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Abstract

Aspect-oriented programming and the development of aspémtted languages are rapidly gaining momentum,
and the advent of this new kind of programming language pesvinteresting challenges for compiler developers,
both in the frontend semantic analysis and in the backene gedieration. This paper is about the design and
implementation of thabccompiler for the aspect-oriented language AspectJ.

In this paper we show how we can leverage existing compitehrtelogy by combining Polyglot (an extensible
compiler framework for Java) in the frontend and Soot (a frvark for analysis and transformation of Java) in the
backend. We provide a software architecture which cleaapagtes these existing tools from the aspect-specific
parts of the compiler.

A second important contribution of the paper is that we dbsasur implementation strategies for new challenges
that are specific to aspect-oriented language construtitsough our compiler is targeted towards Aspectd, many of
these ideas apply to aspect-oriented languages in general.

Finally, we found that in developingbc we clarified many language issues which in turn simplifiedithgle-
mentation.

Our abc compiler implements the full AspectJ language as definedjbyl.2 and is freely available under the
GNU LGPL.

Introduction

Aspect-oriented programming (AOP) is rapidly gaining plapity and AspectJ [10] is widely recognised as one of the
key aspect-oriented programming languages in use todaglafiy there has been only one compiler for Aspect] —
ajc, originally developed by the inventors of AspectJ at Xer&RE [15] and currently developed and maintained as
part of the Eclipse AspectJ project [2].

This paper describes the design and implementation of a pewpiter for AspectJ, théspectBench Compiler

abc[1], which is intended as a workbench for researchers istedein AOP language design and implementation.
Whereas the development ajc has focused on integration with the Eclipse framework anthoremental and fast
compilation, our motivation and design goals were quitéed#nt. Our original goals and resulting contributions can
be summarised as follows:

Clearly defined and articulated compiler architecture for an AOP language: The overall architecture of a com-

piler for mainstream programming languages is very wellaratbod and documented in humerous textbooks.
However, AOP languages provide new challenges for compitéers and the architecture of a compiler for
an AOP language must reflect those challenges. Althoughadbki Istructure of the compiler as a frontend
and backend remains, there are important differences. @im pontribution is a systematic description of
AOP-specific issues in compiler construction.

For example, while in a standard compiler the frontend arackdérad need only communicate through an in-
termediate representation and symbol table, in an AOP demgétailed aspect-related information must be
transmitted. In addition, several of the components of suchmpiler €g.the name matcher, pointcut matcher,
intertype declaration weaver and advice weaver) have nvaeut in a traditional compiler. Finally, some
compilation phases, semantic checking for one, are madsanttally more complicated, and new phases are
introduced both to the frontend and backend.

Support for language extensions and optimisation of genetad code: Our abccompiler is intended for use in re-

search, and as such must be able to handle both AOP langusegeale and compiler research. To that end,
our design allows researchers to simply implement new laggextensions and to implement new compiler
analyses and optimisations (indeadcis already being used in this way).

Use of existing tools without modification: As researchers in the compiler field, we felt that it was intgatrfor us

to leverage previous work in the area of compiler toolkitsdailding Java frontends and backends. Thus, an
important contribution of this paper is to show how we conelithe Polyglot framework for extensible Java
frontends [14] with the Soot framework for analysis and wygation of Java [19].

1Readers who are not familiar with AOP languages such as Abpesty wish to read Section 2 before proceeding with the fakisintroduc-

tion.



A substantial part of the design abcs architecture stems from the need to cleanly separateatree phart of
AspectJ programs from the aspect-specific parts in a wayctdrabe used by both the frontend and backend
Java tools. Ours is the first Aspect] compiler to achieve ancéeparation of the implementation of aspect-
oriented features from these underlying tools (in partiguithese tools have not been modified for usatig).

An important consequence of cleanly separating the Asgspedific parts of the implementation from the Java
tools is that this separation provides a clear specificaifdrow Aspect] extends Java.

Finally, a crucial goal in the design abcwas to apply Soot’s existing frameworks for sophisticatedlygses

to aspect-specific optimisations. As these analyses wopuoa Java intermediate representations, the design
allows for weaving (producing pure Java), followed by asaly The weaving process can then be undone so
that a better weave, using analysis results, can be apflted.architecture for an optimising AOP compiler is
another novel result of the developmeniic

In building the compiler, we also made some further contidms concerning the clarification of the language:

Clarification of the AspectJ language definition: When we started thabc project we searched for all relevant lit-
erature defining the AspectJ language. We found that theamtyplete language specification of the AspectJ
language was thajc compiler itself and its associated test suite. Thus, as wigded and implementexbcwe
had to reverse engineer much of the language specification.

This need to reverse engineer was evident even at the gratewehr Theajc grammar is a combination of
a modified LALR(1) Java grammar specification and a hand-@adp-down parser. Thus, one of our first
contributions was to develop a complete LALR(1) grammacHjmation using Polyglot’s grammar extension
mechanism to cleanly separate the Java part of the gramomartfre AspectJ-specific part. This grammar is
part of theabcdistribution.

We also found several other places where the language spicifi needed to be clarified, for example the
scope rules for intertype declarations, the precise mgarfithedeclare parentgonstruct, the scope of name
matching and the rules for matching pointcut expressioitis alternative bindings. These clarifications have
also helped improve thajc compiler as recent releasesaé incorporate many of the clarifications pioneered
in abc

Finally, language clarification has suggested improvedempntation strategies. As an example, we noted that
the AspectJ pointcut language is not as cleanly factoreti@sild be (perhaps unsurprisingly, as it developed

over time). We have developed a regularised pointcut laggtizat better separates orthogonal concerns. This
has led to a simpler specification and implementatiomfig weaving is done for the regularised language, and

AspectJ pointcuts are simply translated into this form).

The structure of this paper is as follows. In Section 2 we jgf@a brief introduction to the most relevant features of
AspectF In Section 3 we briefly summarise our building blocks, Pabygind Soot. Section 4 provides a description
of the architecture ofibc, and how this architecture fits together with our buildingdiis. Section 5 discusses details
of how specific aspect-oriented features have been addrelss8ection 6 we provide a comparison betweendjee
compiler and ouabccompiler. Finally, Section 7 reviews related work and S®st® gives conclusions and future
work.

2 An overview of AspectJ

An AspectJ program consists of two kinds of entities: ordinkava classes araspectswhich are instructions for
injecting code into the classes at specific points and urgesific conditions. Aspects are applied to classes (and
the aspects themselves) by a process knownes/ing an AspectJ compiler reads in the aspects and classes to be
compiled and produces classes in which the aspect code basrjected as specified in the aspects.

To introduce AspectJ’s features, we have chosen a smalession interpreter in Java, to which we will apply
five example aspects. As illustrated in Figure 1(a), moshefitterpreter was generated using the SableCC parser

2We assume that many researchers are not yet familiar witec@3dpreaders with previous knowledge of Aspect] may slsgstection.



generator, and the generated code is in four packages prg¥it lexer, parser, tree nodes, and various tree trdversa
visitors. In addition to the generated code there are twdlgmagrammer-defined Java classéay/Main.java

contains the main method which reads in input, applies thegpand then evaluates the resulting expression tree. The
actual expression evaluation is performed by the methad defined in the classny/Evaluator.java . An
example of running thény interpreter is given in Figure 1(b).

