001/>

http://prose.ethz.ch/webthings/aosd02.ps
http://prose.ethz.ch/webthings/aosd02.ps

	1. INTRODUCTION
	2. MOTIVATING EXAMPLE
	2.1 Encryption Aspect
	2.2 Interoperability Aspect
	2.3 Discussion
	3. BACKGROUND
	3.1 Web Services
	3.2 XPath
	[1] doxpect ShippingInterop
	[2] {
	[3] private static final LOCATION_ID = 13546343;
	[5] request(Location->LocationExt location, AddressExt<-Address addr) :
	[6] body(/newLocation/Location, location) && body(/newLocation/Location/Address, addr)
	[7] {
	[10] locationPrime.setLocationID(LOCATION_ID); /*Fill in missing locationID*/
	[12] }
	[13]
	[14] request each(Address->AddressExt address) :
	[15] body(//Address, address)
	[16] {
	[21] }
	[22] }
	3.3 XMLBeans

	4. DETAILS
	4.1 Doxpects
	4.2 Doxpect Pointcuts
	4.2.1 Joinpoint Semantics
	4.2.2 Content-Based Pointcuts

	4.3 Doxpect Advice
	4.3.1 Replacement Types
	4.3.2 Advice Interaction
	4.3.2.1 Advice Corruption
	4.3.2.2 Advice Inhibition

	
	
	
	[1] doxpect EncryptionDecryption per(request) /*Server-side implementation*/
	[2] {
	[10] request each*(EncryptedData->XmlObject? encrypted): body(//EncryptedData, encrypted)
	[11] {

	[12] byte[] cipherValue = encrypted.getCipherData().getCipherValue(); /*Get raw data*/
	[13] String keyName = encrypted.getKeyInfo().getKeyName(); /*Lookup key*/
	[17] } else
	[19] }
	[20]
	[21] response(PaymentInfo->EncryptedData? payment) : body(//PaymentInfo, payment)
	[22] {
	[29] } else {
	[33] }
	[34] }
	4.3.2.3 Inter(Intra)-Advice Missed Activation
	4.3.3 Advice Execution

	5. Encryption Revisited
	6. RELATED WORK
	6.1 XML Transformation Languages
	6.2 Aspects and XPath
	6.3 Middleware Meta-programming
	6.4 Web Service Middleware

	7. CONCLUSION
	8. REFERENCES

