

CS 411 Final
April 18th, 2005

Exam number:

Student Name:

CPSC Login Username:

P1: of 10 P5: of 15

P2: of 10 P6: of 15

P3: of 10 P7: of 15

P4: of 25

READ THIS CAREFULLY BEFORE PROCEEDING
DO NOT TURN THE PAGE UNTIL WE TELL YOU TO DO SO

CAUTION -- Candidates suspected of any of the following, or similar, dishonest
practices will be immediately dismissed from the examination and will be liable to
further disciplinary action:

a) Making use of any books, papers or memoranda.

b) Speaking or communicating with other candidates.

c) Purposely exposing written papers to the view of other candidates. The plea of
accident or forgetfulness will not be received.

Instructions

1. Each candidate should be prepared to produce his/her student-ID.

2. READ AND OBSERVE THE FOLLOWING RULES:

- No candidate will be permitted to ask questions of the invigilators except in
case of supposed errors or ambiguities in exam questions.

- No candidate will be permitted to enter the examination room after the
expiration of one half hour, or to leave during the first half hour of the
examination.

- No candidate shall be permitted to leave during the last half hour of the
examination. Please remain in your seat until your paper has been collected.

- Smoking is not permitted during examinations.

3. You have 2 hours to complete this exam.

4. Give concise answers. Long answers will be looked down upon with disregard -
you will get points deducted for fluff. Put all your answers on the exam. Do any
rough work on the back of the exam pages. All rough work must be handed in.

-1-

1) Compiler Architecture (10 points)

Draw a diagram of the standard architecture of a compiler. Label each element of
the architecture with the name of 1 class in the Mini AspectJ compiler that serves
to implement that element.

-2-

2) AST Structure (10 points)
This problem has two parts, which you will find on the next two pages.

In this problem you will show the abstract syntax tree (AST) and the AST class
hierarchy for the pointcut sub-language of your AspectJ extension to the Mini-
Java compiler. The design you show should be for the following language of
pointcuts:

<pointcut> ::= call(<method signature>)
 execution(<method signature>)
 get(<field signature>)
 set(<field signature>)
 within(<type pattern>)
 cflow(<pointcut>)
 cflowbelow(<pointcut>)
 this(<variable name>)
 target(<variable name>)
 args(<variable name>..)
 <pointcut> && <pointcut>
 <pointcut> || <pointcut>
 ! <pointcut>

-3-

(A) Show the AST class hierarchy you would use (or did use in your compiler) to
support the above grammar. Include enough classes in your hierarchy so that
you get all the way down to strings or other primitive tokens. To save space, you
can leave FieldSignature, set, cflowbelow, || and ! out of the actual drawing.

-4-

(B) Show the AST for the following pointcut expression. Use syntax similar to
what toLongString returns.

within(Foo) && call(void Point.setX(int)) && this(o)

-5-

3) Code Generation (10 points)

Consider the following class. In the space at the right, show Java byte codes for
the body of each method. You should assume that getY and setY exist, but you
don’t need to show the code for them.

class Point {

 int x, y;
 Point buddy;

 int getX() {
 return x;
 }

 void setX(int nx) {
 x = nx;
 }

 void foo() {
 buddy.setX(getX());
 buddy.setY(getY());
 }
}

-6-

4) Phases of Compilation (25 points)

For the following typical phases of compilation, explain what each phase does
and why that is important. In each case, use a simple concrete example to help
make your answer clear.

Scanning and Parsing

Name Binding

-7-

Type Checking

Resource Allocation

-8-

Code Generation

Optimization

Emitting

-9-

5) Compiling Pointcuts and Advice [15 points]
For this question, assume that we are talking about pointcuts and advice, as they
appear in AspectJ, or the Mini AspectJ subset.

Define each of the following concepts. Be sure that your definitions make both
the differences and the connections between the concepts clear. If you choose,
you can use the next page to draw a simple diagram to help show those
differences and connections.

join point

pointcut

advice

join point shadow

advice implementation method

-10-

-11-

6) Using AspectJ to Write a Compiler (15 points)

At the beginning of the semester, we hoped to be able to use AspectJ in the
actual MAJ compiler implementation. Unfortunately, we never got a chance to do
that, because the AspectJ 5 implementation was delayed.

Nonetheless, you should have some good ideas about how using AspectJ in your
compiler would have improved the architecture – made it more modular, more
elegant etc.

Describe 3 specific examples of how you could use AspectJ to improve the MAJ
compiler. (Either the basic one we gave you, or the one you handed in as your
final project). You do not necessarily need to write code, but do be specific as to
exactly what would be re-implemented using aspects. You may use any AspectJ
features you like.

-12-

-13-

7) Byte Code Advice Weaving (15 points)

Sally and Ben took 411 before graduating, and now they want to use AOP
pointcuts and advice in a project at their company. But their company uses its
own special Java like language – called Peet’s – so they cannot use AspectJ or
any of its variants.

So they have decided to integrate pointcuts and advice into Peet’s. They call
their new language Forte. To make Forte most useful, they would like to provide
byte code weaving. That is, they want to compile code with advice declarations in
it into byte codes first, write that out to files, and then later be able to weave
those files with ordinary files containing byte code for classes. This means they
can separately compile files with advice and ordinary classes, and then right
before loading, weave them together.

Sally and Ben realize that the first step in doing this is to simply extend the Peet’s
compiler to compile advice into byte codes. This involves simply parsing advice
declarations with pointcuts, converting the advice to helper methods, and then
storing somewhere in the file the associations that say that the helper methods
should be called before/after (ignore around) the join points matched by the
pointcuts. (Basically the allAdvice list for the file.) This simple extension to the
Peet’s compiler lets them write out byte code files with advice in them.

But now comes the harder part. They must build a weaver that weaves the byte
codes and writes out new woven byte code files. Fortunately, the byte codes for
Peet’s look exactly like Java byte codes!

Describe the architecture of the byte code weaver Sally and Ben must build. For
each element of the architecture, describe the salient points that must be
handled. Your answer need not be an essay. It can just be a list of the key points,
in a coherent order, perhaps supplemented with figures and small amounts of
code. You will be graded on coverage of the key issues, as well as on clarity of
the overall answer.

-14-

-15-

-16-

	
	
	
	CS 411 Final April 18th, 2005
	1) Compiler Architecture (10 points)
	2) AST Structure (10 points)
	3) Code Generation (10 points)
	4) Phases of Compilation (25 points)
	5) Compiling Pointcuts and Advice [15 points]
	6) Using AspectJ to Write a Compiler (15 points)
	7) Byte Code Advice Weaving (15 points)