Generated packages:
(must not be directly modified)

lexer/ > java tiny.Main
parser/ Type in a tiny exp:
node/ 3+4*6-7
analysis/ The result of evaluating:
3+4%6-7
User-defined package: is: 20

tiny/Main.java
/Evaluator.java

(a) code base (b) example run

Figure 1:tiny interpreter example

public aspectStyleCheckeK public aspectCountEvalAllocs{
declare warning :
sef(!final !private * *) int allocs;// counter
&& ! withincode(void set*(..) ):
“Set of field outside of a set methog! pointcut mainEval() :
} call(* *.eval(..)) && within (*.Main);
public classValue { i before () : mainEval()
private int value;// a new field { allocs = 03}
public void setValueint v) '
{ value = v;} after () : mainEval()
public int getValue() { System.out.printin(
{ return value;} “x++ Eval allocations: ” + allocs); }
public aspectvalueNodeParent before () : cflow(mainEval()) & call(*. new(..))
declare parents { allocs ++;}
node.NodeextendsValue; '
}
- public aspectExtraPareng
publ!c aspectAddVaIue{ Stringaround() :
private int node.Node.value; executior(String node.AMultFactor.toString())
public void DOQe.Node.setValum([ v) execution(String node.ADivFactor.toString())
{ value =v;} { String normal =proceed);
public int node.Node.getValue() return “(" + normal +)" :
{ return value;} } '
’ }
(a) static features (b) dynamic features

Figure 2: lllustrative AspectJ examples

The AspectJ language can be divided istaticanddynamideatures. Static features are defined and implemented
with respect to the static structure of a program, whereasuaijc features relate to the dynamic trace of a program
execution. Figure 2 shows the five example aspects which plg &pour exampleiny interpreter code base.



2.1 Static Features

Declare Warning. TheStyleChecker aspectin Figure 2 illustrates an interesting use of Asp#otteclare
warning construct. This construct allows the programmer to specify a pattienown as gpointcut and a warning
string. For each place in the program matching the pointcampile-time warning is issued, using the string as
the warning message. In our example we have specified a pothit matches all places where a field is set, and
which are not within a method whose name starts witbt” In fact, the pointcut is a bit more precise than this,
because it will only match sets to non-private, non-finaldel When we compile thény code base with the
StyleChecker  aspect §bc StyleChecker.java */*.java ) several warnings are given, mostly relating
to the generated parser code, for example:

parser/Tokenindex.java:14: Warning --
Set of field outside of a set method.

Declare Parents and Intertype Declarations. When using SableCC (or other tools) to generate compilgss, i
very important not to modify the generated code, so thatritmregenerated without clobbering the user’s changes.
SableCC generates all the classes representing the ASilchastsnode.Node as the root (extendin@bject ), and

a hierarchy of subclasses for other kinds of nodes belode.Node , as indicated by the grammar specification.
This hierarchy is fixed in the generated code and since onddhot edit these generated classes, it is not possible to
add new fields to the nodes. The recommended method is taa@ssealues with nodes using a hash table. However,
using static features of AspectJ there are two ways of adfithds, without touching the generated code, without
resorting to the use of external hash tables, and giving&rantic checking of the added fields.

The aspecValueNodeParent from Figure 2(a) illustrates the Aspeddclare parentgonstruct. In this exam-
ple the programmer defines an ordinary cld&due , to implement the new field and accessor to that field. Then, th
declare parentgonstruct is used to inject the névalue class as a parent of the generatedle.Node class. In
general, theleclare parentgonstruct can be used to introduce nextendsaandimplementselations.

Sometimesitis not possible (or desirable) to add new figldswaethods by injecting new classes into the hierarchy,
and AspectJ provides a general form of injecting new fieldsistructors and methods into classes and interfaces,
calledintertype declarationsr ITDs. The aspedddValue in Figure 2(a) illustrates ITDs for injecting a new field
and two new methods into threde.Node class. The declarations look like normal Java declaratioumsthe name
of the field/constructor/method being defined is prefixedh®/name of the class/interface into which it should be
injected (in our examplaode.Node ). Since AspectJ also allows one to inject new members into tlasses and
interfaces, ITDs can be quite powerful (and tricky to impérncorrectly in a compiler).

2.2 Dynamic Features

The dynamic features of AspectJ are quite different fromstiagéic features. While the static features are merely new
incarnations of old ideas (in particular ITDs are a form ofoglasses), the dynamic features are generally regarded as
the defining characteristic of aspect-orientation. Theydafined with respect to a trace of the program executiors. Thi
trace is comprised of various kinds of observable eventd) ag getting/setting fields, calling methods/construsctor
and executing method/constructor/initialiser bodies.eSehevents may correspond to exactly one instruction (for
example, getting/setting fields), or they may corresporadgmup of instructions (for example, the body of a method).
Each event has a starting point in the trace (just beforegpéas), and an ending point (just after it happens). The
dynamic features of AspectJ allow one to specify a pointguhatch certain events, and then advice (extra code) to
executebefore after or aroundthe matching events. The pointcuts take the same form as thsed withdeclare
warning, but the language is slightly richer because they can depandintime events whereas those used with
declare warningmust be entirely statically evaluated. The events are lysoalled join pointsin the literature on
aspect-oriented programming, because these are pladag guvgram execution where an aspect can join in.

3There is also an analogodsclare errorconstruct.



Advice. The aspecCountEvalAllocs in Figure 2(b) demonstratéeforeandafter advice. The purpose of this
example is to count the number of allocations that occumndythie evaluation of an expression, starting from the call to
eval intheMain class. In this example we define a pointmainEval to specify that theall must be to a method
calledeval , and this call must occwithin theMain class. Then we defingeforeadvice to initialise a counter just
before the call, andfter advice to print out the value of the counter just after thé CEhe tricky part of this aspect

is thebeforeadvice used to increment the counter. The second conjeat{*. new(..))” of this pointcut matches all
constructor call events. The first conjunct restricts thiafoat to those events that occur within the dynamic scope of
a call toeval (i.e. in the time span between the beginning and end of the caljgukecflowconstruct. This is of
particular interest, as matching dfowdepends on runtime context, and in general runtime cheeksaaressary (this

is also the case for other AspectJ pointcuts not covered.here

Around advice. TheExtraParens aspect contains a very simple exampleafundadvice. This example is
intended to slightly modify the output of the pretty printepressions, by inserting parentheses around each factor.
For example if the base program is compiled with this aspsmt (ExtraParens.java */*.java ), the pretty

print of the output in Figure 1(b) would be change®to+ (4 * 6) - 7 ,insteadofd + 4 * 6 - 7 .

The advice declaration in thExtraParens aspect specifies a pointcut to capture the execution of the tw
relevant methods. In the advice body, fireceedconstruct is used to specify that the original method boaykhbe
executed, the parentheses are added to the result, an@thigsult is then returned.

The use ofproceedcan be quite complex — it can be executed many times or nol, &aaked for later execution
in a local class, and arguments can be changed. This raaiesdadvice substantially more complicated thaafore
andafter, as it does not reduce to just injecting advice code, but bange the execution of existing code.

It should also be noted that our advice examples are verylsiamal do not illustrate all features of the language.
In particular, advice may haymrameterghat are bound to runtime values in matching (this may ineohntime type
checks). Readers who wish to know more details of the Aspaetiiage and its applications may wish to consult one
of the growing number of textbooks on the subjecy.[12].

3 Building Blocks

In the following sections, we briefly introduce the buildibigpcks ofabg Polyglot and Soot, focusing on the features
that are most relevant to ttadocdesign.

3.1 Polyglot

Polyglot [14] is an extensible frontend for Java that perfsmll the semantic checks required by the language. Itis
structured as a list of passes that rewrite an AST and buldiary structures such as a symbol table and type system.

The extensibility of Polyglot is achieved in a number of wafolyglot allows a grammar to be specified as an
incremental set of modifications to the existing Java gramaral the tree rewriting portion can be extended without
modifying the base compiler. New AST nodes may be added;ékignd existing nodes and give definitions of the
specific methods required by compiler passes that are rdlevthem. New passes may be added between the existing
passes. In addition, the behaviour of existing nodes irtiagipasses can be modified usihglegate$14], achieving
the same task in Java as intertype declarations do in Asggtcick use of interfaces and factories throughout Polyglo
makes it easy to modify structures such as the type system.

