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ABSTRACT

In recent times, collaborative filtering based Recommender
Systems (RS) have become extremely popular. While re-
search in recommender systems has mostly focused on im-
proving the accuracy of recommendations, in this paper, we
look at the “flip” side of a RS. That is, instead of improving
existing recommender algorithms, we ask whether we can
use an existing operational RS to launch a targeted mar-
keting campaign. To this end, we propose a novel problem
called RECMAX that aims to select a set of “seed” users for
a marketing campaign for a new product, such that if they
endorse the product by providing relatively high ratings, the
number of other users to whom the product is recommended
by the underlying RS algorithm is maximum. We moti-
vate RECMAX with real world applications. We show that
seeding can make a substantial difference, if done carefully.
We prove that RECMAX is not only NP-hard to solve opti-
mally, it is NP-hard to even approximate within any reason-
able factor. Given this hardness, we explore several natural
heuristics on 3 real world datasets — Movielens, Yahoo! Mu-
sic and Jester Joke and report our findings. We show that
even though RECMAX is hard to approximate, simple nat-
ural heuristics may provide impressive gains, for targeted
marketing using RS.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms: Algorithms, Theory, Experimentation.
Keywords: Recommender Systems, Collaborative Filter-
ing, Targeted Marketing, Seed Set Selection, Maximization.

1. INTRODUCTION

There are many applications like online shopping where
the opinions of other users who bought and rated a prod-
uct are important for a user trying to decide which prod-
uct to buy. Recommender systems (RS) have emerged as a
complementary paradigm for search in order to fulfill users’
information needs in such applications, by providing mass
personalization [14]. Much of their popularity was spurred
by the early success of collaborative filtering techniques [9],
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which exploit the existing ratings in a system to estimate
the expected rating a user might give a product. Today, RS
form the backbone of the business of many companies like
Amazon and Netflix.

RS research has mostly focused on improving the accu-
racy with which the algorithm predicts the likely rating a
user will provide an item she has not experienced before.
The predicted ratings are then used for recommending items
to users, e.g., by picking the top-¢ items with highest pre-
dicted rating for the active user. In this paper, we take a
look at the “flip” side of a RS. That is, instead of improving
existing recommender algorithms, we ask whether we can
use an existing operational RS to launch a targeted mar-
keting campaign. More concretely, you have a product you
want to sell in an online market place powered by RS tech-
nology. Suppose you give free samples of your product to
a select number of users, called the seed users. Based on
its quality, the seed users rate the product, preferably with
high ratings. E.g., Amazon’s Vine program employs a sim-
ilar scheme. The question is, under the condition that the
seed users endorse the product with high ratings, can this
lead to the product being recommended by the system to a
large number of other users? If so, this represents a huge op-
portunity for the client companies launching the campaign
as it helps effectively advertise their product via the RS. It
is a business opportunity for the host company as well since
it can offer seeding as a service, whereby it selects effective
seeds on behalf of the clients. It is beneficial to the seed
users as they get free or discounted samples of a new prod-
uct. Finally, it is helpful to the rest of the users as they
receive recommendations of new products earlier than they
otherwise would, a well recognized problem in RS [11].

In this paper, we will show the answer to the above ques-
tion is "yes” and that the manner in which seeds are selected
can make a difference. We focus on the case where the seed
users who are targeted like the new product and endorse
it with relatively high ratings. As example applications,
Warner Brothers can target a select number of Netflix users
in order to give free samples of their new movie release.
A publisher can target customers of Amazon in a similar
way. Motivated by these applications, we study the follow-
ing problem, called RECMAX: Given a collaborative RS, a
number k and a new product p, find k users (called seed set)
to whom p should be marketed such that if these users rate
the new product with relatively high ratings, the number of
users to whom the product is recommended by the system
is maximum.

