
CPSC 411, Spring 2005 – Quiz1. Page 1 of 6

CPSC 411, Spring 2005 – Quiz 2

Name: __ Q1: Q4:

 Q2: Q5:

 Q3:

 TOTAL:

Problem 1 [20 points]

In the MJ compiler, name binding and type checking are done separately by the BindNames and
CheckTypes visitors. But there are two notable exceptions where name binding and type checking
are combined.

What are the exceptions? Explain why name binding and type checking are combined in these
cases. Be concrete and specific about the issue, and provide an example that illustrates your point.

CPSC 411, Spring 2005 – Quiz1. Page 2 of 6

Problem 2 [20 points]
Earlier in the semester we described code generation as a single pass (visitor) over the AST. But
in the past couple of weeks we learned that a real code generator is more complex.

Describe the structure of code generation and emitting, from after type checking, up through
writing the code to a file. What are the passes? What are the key data structures (objects). Give a
brief (1-2 sentences) description of each pass and each kind of data structure.

CPSC 411, Spring 2005 – Quiz1. Page 3 of 6

Problem 3 [20 points]
For this question, assume that we are talking about pointcuts and advice, as they appear in
AspectJ, or the Mini AspectJ subset we are developing.

Define each of the following concepts. Be sure that your definitions make both the differences
and the connections between the concepts clear. If you choose, you can draw a simple diagram to
help show those differences and connections.

join point

pointcut

advice

join point shadow

advice implementation method

CPSC 411, Spring 2005 – Quiz1. Page 4 of 6

Problem 4 [20 Points]
Consider the following class. In the space at the right, show Java byte codes for the body of each
methods.

class Point {

 int x, y;

 int mumble(int a, int b) {

 return 2 * a + b;

 }

 int foo(int a) {

 return bar(a);

 }

 int bar(int a) {

 ... you don't need to ...

 ... write code for bar ...

 }

 int getX() {

 return x;

 }

}

CPSC 411, Spring 2005 – Quiz1. Page 5 of 6

Problem 5 [20 Points]

In this problem you will consider byte-code level weaving of calls to advice helper methods.
Assume that:

- your weaver only has byte code to operate on (no source code),

- that join point shadow matching has already been implemented,

- that advice helper methods like those used in the Mini Java compiler have been generated

- that the other parts of the runtime architecture, including the aspectOf method have also
been generated

So all you have to concern yourself with is how to modify the code at a join point shadow so
that the advice helper method is called properly, and the surrounding code also continues to
work properly.

In particular, we have a sequence of byte codes, in which there is a call to the m method of Foo,
which takes three arguments; and we have before advice that applies at this shadow. The
signature of the helper method is “A/before$1()V”.

Show what your weaver would have to convert the following byte code sequence to, in order to
properly call the advice helper method.

 .

 .

 invokevirtual Foo/m(I,I,I)V

 .

 .

CPSC 411, Spring 2005 – Quiz1. Page 6 of 6

Now consider a case we have not yet implemented, where the advice takes parameter – in
particular the arguments to the method m. So the source for the advice might look like:

after(int a, int b, int c): call(void Foo.m(int)) && args(a, b, c) { …}

and the advice implementation method would have a different signature A/after$2(I,I,I)V.

Show the bytecodes your weaver would have to produce to properly call this advice.

 .

 .

 .

 invokevirtual Foo/m(I,I,I)/V

 .

 .

	CPSC 411, Spring 2005 – Quiz 2
	Problem 1 [20 points]
	 Problem 2 [20 points]
	 Problem 3 [20 points]
	 Problem 4 [20 Points]
	 Problem 5 [20 Points]