3.2 Soot

Soot [19] is a Java bytecode analysis toolkit based arouadithple IR, a typed, three-address, stack-less code.
Jimple is low-level enough for pointcut matching, in thag granularity of any join point is at least one entire Jimple
statement. It is high-level enough for weaving and easyyaiglin particular, during weaving, we need not worry
about implicit operations on the computation stack, beealloperations are expressed in terms of explicit vargable



Soot can produce Jimple from both bytecode and Java soutlee The source frontendy\va 2JMPLE, makes use
of Polyglot to build an AST and perform frontend checks, amehtgenerates Jimple. As output, Soot generates Java
bytecode. This process includes important optimisationgénerating efficient bytecode [19]; these are necessary
even for today’s JITs. Soot also supports an annotationdvasrk [17] which allows arbitrary tags to be attached to
the code and automatically propagated through all transdtions and all its intermediate representations. We make
extensive use of tags to track information flowing throadpa

4 Architecture

In Section 2 we introduced the static and dynamic languageifes that must be handled by an AspectJ compiler,
and in Section 3 we discussed our basic building blocks,datyor building the frontend and Soot for building the
backend. Of course, the big question is how to fit these mgltlocks together so that in the end, one has a nicely
structured AspectJ compiler that can handle both the statiddynamic features of AspectJ. In this section we address
the design of the architecture, and then in Section 5 we foausow to handle specific language features in more
detail, where the implementation of some language feattrmsscuts several parts of architecture.

Figure 3 shows a high-level view of tlebcarchitecture: the compiler takgava and.class files as input,
and produces woveglass files as output. Animportant point about AspectJ compiletkat the files given to it as
explicit input are considered differently from classeg tir@ found implicitly when the compiler must resolve classe
from the class path. Classes corresponding to the expijgitts are said to beeavable aspects can weave into these
classes, and it is the woven version of these classes tHdiendutput by the compiler. Classes that are not explicitly
input are not weavable.

As shown in Figure 3 we have split the architecture into foajoncomponents, two in the frontend and two in the
backend. Compiler writers will immediately see that thistatecture is different from the usual view of a compiler as
a frontend and a backend connected via an intermediateseytegion.

The first major difference is that the frontend and backernabafare connected via two data structures, the IR of
the program (Java AST) and the Aspectinfo data structure.ifiteresting point here is that in order to use standard
Java compiler tools, we must be able to tease apart the imgpfisipectd program into a standard Java part, represented
as Java ASTs, and an aspect-specific part that capturesth &ky information about aspects and how the aspects
relate to the Java IRs. This process is represented bydparatortbox in Figure 3.

The second major difference between an AspectJ compileaatandard Java compiler is that the backend must
deal with weaving, both the static language featustatic weavinyand the dynamic featureadvice weavingy As
shown in Figure 3 the static weaving is performed in conjiamctvith the code generation of the Jimple IR, and the
advice weaving is performed on the Jimple IR.

In the remainder of this section we visit each of the four mammponents of the architecture, discussing the
relevant details of each component.

4.1 Polyglot-based Frontend

We used Polyglot as the building block for our frontend. Bty allows us to define the AspectJ grammar in a
separate definition file, as a natural extension to the Jaaamar. It turns out that the exercise of specifying a
complete LALR(1) AspectJ grammar had not been done befatksa this is another contribution of our project.

The main issue in the design of the frontend is the large nuwih@ew semantic checks that AspectJ requires (in
addition to those required by pure Java). In particulardibeare parentgonstruct imposes restrictions on the class
hierarchy and the affected children classes (see Sec&pnhile intertype declarations require the implementatf
new scope and visibility rules (see Section 5.3). Furtheemanlike in Java where all semantic checks are performed
in the frontend, when compiling AspectJ programs some cheukst be delayed until after weaving in the backend
(in particular, exception checking, see Section 4.4).

Semantic checking is further complicated by the subtle ddpecies between phases of static weaving and cer-
tain checks. For example, to chedk&clare parentsthe class hierarchy must be available, both for name majchi
(Section 5.1) and for checking validity of hierarchy intemtions. However, disambiguation of class names in method



.class Jjava
\—) v

Polyglot-based frontend
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I
Java
bytecode

Figure 3: High-level overview of the components of #iecompiler

signatures requires the final hierarchy, and so must octerdsclare parentinstructions have been processed.

These complex checks and dependencies between them radliealesign of the frontend. The semantic checks
were implemented by extending certain Polyglot passesaddihg some entirely new passes, in the order dictated
by dependencies between the first phases of weaving andsch&bk structure of the frontend is outlined below in
Figure 4.

[Parse | Extra productions and AST node}

‘Build types, disambiguate inner classes and supertj(pé@w types for aspects and point4

—» | Evaluate patterns and declare parents !

‘Disambiguate signatures \ Advice headers and pointcuts ‘
‘Add members to types \ Add ITD members (o host class ‘
[Disambiguate bodies [ Advice bodies ‘
‘Type check \ Advice and pointcuts ‘

Figure 4: Simplified list of the compiler passes of Polyglotdowabc extends them. The solid boxes on the left
show the original Polyglot passes for pure Java. On the-tightd side, in overlapping boxes, we have indicated which
passes were changed. Finally, the dashed boxes with amaoliesiie where we inserted new passes.

The design of the frontend was successful in separatinga$pem the pure Java checks — we only overrode
14 AST nodes of pure Java in minor ways; everything else wadlkd with new AST nodes and new visitor passes.
In total, the number of passes for semantic checkingbiais 27, compared to 13 in the original Polyglot compiler.
The large number of passes falocis a result of the design goal of having each pass perform améytask to avoid
creating further dependencies between passes.



4.2 Separator

The key to our compiler architecture is the Separator, whjghs the AspectJ AST (with associated type information)
into a pure Java AST and thespectinfostructure to record aspect-specific information. Repectinfancludes all
information that the backend needs from the Polyglot ASThedackend does not use the AST at all, only the Jimple
representation and thespectinfo

We now list the main components of tAspectinfcstructure:

¢ All AspectJ-specific language constructs. For all congsrticat contain Java code, the code is placed into
placeholder methods in the Java AST, andABpectinfaeferences these methods. It is important not to weave
into some methods created by the compiler, so these arefiddnt

¢ An internal representation of the class hierarchy and iolzess relationships.
e A list of weavable classes.

¢ Information about fields and methods whose names have besmmangled, or to which extra arguments have
been added.

e Arepresentation of types, classes and signatures thatcasdu throughout the whole compiler. This represen-
tation is independent of both Polyglot and Soot, and it ptesia bridge for communicating type information
between the two frameworks.

¢ Information about relative precedence between advice.

The separation process runs in roughly four steps, implézdeas a number of Polyglot passes. The four steps of
separation are:

1. Name mangling The names of some intertype declarations must be mangleds@ction 5.3).

2. Aspect methods Code from AspectJ constructs is inserted into pure Javhadst and dummproceedmeth-
ods are generated for proceed callaiound advice.

3. Harvesting. All AspectJ constructs are harvested from the AST and puat diesignated data structures in
Aspectinfo

4. Cleaning. All AspectJ constructs are removed, leaving a pure Java. A&R 2JMPLE sees aspects as plain
Java classes containing the placeholder methods.

4.3 Code Generation and Static Weaving

The AST passed towa 2JMPLE might not correspond to a valid Java program in itself, singey refer to members
to be introduced by intertype declarations. Furthermdreight depend on the class hierarchy being updated by
declare parentsFor these reasons, the translation from Java AST to Jingale cannot happen as one atomic action.

To solve this problem, we take advantage of an existing featfiSoot. In Soot, the translation of both source and
class files to Jimple happens in two stages: one to gener&tdetan, consisting of just the class hierarchy and the
member structure of classes, but without any method botilessecond stage generates the bodies in Jimple.

Figure 5 shows how the static weaving fits in between thesestages. After the skeleton generation, we adjust
the hierarchy according to parent declarations and irgertleclarations. The woven skeleton is then input into the
Soot Jimple body generation. Finally, delegation coderftartype field initialisers is generated.