Many ventures like Increase YouTube Views' and Mile-
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Stone Internet Marketing® have emerged that offer services
to increase/improve the ratings and reviews of their clients.
Amazon’s Vine program operates an interesting ecosystem,
whereby reviewers (users) ranked highly by other users based
on their past reviews are invited to review new items. These
reviewers in turn are offered pre-release versions of products
for the purpose of their review. We are not aware of any
research works that investigate the mechanism used by the
above ventures or by Amazon.

RECMAX has an interesting application for the cold-start
items problem [11, 2], for the manufacturer of the item: for
a newly introduced item, there may be few ratings provided
by users. As a RS based on collaborative filtering relies on
existing ratings, the new item will not be recommended to
users until it gets enough ratings. Using RECMAX, when
a new item is introduced, the item manufacturer has the
opportunity to market it to the seed users and have the sys-
tem recommend it to other users. Further comparison with
works dealing with the cold-start problem appears in §2.
There has been substantial work on detecting spam in RS
and making them robust against spam. Mobasher [12] de-
scribes an attack called shilling attack whereby user profiles
are injected into the system and reviewers are made to write
positive reviews. The goal of RECMAX is not to spam a RS.
Rather, it is to leverage a normal working RS for purposes of
marketing. In particular, the ratings provided by the seed
users to the new product are not influenced or interfered
with in any way. They are free to rate it as they see fit. We
focus on the case where the seed users like the new product
and provide a relatively high rating.

The single most important challenge in studying the REC-
MAX problem is the wide diversity of RS algorithms (see [14],
and [1] for comprehensive surveys) that are used in real ap-
plications. While User-based [9] and Item-based [15] collab-
orative filtering methods making use of neighborhood are
extensively used, recently model-based approaches such as
Matrix Factorization [16] have attracted a lot of attention.
All these methods have many variants thus making the prob-
lem very difficult to formulate and study. In this work, we
focus on User-based and Item-based methods since they are
used in many real systems and are representative.

Targeted marketing in RS by selecting seed users has been
recognized before [5, 13, 2, 3]. All of them use the notion
of influence that a user has might exert in a RS, and based
on their definition of influence, they select the seed users.
The definition of influence and hence the goal is different in
each of these works (as elaborated in §2). While the moti-
vation and overall strategy are similar, that is, to select a
set of seed users for marketing, RECMAX focuses on select-
ing seed users for maximizing the number of (other) users
to whom a new item will be recommended by the RS, di-
rectly based on a recommender algorithm, as opposed to
using an auxiliary notion of influence and resorting to social
influence maximization. One of our main contributions is a
thorough theoretical analysis of the complexity of RECMAX.
As we shall show, RECMAX is not only a hard problem, it’s
even NP-hard to approximate within any reasonable factor.
Given this, we explore various natural heuristics for solving
RECMAX. We undertake a detailed analysis of three diverse
real data sets, evaluate several natural heuristics for seed se-
lection on those data sets and report our findings. One of the
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key contributions is showing that RECMAX is a real practical
problem where selecting good seeds can yield a big payoff.
To our knowledge, we are the first to study the problem of
identifying seed users to market a product to, in order to
trigger a large number of recommendations of the product
to other users from an existing RS. We make the following
contributions.

e We propose a novel problem RECMAX. It aims to find
a set of seed users to whom a new product should be
initially marketed such that if they endorse the prod-
uct, the number of users to whom the product is rec-
ommended is maximum. We offer early empirical ev-
idence that seeding does help in boosting the number
of recommendations (§4).

e We perform a thorough theoretical analysis of REC-
MAX. We show that RECMAX is not only NP-hard to
solve optimally, it is NP-hard to approximate within a
factor of 1/(|V|*~¢) for any fixed e > 0, both in User-
based and Item-based methods (§5), under the settings
we study. We also present intuitions behind where the
intrinsic hardness of RECMAX comes from.

e Given the hardness, we explore several natural heuris-
tics on 3 real datasets (§6). Some of the key obser-
vations we make are: a) If enough budget is allowed,
seeding can make a substantial difference in the num-
ber of recommendations a new product can get; b) The
gains that can be achieved saturates after some point,
in both methods, suggesting that the seeding does not
help after a certain budget; ¢) The overall gains that
can be achieved in User-based systems are much higher
than can be achieved in Item-based systems, though
saturation is attained much quicker in Item-based sys-
tems; d) Choice of the seed set is critical.