4.4 Advice Weaving and Postprocessing

Once weaving of static features is complete and Jimple has generated, we weave advice. The structure of the
advice weaver and the final stages of #itebackend is shown in Figure 6.

10
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Figure 5: The two-step process of generating Jimgtggure 6: The structure of the advice weaver and final stages
code while doing static weaving of theabchbackend

.

I

The process consists of two main steps, matching and weésgmgSection 5.4). Matching determines the static
locations §hadowywhere each pointcut may match, and which dynamic checksearessary to determine whether
it matches. Weaving inserts the checks and the advice irtodde.

At the same time as pointcut matching and advice weaving améle certain features that turn out to fit neatly into
the same frameworkper aspects (a construct for creating instances of an asgleatiare sof{for masking checked
exceptions)declare warninganddeclare error One side effect of implementing tlideclare softonstruct is that we
cannot verify that checked exceptions are declared cdyrentil we have dealt with this construct, since it has the
effect of converting checked exceptions into uncheckedgtxans. As a result, exception checking is carried out afte
the advice weaving process, rather than in the frontend asdvix® normal for a Java compiler.

Since one major goal aibcis to implement AspectJ features as efficiently as possitdemake it possible to
perform analyses on the woven code, and use the analysltsrigsthe weaving process to produce improved code.
This is supported througleweaving illustrated in Figure 6. In reweaving, weaving is perfodrance naively to
produce pure Jimple code. The resulting code is then ariilysea pure Java program. The original weaving is
then undone, and the aspects woven again, using informalti@mined in the analysis. This process can be iterated to
improve precision. The upshot of this procedure is that etspgecific analyses (for example, we have described an
analysis forcflow[4]) can leverage existing Java analyses, such as call grapstruction, without needing to make
those aspect-aware.

Finally, abcruns a number of standard Soot optimisations, such as capagation and dead code elimination.
Some of these are extended to add special knowledge altbeuntime library; for example, the intraprocedural
nullness analysis is extended to exploit the fact that ceftactory methods in thabc runtime library never return
null.

5 Implementing Language Features

In the previous section, we have descrilddby giving its general architecture and points of interestdleach of its
components. We now adopt a different viewpoint, and show vemious AspectJ language features are implemented
within this architecture. The features that we focus on laeee implementing AspectJ pattermafne matching the
declare parentsonstructjntertype declarationsand, finally, how the weaving @dviceis implemented.
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5.1 Name Matching

Many AspectJ constructs use patterns to pick out specifisetaor methods to act on. The basic component of these
is the name pattern; this selects classes textually by n&oreinstance, to select all classes in a package nasied
that need support for break labels in a compiler, you miglitevaist.*Loop|| ast.If || ast.Switch This would match,
among others, a class namast.WhileLoop

Finding the set of classes matched by a name pattern comgspmnormal Java name lookup. It follows the same
scope rules, but it looks for all names matching a pattetherahan a single name. To avoid performing this lookup
process every time the name pattern is queried (which capemamany times), these matching sets are explicitly
calculated for each name pattern before they are needed/tipaching operations.

Name patterns need to be evaluated more than once duringlation as they denote different sets of names
in different contexts. Name patterns range over all claBséise class path. However, all uses of patterns can be
reduced to two cases: ranging over all weavable classasgttiie case fadeclare parentsfor example), and ranging
over all classes referred to in the program (this is used tiwmaethod patterns, among other things). All matches
performed in the frontend range over the former domain (abkvclasses), while patterns must be re-evaluated for
use in the backend (after all classes referred to in the prodrave been loaded, and with the final hierarchy from
declare parentin place).

5.2 Declare Parents

The declare parentgonstruct allows an aspect to inject classes into the itdreré hierarchy, and to make classes
implement additional interfaces. Figure 2(a) demonssrateery simple use afeclare parents

The validity of adeclare parentsieclaration involves some constraints on the class hieydatasses can only be
inserted into the hierarchy chain, not completely replaeegarent classes), plus some structural requirementson th
child class (must actually implement the methods of thefate, must contain appropriate constructor calls etdl). A
of these must be checked in the frontend.

The hierarchical constraints are checked indkelare parent®olyglot pass itself. Care must be taken here, as the
validity of declare parentsleclarations might depend on the order in which differematations (or even different
classes matched by the same declaration) are handled. ibfatitk child classes in topological order, starting with
Object , ensures that a unique valid interpretation is found if orists.

For child classes from source, the structural requirememetsaken care of by the normal Java checks, since these
take place after thdeclare parentpass. For classes from class files, the checks must be pedaxplicitly.

All checks are performed in the frontend; the weaverdeclare parentshen modifies the hierarchy in Soot.
Additionally, when a new superclass has been set on a clad$nam a class file, all superclass constructor calls must
be changed to call constructors in the new parent, as thélseaca represented asvokespecial instructions
with the old parent class as explicit receiver class.

5.3 Intertype Declarations

When implementing intertype declarations, the main chakeis that the type-checker must be aware of the new
members that are introduced by aspects. This was a sugiyidiifficult step in the development afbc and in

the process of resolving this problem we defined some precigpe and visibility rules, described below. Thus,

an important contribution of our work is the clear statemehthese rules and their implementation, and careful
consideration of all corner cases. Several improvemerggtwere prompted by this part of the developmenabt.

Populating class types Polyglot includes a pass calledbAMEMBERS that populates class types with their
members. In ouabcextension, intertype declarations add their own type tdths class type during this pass. Note
that this isnotthe same as actual weaving: we manipulate types only, nosABTe weaving of intertype declarations
happens much later, in the static weaver.
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aspectAspect{
static int x3;
. static int y*;
pi‘:]tt":(‘if"aSSA { int A.B.foo() {
classi?: { classC {
it intx> =3;
) ’ int bar(){ return x5 + A this.x!;}
}
} return this .x2 + (new C()).bar() + v;
}
}

Figure 7: Scope rules for intertype methods.

Visibility A type checker for Java must consider both visibility andpgcoules. When dealing with intertype
declarations an extra complication is introduced by the taat visibility is always interpreted from the originagin
aspect. So for example, if we have two aspéctndB, and both contain a declaratipnivate int C.f then there are

in fact two fields introduced il€, and they are only visible from their origin. This is dealthlwby identifying class
members (constructors, fields and methods) that arise fi@s bs subclasses of the corresponding AST nodes that
keep track of the origin of the ITD. The accessibility tesPinlyglot was further overridden to use that origin instead
of the host class of an intertype declaration.

Scope inside intertype declarations The visibility rules are similarly applied to resolve vdria and method
references inside intertype declarations. The envirotifieeian intertype metho@.foo()in an aspecA is built up as
follows: first, we have everything that is in scope ins@@land which is visible fromA. Next, we have the scope &f

Note, however, that it is an error to refer to instance vaeisbf the aspect: as far as the aspect is concerned, the body
of foo is a static context. The AspectJ rules for one intertypeatatibn overriding another are somewhat complex,
and omitted for reasons of space.

This environment (consisting of the visible scope of thetlotass followed by the aspect) is used to disambiguate
uses ofthisandsuperthat may occur in the body dbo: we have to distinguish whether they refer to the host diass
to some local class, or to an aspect. Such disambiguatiohatassbe applied to references that have an impld#
receiver. The example in Figure 7 illustrates this: eacld figls been labelled with a superscript to link declarations
and references.

Because Polyglot is based on the rewriting paradigm, itsy &@implement these rules by introducing appropriate
new AST nodes fothis andsuperin the host class. Furthermore, by subclassing the typewfamments, we can
keep the necessary information about intertype declaratio decide for each variable whether it refers to the host
class or not.

Mangling The visibility rules also imply that names of non-publicdrtype declarations must be mangled prior to
code generation: a private ITD becomes a public member dfdkeclass, but only the originating aspect should know
its name. A subtle issue is that sometimes the mangling legtweveral entities must be coordinated. For example, let
Abe an abstract class aBd concrete class that extenlsNow if we introduce a package-visible abstract metfoad

into A, and an implementation édointo B, both must be mangled to the same name. For this purposefroduced

a new pass that computes equivalence classes of intertyferatéons that must get the same name. A subsequent
pass then carries out the name mangling, renaming bothrdtolas and references.

In Polyglot, this is nicely implemented by storing the relavinformation (about equivalence classes and mangled
names) inside the type for the intertype declaration. héntvery easy to fix up the references as required.

Aspectinfo and code generation Our implementation strategy leaves the code for intertyp#éods as static
methods in the originating aspects. This avoids the usecsfssor methods for accessing members of the aspect scope
(and that is the vantage point for visibility tests). Alsloe tmethod is then considered as part of the aspect for name
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matching, which is the desired behaviour. To illustrate,reteirn to theAddValueexample of Section 2. After the
ASPECTMETHODSpass, the code fagetValuein the AddValueclass will be:

public static getValueb4(final node.Node thi%) {
return this$6.AddValu@value$s;

}

This is then called by a delegating methodNiadethat passes thihis pointer as an argument. Sometimes there is
still a need to generate accessor methods, for examplelifasteclass is nested and there is a reference to an enclosing
class in the intertype method. Accessor methods are alsssaxy for the implementation pfivilegedaspects, which
by definition are able to override all the visibility rulesdacan access any members of any class in the system. Due to
space constraints, we omit a detailed discussion.

5.4 Advice

A piece of advice consists of the pointcut specifying wheshibuld apply, together with some code to be run. The
frontend ofabc constructs a method body with a synthetic name to hold thite cand places the pointcut and the
name of this method in th&spectinfestructure. The job of the backend is then to find the statiatioos in the code
where each pointcut might match (the join point shadows) tarinsert code that will check at runtime whether or not
the pointcut does actually match, and call the method impteing the advice body with the appropriate parameters.

As well as advice that is defined directly in the user's aspedrious forms of synthetic advice are used to
implement features of the AspectJ language sudles/pointcuts declare softand aspects that are only instantiated
conditionally perthisetc). We return to this point after explaining the mechanfdsow normal advice is inserted.

In abg finding where advice might applynatching and inserting calls to that adviceeéaving are done in two
distinct phases; the matcher produces a list of “adviceiegpdns” that is then passed to the weaver. We did this
(rather than immediately inserting code as advice is foorapply) for two reasons. Firstly, there are specific rules of
precedencstating in which order multiple pieces of advice applyinghet same join point should run, and it is most
convenient to weave advice in order of precedence. Unfataipwe cannot simply sort the complete list of advice
before matching, because it is legal to have a cycle in theggience relationship, so long as that cycle is not actually
realised at any particular join point shadow. Having anrimediate list that we can sort before weaving is therefore
helpful. Secondly, as we mentioned in Section 4.4, we wastipportreweavingo produce better runtime code using
analysis results from a first attempt at weaving. Again, tfes@nce of an explicit intermediate list makes this process
easier.

5.4.1 Matching

Pointcuts can only match at specifiin pointsduring the program’s execution. Each join point corresgzdnd static
join point shadown the program. The pointcut matcher first identifies all thie point shadows in the program. For
each shadow, it tests each pointcut to see if it could pggsibltch at that point.

Figure 8(a) shows an example of some Java code and a poifit@mainEval()  pointcut from theCountEvalAllocs
aspect picks out all join points within thdain class whereval() is called, and so in particular the call from within
therun() method is a join point shadow at which theforeadvice in this aspect can apply.

Regularised pointcut language The problem of checking whether a particular pointcut aspkt a given
shadow is made more complicated by the fact that many Aspedticuts check more than one property of a join
point, and that there is a significant amount of overlap betwgointcuts. For example, the point@axecution(int
foo()) picks out join points based on two properties: their typeéetion join points), and the methods their shadows
occur in (only methods with signatuirg foo() are considered). This results in a substantial amount df@hipd work
and makes the matcher unnecessarily complex if implemémi@dtraightforward manner.

As a result, we have defined a modified pointcut language ibdlekend that avoids this problem. Each pointcut
in the regularised language checks exactly one of threesptiep of a join point: the type of the join point, the method
that it occurs in, and the class containing this method.
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public classMain {

public void run() {
Main this;
CountEvalAllocs theAspect;

public classMain {

public void run()

{evalQ} this := @this; // give arg 0 a name
nop; // beginning nop for shadow
/I get the singleton aspect instance
theAspect = CountEvalAllocs.aspectOf();
/I run the before advice
theAspect.befok0();
nop; // jump here if residue fails
I run the original code at the shadow
this.eval();
nop; // ending nop for shadow
return ;

public aspectCountEvalAllocs{

'p.o'intcut mainEval() :
call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

(a) Source Java and AspectJ code (b) Woven Jimple
Figure 8: An example of matching and weaving

The frontend transforms AspectJ pointcuts into this regsga language for use in the backend. In doing so,
certain pointcuts are transformed into a conjunction of en@rimitive pointcuts (for examplesxecution(int foo())
becomeswithinmethod(int foo()) && execution(\where each conjunct only checks one kind of property). As a
further simplification, certain pointcuts are split intcsea. An example of this is the Aspeutithincode(...)pointcut.
This can pick out methods or constructors based on theiagige; in our backend it is replaced by uses of the more
specific pointcutwithinmethod(...)and withinconstructor(...) The use of a simple, orthogonal pointcut language
allows for a cleaner design of the backend.

Alternative pointcut bindings AspectJ allows pointcuts toind certain values from the context of a join point
they match, and pass those values as parameters to advies.b&dr example, the pointcttis(x) bindsx to the
current value ofhis (and fails to match if the current method is static). Sinilalarget(x)bindsx to the receiver of a
join point where this makes sensed.in the case of a call to a non-static method). The varialidedeclared to have
a certain type, and if the appropriate runtime value is ndthaf type (or a subclass), the pointcut also fails to match.

One ambiguity in the existing specification of this featugehe treatment of pointcuts which combine variable
binding and disjunction. Pointcuts suchtass(x) || target(x) will bind x using the left disjunct if possible, and will
try the right disjunct if that fails. We might now want to mégdthis pointcut to also impose an extra checkgsuch
as checking that as well as having its declared type it alpdeiments some interface:

(this(x) || target(x)) && if (x instanceofSerializablée

The natural interpretation of such a pointcut would be toheektracking to allow the second disjunct to be tried
if the first one succeeds but the valuexas later rejected. We have defined such a backtracking sécadat these
pointcuts, implementing it by rewriting all pointcuts tesflinctive normal form to avoid the runtime complexity oflrea
backtracking. Currentlyajc forbids multiple pointcuts within the same expression froimding the same variable,
but it is the intention of th@jc maintainers to implement the semantics we have defined ifuthee.

Dynamic residues Once the matcher has identified that a pointcut might appdyjain point shadow, it remains
to generate some runtime code for that shadow to determie¢hehthe pointcut does actually apply each time the
control flow of the program reaches that shadow. This can finatkin terms of partial evaluation [13]. In some
cases, we will statically know that the pointcut will alwaysply at the shadow, so the corresponding advice body will
be executed unconditionally.

As well as deciding whether an advice body should execut#,at & necessary to gather certain values before
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calling it. All advice bodies run as instance methods in thgeat that defines them, and it is necessary to call the
staticaspectOf method in that aspect to obtain an instance for use as thwveeoé the advice call. We can see an
example of this call in the woven code in Fig. 8(b), p. 15. @kpectOf method itself is automatically generated in
an aspect body when compiling it into a class.

There are a number of features of the pointcut language wiighire runtime checks or the passing of values.
Most important of these are thigis, targetandargspointcuts, which expose, where they exist, the value of tineeat
object instance, the receiver at the join point, and theragnis being passed at the join point. Eacthéd, targetand
argscan be given a variable name as an argument (such a variabtdmdeclared with its type in the pointcut) or a
type. In both cases, a runtime type check is inserted if inoabe statically determined that the types match. If the
variable is name, then the relevant value is exposed to tieeadody.