Related work is reviewed in §2 while in §3, we provide a
brief background and define RECMAX formally. Finally, we
summarize the paper and discuss future research in §7.

2. RELATED WORK

Recommender Systems: The majority of works in RS
(see [14] and [1] for detailed surveys) focus on improving the
quality of the algorithms w.r.t. prediction accuracy. RS in
general can be content-based or based on collaborative fil-
tering. The most popular methodology in RS is based on
collaborative filtering, which seeks to predict the expected
rating that a user may provide to an item which she hasn’t
experienced before. Collaborative filtering methods are fur-
ther classified into memory(or neighborhood)-based (e.g.,
see Chapter 4 of [14]) or model-based (e.g., matrix factor-
ization [14], Chapter 5). This wide variety in RS makes
RECMAX a very challenging problem to define and study. In
this paper, we study both User-based and Item-based neigh-
borhood methods, when the predicted ratings are estimated
through weighted average.

A by-product of RECMAX is a solution to the cold-start
problem [11], for item manufacturers. Various approaches
have been proposed to solve the cold start problem includ-
ing hybrid methods which in addition to existing ratings,
utilize the item content data [11]. A recent work by Anand
and Griffiths [2] employs an interesting incentive based ap-
proach which, given a collection of new items, calls for of-
fering a list of new items for every user in the system. A
user gets a fixed payment for every new item she rates. The



payment is determined using the influence of a user in the
RS. The authors provide general guidelines on what factors
the influence should depend on without explicitly defining
it. They infer a social graph and apply existing social influ-
ence maximizing heuristics like Degree Discount [4]. As such
this is a “proxy” to the original problem motivated by them.
Moreover, degree discount is proposed for the independent
cascade model where attempts of influence on a user by her
neighbors are assumed to be independent, an assumption
that, strictly speaking, doesn’t hold in their framework. As
the authors themselves acknowledge, their framework is vul-
nerable to fake ratings as the ratings provided by the seed
users may be compromised by the free payments they get in
return. The key differences from this work are as follows:
a) Solving the cold start problem is not our main goal, al-
though it is an interesting by-product; b) We look to pick
seed users in a way that maximizes the number of users to
whom the item is recommended directly using the underly-
ing algorithms the RS use (e.g., User-based or Item-Based),
instead of relying on social influence maximization; c) As
mentioned earlier, ratings provided by seed users are not
dictated or interfered with in anyway, avoiding fake ratings.
Another related line of work is spam in RS and its detec-
tion [12]. As mentioned earlier, the goal of RECMAX is not
to spam the RS or to encourage fake ratings for the sake
of item promotion. Instead, our goal is to leverage RS for
ethical marketing. If seed users do not endorse a new item
by providing high ratings, that item would simply not be
recommended to other users. In a way, the seed users also
play a role of initial customer feedback in our framework.

Influence Maximization: Our study is related in spirit
to the problem of influence maximization in social networks
as well as to the related problems of adoption and revenue
maximization [5, 10, 7, 3]. In fact, the notion of influence
from a data mining perspective was first studied in the con-
text of RS [5]. Later Kempe et al. [10] formalized the prob-
lem as a discrete optimization problem. To the best of our
knowledge, till date, there have been 4 papers which mea-
sure users’ influence for marketing in RS by selecting seed
users [5, 13, 2, 3]. Domingos et al. [5] define influence as the
expected lift in profit and aim to maximize it. Anand and
Griffiths [2] on the other hand, calculate influence empiri-
cally by exploiting social influence maximization heuristics.
We provided a detailed account of the differences with our
work above. Rashid et al. [13] focus on measuring influence
scores of users in a RS and define it as a function of user’s
ability to change the predicted ratings of other users by §
where ¢ is the difference between consecutive rating valies
(e.g., in a standard 1-5 rating scale, 6 = 1). Their main
goal is to calculate influence scores of users, not to select
a seed set. Bhagat et al. [3] on the other hand, develop a
model for product adoption and use it to select seed users to
maximize a new product adoption, from an influence maxi-
mization perspective.