It is the role of the matcher to establish what checks neectddme at runtime and what information needs to
be gathered, but as described above it does not actuallyuatiche code. Therefore, it records this information in a
structure known as dynamic residugwhich the weaver later processes.

5.4.2 Weaving

The role of the advice weaver is to actually generate thementode for running advice bodies where appropriate. At
this stage, the join point shadows have been identified, iateddf possible advice applications have been computed
for each shadow by the matcher. The weaver must insert codalface and dynamic residues, ensuring that advice
is run in the correct order at each join point.

We use the facilities provided by Soot to make this processnagle as possible. For example, the Soot backend
carries out optimisations such as removimgp instructions and dead code, so our code generation stretegg/not
worry about leaving these in the code it outputs, which matsedesign significantly simpler. In Figure 8(b), we see
the results of weaving before these optimisations are egpli

Another property of Soot that helps the design of the advieawer is that since Jimple is a three-address code
with explicit variable names rather than implicit stackdtions, we can simply refer to a variable at the place it is
needed, rather than having to make sure that its value iablabn the stack. This is particularly useful when passing
values to advice bodies.

Preparing join point shadows One important problem is that we need to ensure that mulpiglees of advice
applying at the same join point are run in the correct ordepdrticularafter throwingadvice, a specific form adfter
advice which only runs if an exception is thrown at the joinnponeeds careful treatment to ensure that it interacts
correctly with the existing exception behaviour of the jpimint and of other advice applying at it. We also need to
make sure that jumps are fixed up correctly; statements thath to the beginning of a join point shadow should now
branch to the first piece of advice that might run at that sha@ds not possible for an existing statement to branch
to the middle of a shadow).

Our approach is to first insembpstatements at the beginning and end of each shadow, andtheate advice in
an “inside-out” order — that idyeforeadvice that should run “closest” to the original code of thie point is woven
first. The idea is that at each stage, tiap statements enclose the entire join point including advieg has been
inserted so far, and that the next piece of advice to be wavrserted just inside theopstatements — immediately
after the beginning one fdreforeadvice, and immediately before the ending onedfier advice. This keeps the
weaving process as simple and as modular as possible — thedane for inserting theop statements takes care
to ensure that jumps and exception handling ranges arectigrreodified, and the subsequent weaving process can
largely ignore this. For example, if an exception range covee original code at the shadow, it should cover the
entire join point after weaving, but if it has been introdd ey after throwingadvice, it should only cover the original
code and any advice that was woven beforedfter throwingadvice; advice that is woven afterwards should not be
within the exception range. Thwpstatements allow us to tell the difference, because in thedocase they will be
included in the exception range, but in the latter case théyat.

An added complication is that certain types of join pointdshas do not fit nicely into the single-entry single-exit
(ignoring exceptions) model implied by the above approdedr. example, an execution join point might terminate
at any one of a number oéturn statements. Therefore, we first transform the code wheressacy, replacing these
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return statements with jumps to a singieturn at the end of the body, first storing the value to be returnedlotal
variable if necessary.

Similarly, thepreinitialisationandinitialisation join points can span multiple constructors if one constucalls
another in the same class usihgs(...) We therefore inline such calls to ensure that the code fcin shadow is fully
contained within a single method.

Inserting advice Each type of advicebfore after andaround has its own weaver, which inserts code in the
appropriate position of the join point shadow. As mentioeadier,beforeadvice goes immediately after the beginning
nop of the shadow (an example of this can be seen in Figure 8(ih)pand all forms offter advice go immediately
before the ending one. There are three formaftdr advice: after returningadvice runs on normal termination and
is dual tobeforeadvice, whileafter throwingis implemented as an exception handler. Finally &fier advice, which
runs in both cases, is implemented by weaving ladtér returningandafter throwing

A novel strategy described in [11] is used fooundadvice. The key detail for the purposes of this paper is that
it lifts all the code found between the twmp statements at the time of weaving into a separate metholdcieg it
with code to implement the advice, which can itself call baxthe original code.

Once we have identified where the advice should go, the negtisto weave code for the dynamic residue. We
assume that any dynamic residue could fail; this may leanreestiead code around in the case of residues that cannot,
but this is tidied up later by the Soot backend. Thus, eaclalyoiresidue is woven with two exit points; one which
runs the advice body and one which skips it. In Figure 8(l®nttplabelled as “Jump here if residue fails” is the exit
point for failure (which is never jumped to in this examplahd the call to the advice body immediately after is the
exit point for success.

5.4.3 Synthetic advice

Certain constructs in the AspectJ language other than @dhdee pointcuts associated with them, and require code
to be run at the join points picked out by these pointcuts.example, users afeclare sofspecify a pointcut where
certain exceptions should be softened, which requirestingecode at the relevant join point shadows to catch the
exception, wrap it up as @oftExceptiomnd throw this new exception.

Of course, this is very similar to what is required to implernadvice declarations; the main difference is merely
that the code to be inserted is not a call to an advice bodg. atural to use the same implementation strategy for
such constructs, and indeed the frontendloé transforms them into “synthetic” advice declarations tqbecessed
along with the normal pieces of advice.

The final constructs that the advice weaver deals wittdartare warninganddeclare error These also specify
pointcuts, but no code is inserted at the relevant join gothey merely cause the compiler to emit warnings or errors
if any such join points are found. Since they must be evatlatecompile-time, it is an error to specify a pointcut
which would require runtime code to check whether it appbedot. Inabcthese constructs are also treated as
synthetic advice declarations, but instead of generatidgn@amic residue for the code weaving phase, a warning or
error is emitted as appropriate.

6 Comparison with ajc

ajc is the original compiler for the AspectJ language, and it waiten by the language’s designers. It builds on a
modified version of the Eclipse Java compiler, while the leackmakes use of a customised version of BCEL. The
design goals oéjc are quite different from those @tbc it aims to be a production compiler, with very short compile
times and full integration with the Eclipse IDE. More infoation aboutajc, including a detailed description of its
weaver, can be found in [8]. By contraahcs overriding design goals are extensibility and optinimatas well as

a complete separation from the components it builds on. itnstbction, we make a detailed comparison between the
architecture ofjc andabg, in particular examining where the different design goetstb different design decisions.
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6.1 Separation from components

To examine the wagjc andabc use their respective building blocks, we first measured tige in lines of code,
making a distinction between the frontend and backend. Vkeadl size ofajc andabcare comparable, as shown in
the following table. These numbers were obtained in coasgatt with the authors ddjc, using the SLOCcount tool:

| [ajc [abc |
frontend || 10,197| 16,444
backend|| 23,938| 17,397
total 34,135| 33,841

At first glance it appears thajc's frontend is much smaller than that abc As we shall see shortly, this is
achieved at the cost of making numerous changes in the sotidava compiler it builds on — and these changes
are not listed here. Furthermora)c uses Polyglot, which encourages the use of many tiny classgésequires a
fair amount of boilerplate for visitors and factories. Anhet notable point in the above table is the small size of the
backend ofabg which performs the most complex part of the compilationcess (weaving). This is explained by
the use of a clean intermediate representation, Jimplectwhe present in more detail below in Section 6.3), as well
as the rich set of analyses available in the Soot framewoskntW examine in some detail how wajc andabcare
separated from the components that they build on.

Separation from base compiler: ajc. ajc builds on the Eclipse Java compiler. This compiler has begn w
ten for speed: for example, it eschews the use of Java’'sctiolieclasses completely, in favour of lower-level data
structures. It also uses dispatch on integer constantsaufaf inheritance whenever appropriate.

Unfortunately, the architecture of the Eclipse compilepli@s thatajc needs its own copy of the source tree of
that compiler, to which local changes have been applied.s@lthanges are by no means trivial: 44 Java files are
changed, and there are at least 119 source locations whareitsohanges are made. Furthermore, the grammar from
which the Eclipse parser is generated has been modified. dtotcpts, the new parser simply reads in a string of
“pseudo-tokens” that are then parsed by hand (using a tagr@arser) in the relevant semantic actions.

The 119 changes that are made to the Java source are by notmgahd-or example, the class that implements
Java’s scope rules needs to be changed in 8 places. It isdeechsuch changes to the Eclipse source tree that it can
be fairly painful to mergajc with the latest version of the Eclipse compiler.

Separation from base compiler: abc. By contrastabcdoes not require any changes to the source of its base
compiler, which is Polyglot. Polyglot has been carefullgigreered to be extensible, and indedxtis just another
Polyglot extension. The changes to the scope rules areddbglintroducing a new type for environments and a new
type system. These are implemented as simple extensione cbtresponding classes in Polyglot. Itis thus very easy
to upgrade to new versions of Polyglot, even when substaitténges are made to the base compiler.

There are 14 types of AST node in Polyglot where it is necgdsaoverride some small part of the behaviour.
This is necessary, for example, becattis has a different semantics in Aspectd when it occurs insidiatentype
declaration. However, since Polyglot has been designetlaw ahanges of this nature to be made by subclassing,
rather than by changing the source of Polyglot itself, naaextork is required when updating to a new version of
Polyglot.

Finally, as we have described earliahc provides a clean LALR(1) grammar, presented in a moduldridas
thanks to Polyglot's parser generator, which allows a nearation between the Java grammar and that of an exten-
sion such as AspectJ.

Separation from bytecode manipulation: ajc. ajc uses BCEL, a library for directly manipulating bytecode,
in order to perform weaving and code generation. As in the cdshe base compiler, however, a special version of
this library is maintained as part of tlagc source tree. Originally this was regularly synchronisethwie BCEL
distribution, using a patch file of about 300 lines. The splésed version is now developed as parag, as BCEL is

no longer actively maintained. The modified BCEL consist2P259 lines of code.
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Separation from bytecode manipulation: abc. abcis completely separate from the Soot transformation and
code generation framework; no changes to Soot are requinatsaever.

We conclude thatbcis the first AspectJ compiler to achieve a clean-cut semardietween the components
it builds on. It seems likely that it will be possible to pohetideas that helped achieve this to extending other
programming languages with aspect-oriented features.

6.2 Compiletime

Itis natural to enquire what the impact of using aspects ihenime taken to compile a program: an AspectJ compiler
does a lot more work than a pure Java compiler. To assesss$his,iwe decided to compare four different compilers:
normalajc, ajc plus an optimisation pass of Soot over its out@jt ¢+ soof), abcwith all optimisations turned offabc
-00), andabcwith its default intraprocedural optimisatiore). We measured compile times for seven benchmarks
from [7], as shown in Table I. Our experiments were done ona 812GHz Xeon with 4BB RAM running Linux
with a 2.6.8 kernel. We compiled using abc 1.0.1, soot 2&d].2.1 and javac 1.4.2.

| benchmark]| sloc| ajc | ajc+soot| abc-O0| abc] javac |

bean|| 126 | 3.59 6.03 5.27| 5.37
bean-javal| 109 | 2.83 4.87 453| 4.63| 1.93
figure 94 | 3.39 5.33 449 | 4.76
figure-java 98 | 2.82 4.58 3.90| 4.36| 2.03
nullcheck || 1487 | 4.92 15.40 15.56| 17.25
nullcheck-java|| 1551 | 3.33 9.10 11.49| 12.19| 2.38

productlines|| 715 4.59 9.50 9.10| 10.15
authorization|| 685 3.24 7.37 8.02| 9.35
DCM || 1668 | 5.49 22.09 20.88| 24.60
LoD || 1586 | 7.10 58.18 29.46| 42.83

Table I: Compile times usingjc, abcandjavac(seconds)

The first three AspectJ benchmarks (bean,figure,nullchea¥@ Java equivalents, where the weaving has been
performed by hand (bean-java,figure-java,nulicheckjja¥a expected, aspect weaving has a significant impact on
compile times. The main reason is that an AspectJ compikisito make a pass over all generated code to identify
shadows and possibly weave in advice. It may be possiblertaicsuch a pass, for example by determining from
information in the constant pool that no pointcut can matdide a given class. We plan to investigate such ways of
reducing the extra cost of aspect weaving in future work.

The last four benchmarks make heavy use of aspects so tieare hand-woven Java equivalents. The productlines
benchmark makes heavy use of inter-type declarationsewtnd others use mostly advice. Overall, the compile times
indicate thatbcis significantly slower thaajc. This is no surprise, asbcs code has not been tuned in any way for
compile time performance, whereas short compile timesrmaexgplicit design goal foajc. The nullcheck benchmark
is typical: the difference betweeabcandajc for programs of a few thousand lines is usually a factor betw&and
4. For examples wher@bcdoes a lot of optimisation, such as LoD, the gap can be a fat&rFor very large inputs,
such asabccompiling itself, the difference can be a factor of 14.

The compile times ofbcreflect the cost of its powerful optimisation framework. larficular, an appropriate
comparison is not witkajc (which lacks such optimisation capabilities), but watjec + soot. This comparison shows
that the compile times adbcandajc + soot are very similar, which is encouraging.

It is furthermore pleasing that a research compiler suchbesan cope with very sizeable examples (such as
compiling itself); we believe that one natural useabtwould be for optimised builds of programs whose day-to-day
development is carried out witjc.
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6.3 Weaving into Jimple (abc) versus weaving into bytecode (ajc)

We illustrate the advantage of weaving into the three-agidignple representation (@scdoes) compared to weaving
directly into bytecode (aajc does) with a simple example of weaving a piece of advice ledfer call to methodar

in the Java code shown in Figure 9(a). The results of weavitthis code both directly on bytecode and through
Jimple are shown in Figure 9(b)-(d). In all cases, the irtstons inserted in weaving are shown in boldface.

public int f(int,int,int)
public int f(int x,int y,int z) { Foo this;
int x, y, z, $i0;
, return bar(x, y, z); A theAspect;
(a) base Java code this = @this;
X = @parameter0;

public int f(int x,int y,int z) y = @parameterl,;
0: aload_O z = @parameter2;
1: iload_1 theAspect = A aspectOf ();
2: iload_2 t heAspect . bef or e$0(t hi s);
3: iload_3 $i0 = this.bar(x, vy, z);
4 istore % return $i0;
6: istore %
8 istore % (c) weaving into Jimplegbo)
10: astore %W
12: invokestatic public int f(int x,int y,int z)

A aspectOf () LA 0: invokestatic A aspectOf ()LA
15: aload %W 3: aload_0
17: invokevirtual 4: invokevirtual

A. aj c$bef or e$A$124 (LFoo; )V A. before$0 (LFoo;)V
20: al oad % 7: aload_O
22: iload % 8: iload_1
24: iload % 9: iload_2
26: iload % 10: iload 3
28: invokevirtual Foo.bar (Il 11: invokevirtual Foo.bar (Il
31: ireturn 14: ireturn

(b) direct weaving into bytecodej) (d) bytecode generated from Jimpleb€)

Figure 9: Weaving into bytecode versus weaving into Jimple

Figure 9(b) shows the bytecode for the method after the odté before advice has been wovendjy. Note
that of the inserted bytecodes, only those as offsets 12gfwra7 implement the lookup of the appropriate aspect and
the call to the advice body. All of the remaining bytecodesstack fix-up code that must be generated to fix up the
implicit bytecode computation stack.

Figure 9(c) shows the Jimple code for the same method afteralhto the before advice has been woveraby.
The key difference is that Jimple does not use an implicit potation stack. Instead, all values are denoted using
explicit variables. Prior to weaving, the Jimple code israfigure 9(c), but without the three lines in boldface. To
weave,abc needs only declare a Jimple variable, then insert the tweslin lookup the aspect and call the before
advice. No additional code to fix up any implicit stack is negd

Figure 9(d) shows the bytecode that Soot generates fromrtipelcode from Figure 9(c). This bytecode has the
same effect as thagjc-generated code in Figure 9(b), but it is significantly sevdllecause of Soot’s standard backend
optimisations. In addition, it uses only three local valéshcompared to seven required by #iegenerated code. We
have observed that, even with modern JITs which perfornstegallocation, the excessive number of local variables
required when weaving directly into bytecode has a sigmifiocggative impact on the performance of the woven code.