Several factors set RECMAX apart from influence maxi-
mization. A fundamental distinction is that in RECMAX,
the goal is to maximize the number of users to whom the
system will recommend the item. By contrast, in influ-
ence maximization, the goal is to maximize the number of
users who are influenced by the seed users and adopt the
item. Second, no explicit social network is assumed as input
for RECMAX, whereas for influence/adoption/revenue max-
imization, the basic backbone is a social network with in-

fluence weights. While in principle, one can induce a social
network from a RS as [2] does, the resulting problem formu-
lated on the social network is at best a proxy for the original
problem of recommendation maximization. Third, unlike in
influence maximization, there is no underlying propagation
model (such as indepndent cascade or linear threshold — see
[10]) in RECMAX.

3. BACKGROUND AND PROBLEM STUD-
IED

Recommender systems serve the top-£ items with the high-
est predicted ratings for a user as recommendations to that
user, where ¢ is the desired length of the recommendation
list. While User-based [9] and Item-based [15] are among
the most popular collaborative filtering methods, recently
hybrid approaches have been proposed [17]. Even more re-
cently, Matrix factorization based methods [16] have gained
significant attention. For excellent surveys, see Chapters 4
and 5 of [14]. In this paper, we study RECMAX on User-
based and Item-based methods. With R(v,4), we denote
the expected rating that user v gives an item 7. Among
User-based methods, perhaps the most popular approach to
estimate R(v, 1) is to use the weighted average:

8 2 ue N (o) W, v) - R(u, )
R(v,7) = ZueNi(v) abs(w(u,v))

where R(u,1) is the rating given to item 4 by user u, abs(-)
is the absolute value function and N;(v) is the set of near-
est neighbors of v, based on the similarity scores w(-,v),
who have rated i. The similarity scores are calculated using
cosine similarity or Pearson correlation or one of their varia-
tions (see [14], Ch. 4). In this paper, we employ the Pearson
correlation as the similarity measure for User-based meth-
ods. Let I(u) denote the set of items rated by user u and let
Z = I(u) N I(v). Then the similarity w(u,v) using Pearson
correlation is computed as

>ier(R(u, i) — Ru) - (R(v,i) — Ry)
\/Zlez (u,17) \/zzez (v,4) — R, )2

where R, is the average of u’s ratings over various items.

Item-based methods on the other hand, use the similarities
among items to estimate the predicted ratings. For instance,
using the weighted average,

o Yiemug wlind) - R(v,)
Bl ) = = o abs (7))

where N, (j) is the set of nearest neighbors of (i.e., the most
similar items to) j that are rated by v. Again, the sim-
ilarities can be computed based on cosine, Pearson, their
variants or other methods (see [14], Ch. 4). In this paper,
we focus on adjusted cosine similarity, which is shown to be
the most accurate similarity measure for Item-based meth-
ods [15]. Let V() denote that set of users who rate item ¢,
and let U = V(1)NV (j). Then the adjusted cosine similarity
between items i and j is

Y uev (R(u,i) — Ry) - (R(u, j) — Ru)
\/ZueU (u, 1) Ru \/ZueU (u,7) — Ru)2

In both User-based and Item-based methods, the number of
nearest neighbors considered is often restricted to a limited

(1)

(2)

3)

(4)



number d, usually between 20 and 50. This has been found
to improve not only scalability, but even accuracy [14, 9].

Problem Studied. In addition to the log of past ratings,
we assume we know the algorithm used by the RS. In this
paper, we focus on both User-based and Item-based meth-
ods. For User-based, we employ Pearson correlation similar-
ity measure, while for Item-based, we utilize adjusted cosine
similarity measure, both defined above.