6.4 Using Soot Optimisations in Weaving

The use of Soot as a backend édxcenables it to leverage Soot’s existing optimisation pasgsisprove the generated
code. This simplifies the design of the weaver (see Sectb2) but also enables aspect-specific optimisations that
would be difficult or impossible to apply directly during weag. In these cases, the Java optimisations are typically
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augmented with AspectJ-specific information.

For example, Aspectd makes a special variable nattmisdoinPointavailable in advice bodies. This variable
contains various reflective information about the join pthat must be gathered at runtime and is relatively expensiv
to construct, so bothbcandajc implement “lazy” initialisation for this variable, so thiais only constructed when it
will really be needed by an advice body, but that it is neverstaucted more than once even if more than one piece of
advice applies at a join point. This is done by first settirgy\hriable taull, then initialising it with the proper value
just before advice is called, but only if it still containall.

In ajc, the implementation does not work if there is any around @it the join point (for technical reasons),
and it is special-cased to avoid the unnecessary lazinéissré is only one piece of advice at the join point.alig,
the lazy initialisation is used in all cases, and a subsaqudness analysis is used to eliminate the overhead of the
laziness in most cases (including the one where there isamdypiece of advice). The analysis is a standard Java one,
which has been given the extra information that the Asperttime library method which constructs ttesJoinPoint
object can never retunmull. Thus, the implementation is simpler and more robust thaajthversion.

6.5 Performance of object code

It is beyond the scope of the present paper to do a detailega&ason of the efficiency of code generatedajyand
abc Because optimisations are an explicit design goalsf it is important that such experiments are thorough and
realistic. In a companion paper [4], we provide a detailezbaot of the most important optimisationsabc and of
their effect on run times. The first of these is an improvedi@ngentation ofaround advice, giving a 6-fold speedup
of on some benchmarks. The second is a set of intraprocadyedvements taflow. Compared to version 1.2 of
ajc, these yield improvements of 23; and some of these optimisations have now been incorponatedijc 1.2.1.
Finally, we have implemented an interprocedural analgsmpletely eliminate the cost oflow, and this can lead

to improvements of up to a 100-fold ovajc 1.2.1.

7 Related work

In the previous section we have provided a detailed compakistween thajc AspectJ compiler andbc The general
strategy of weaving dynamic features in AspectJ, leavintpdyic residues where needed, is nicely explained in terms
of partial evaluation in [13]. AspectJ is by no means the @dyect-oriented language, however, and in the remainder
of this section, we give a quick overview of the most impotr&ternatives and their implementation strategies.

AspectC++is an extension of C++ with aspects, which provides poistamid advice, but there is no support for
advanced static weaving features suckedare parent$9]. Itis implemented as a source-to-source transformer. A
explained earlier, we believe much is to be gained from wepeh an appropriate intermediate representation - not
only the ability to weave binaries, but also to simplify theplementation of the weaver.

AspectWerkis a framework for the application of aspects to Java prograhie instructions to the weaver can
be given in a variety of meta-notations, including XML andald.5 attributes. The AspectWerkz framework is of a
highly dynamic nature, allowing aspects to be enabled asabtttd at run-time. This is achieved via a mechanism
akin to the observer pattern: each piece of advice becomiesl @klistener, while joinpoints generate events to notify
the advice. In his paper on the implementation of Aspect@/f8k Jonas Bonér claims the overheads are negligible.
To assess that claim, we translated a few benchmarks fromtfyAspectWerkz, in particular a variant Bigure and
of NullCheck We found that the code produced by AspectWerkZgure runs 1000% slower than that produced by
abc andNullCheckruns 600% slower — even when using tifline weavindeature of AspectWerkz, which performs
weaving at compile-time instead of load-time. Similar afee-style implementation techniques are employed in Eos
(an aspect-oriented extension to C#) [18] and JAC (a framlefay distributed aspect-oriented programming) [16].
AspectWerkz aims for load-time weaving, and thus the efficyeof its weaver needs to be balanced with the efficiency
of the generated code.

JBoss AOHs an aspect oriented framework similar to AspectWerkz,ibist more targeted towards the JBoss
Application Server. The main implementation technique fsaanework called Javassist [6] for writing bytecode
translators. Javassist has been carefully honed to prafticeent translators, again with a view towards load-time
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weaving. By contrast, our use of Soot was motivated by th@elés produce efficient object code, while the time
taken by the weaver itself is less important.

Neither AspectWerkz nor JBoss AOP appears to implementebe bf static checking afforded to us by the
use of Polyglot: again this is motivated by the desire to poedefficient translators. Indeed, AspectWerkz lacks
certain features of AspectJ that require more transfoonati checking than others. In particular it lacks initiatisn
joinpoints, exception softening, precedence declaratamd parents declarations. It also lacks the ability toeissu
compile-time warnings and errors based on pointcut magchin

8 Conclusions and Future Work

We have presented the design and implementation dcdiieé\spect] compiler, building upon two existing compiler
toolkits, Polyglot and Sootabcis a complete implementation of the AspectJ language, wbichbe used as an
alternative compiler for AspectJ applications, or as a Wwerich for language extensions and compiler optimisations.

Our principal contribution is to show how the architectuf@bcwas built around the Polyglot and Soot building
blocks. This demonstrates how the AspectJ-specific infaomaan be cleanly separated from the Java part (using
the Aspectinfostructure), enabling the use of Polyglot and Soot as Java. tdtneabc compiler is the first AspectJ
compiler to build on existing compiler tools without modétaon.

Building upon such powerful tools has had many benefits. Teaf Polyglot as a frontend allowed a clean
specification of the AspectJ grammar as an extension of treegtammar, while providing mechanisms to implement
the complex semantic checks required for AspectJ. Soatipldiintermediate representation allowed abeweaver
to be simpler and produce more efficient object code. Sootmisvides a number of built-in optimisations to clean
up woven code, and provides the opportunity to implemeneashspecific optimisations in future. The price for the
use of these tools is a compile-time performance penaltyvanplan to investigate ways of reducing this in future
work.

In seeking a clean implementation of AspectJ as an extens$itava, we have also clarified the AspectJ semantics,
which has had a beneficial effect not justaticbut also on thejc compiler.

Another main contribution was to show, in some detail, howimplemented the aspect-specific parts of our
compiler, in particular how we handle name matchingdeelare parentsonstruct, intertype declarations and advice
matching and weaving. We believe that these implement@&sres are relevant not just to AspectJ, but to compilers
for other aspect-oriented languages, by highlighting sseés that arise in the implementation of such languages. In
particular, the problems of ordering semantic checkingsphdn the presence of hierarchy introductions, determinin
and implementing scope rules for intertype declaratiomsd@signing an appropriate intermediate representation fo
advice matching are all important in the development of ngmeat-oriented compilers.

Finally, abcincorporates a novel strategy for enabling painless opétion of aspect-oriented constructs. This is
achieved by allowing the weaving process to be repeatethasmaively woven code can be analysed to permit more
precise weaving in subsequent passes. This is crucialingckbme of the performance issues inherent in aspect-
oriented programming.

The abc group found the project of building the compiler tekeeptionally fun, challenging and educational. We
have found that thabcarchitecture does meet our original goals of extensihdlitg optimisation — we have recently
shown how to usabcto implement several language extensions [3] and we haeedaieeloped and implemented
several optimisations [4]. Several other research groupsleeady usingbcand we hope thabcwill continue to
be a research platform for further work on extending and dbimgpaspect-oriented languages. Our group is actively
pursuing more optimisation opportunities, and also newglage extensions that require more sophisticated static
analyses.
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