With p, we denote the new item to be marketed. The
number of items that can be recommended to a user v is
limited and as a result various items are in competition to
enter the recommendation lists of users. Clearly, for p to
appear in the recommendation list of user v, the expected
rating R(v, p) must be more than the rating threshold of
user v, which is the predicted rating of v for the last item
in its recommendation list. We use 6, to refer to the rating
threshold of user v. We do not necessarily assume that the
new item p has no prior ratings.

Let V be the set of users in the system. The problem
we study in this paper is to select a set S C V of k users
(called seed set) such that by convincing them to provide
relatively high ratings to the new item p, the number of
users to whom it is recommended is maximized. We leave
the definition of “relatively high rating” open for now and
argue that if the new item is not a good item causing the
seed users to provide relatively low ratings, then in any case,
it should mot receive many recommendations. The goal of
this work is not to promote bad items. In our experiments,
we derive a rating R(u,p) for a seed user u by taking an
average of the top-20% highest ratings provided by w.

We use H(S) to denote the set of users to whom the
item is recommended by virtue of the seed set S. Clearly,
H(S) C V\ S as the users in S have already adopted the
item and there is no value to recommending the item to
them. Intuitively, users in the seed set S should have high
“influence” where the influence flows indirectly via the rec-
ommendations. We define f(S) := |H(S)|, the hit score of
seed set S as:

1) = 3 IR, p) > 6,)

veV—-S
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where I(-) is an indicator function which is 1 if R(v, p) > 6,
and 0 otherwise. Formally, the problem is defined as follows.

PrROBLEM 1 (RECMAX). Given a recommender system
and rating thresholds 6, for each user v in the system, and
a number k, find a set S of k users s.t. f(S) is maximized.

4. DOES SEEDING HELP?

Before we study the RECMAX problem of how to select an
optimal seed set, we address several natural questions: Does
seeding help? What are the gains that may be achieved?
How does hit score vary with respect to the seed set size?

To answer these questions, in this section, we show the
results from preliminary experiments, using the popular
Movielens data set. More detailed experiments are discussed
in §6. Predicted ratings are computed according to weighted
average, both for User-based and Item-based methods (see
Eq. 1 and 3). The similarity measure we use is Pearson
correlation for User-based (Eq., 2) and adjusted cosine for
Item-based (Eq. 4). See §6 for explicit experiment settings.

Next, we run a RANDOM heuristic to select the seed set
and calculate the hit score achieved, both in User-based and
Item-based methods. We assume that a seed user u € S
provides a relatively high rating to the new item. In our
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Figure 1: Hit Rate achieved by random seed set on
Movielens dataset on User-based (left) and Item-
based (right). The plots show that even when the
seed sets are selected randomly, seeding does help
and exhibits impressive gains in hit score.

experimental evaluation, we set this rating as the average
of the top-20% highest ratings provided by user u. Given
a budget k, a seed set of size k is randomly selected and
the hit score is computed. We repeat this process 100 times
and take the average. Note that it is important to repeat the
process several times as in some cases, the seed set picked by
RANDOM may be really good with a large hit score, while in
other cases, very poor with a low hit score. Fig. 1 shows the
results. As can be seen, the hit score achieved is remarkable,
under both methods, with a much higher hit score under
User-based. For example, a budget of 500 can get a hit
score of 5091 on User-based and a budget of 20 can achieve
a hit score of 636 on Item-based.

This immediately suggests that seeding does help and
establishes the case for RECMAX. Another interesting ob-
servation is that the hit score curve resembles the classic
sigmoid curve, implying that if sufficient budget is allowed,
then the gains achieved can be substantial. Moreover, if we
continue to increase the budget, the hit score plateaus, and
sometimes, it may even start decreasing (unlike sigmoid).
These interesting observations inspire us to perform a deeper
analysis of RECMAX— both theoretical and empirical — and
we do so in the next sections.

5. COMPLEXITY OF RECMAX

In this section, we study the complexity of RECMAX. Un-
fortunately, it turns out to be intractable: in fact, it is hard
to approximate within any reasonable factor, unless P=NP.
Due to the wide variations in RS methods, it is tedious
to study the complexity for everyone of them. Instead we
present formal proofs for cases where the underlying meth-
ods are either User-based or Item-based, with Pearson and
adjusted cosine as similarity functions respectively. We be-
lieve these are representative cases and our results give an
indication that RECMAX may indeed be a very hard problem
for known RS algorithms in general.

We also provide important insights as to why RECMAX
is so hard. First, it is easy to show that the function f(.5)
defining the hit score of a seed set is in general non-monotone
and non-submodular. Intuitively, f(-) is based on predicted
ratings computed using weighted average, which is neither
monotone nor submodular. Indeed, the plot in Fig. 1 (left)
shows an example where f(-) is not monotone and both
(left) and (right) plots show it is not submodular in gen-
eral. To help us prove the hardness results, we introduce a
helper problem that we call Mazximum Encirclement Prob-
lem (MEP). We show that MEP is as hard to approximate as
the classical Mazimum Independent Set Problem (Mis). Re-
call that in an undirected graph G = (V, E), aset S CV is
an independent set iff no two nodes in S are adjacent. Mis
cannot be approximated within a factor of 1/(|V|'™¢) for



any fixed e > 0, unless P=NP [8]. We show that RECMAX
is as hard to approximate as MEP and our result follows.

Given an undirected graph G = (V, E) and a set S C V,
we say a node v € V'\ S is encircled by S, provided v has at
least one neighbor and all its neighbors are in S.

PROBLEM 2 (MEP). Given an undirected graph G =
(V, E) and an integer k, find a set S C V such that |S| < k
and S encircles the maximum number of nodes.

For the sake of simplicity, we assume there are no isolated
(i.e., zero degree) nodes in the graph. As an insight, notice
that MEP is very close to the minimum vertex cover problem
(Mvc) which asks if there is a set S C V of size < k, given
k < |V], such that every edge of the graph is incident on
at least one node in S. Notice, S is a vertex cover iff for
any node v € V' \ S, all its neighbors are in S, i.e., iff v is
encircled by S (assuming there are no isolated nodes). Thus,
Mvc is equivalent to asking if there is a set of nodes S C V'
of size k such that it encircles rest of the nodes in the graph.
From this, it follows that MEP is NP-hard, which is not very
surprising. What is interesting is that while MvC enjoys 2-
approximation, MEP is not approximable, as we show next.

LEMMA 1. The Mazimum Encirclement Problem (MEP)
cannot be approximated within o factor of \V\% for any

fized € > 0, unless P=NP.

ProoF. Consider an instance of MIS, consisting of a
graph G = (V,E). Create an instance of MEP by keep-
ing the graph same. Clearly, a set S C V is an independent
set of G if and only if the set V'\ S encircles each node in S.
In particular, S is an optimal solution to Mis iff V'\ S is an
optimal solution to MEP where the budget is set to |V|—|S].
Assume there is a S-approximation algorithm for MEP. For
k=1,...,|V], run the approximation algorithm on the MEP
instance with the budget set to k. Let S be a set of nodes
output by this algorithm for some value of k: \5’ | < k and
the number of encircled nodes is the maximum among all
values of k. Clearly, the number of nodes encircled by S is
> B-(|V|—k), since for some budget, there must exist a set
that encircles every node outside the set. Let T be the set
of nodes encircled by S. Clearly, T is an independent set of
size > - (|V|—k) which thus is a S-approximate solution to
Mis. Therefore, MEP is as hard to approximate as Mi1s. [

Now, we are ready to prove hardness results for RECMAX.

THEOREM 1. Under User-based Collaborative Filtering
that uses Eq. 1 and 2 to compute predicted ratings, RECMAX
is NP-hard. Moreover, it cannot be approximated within a
factor of IVI% for any € > 0, unless P=NP.

PrOOF. We prove the theorem by reducing MEP to REC-
MAX. From an instance Z of MEP consisting of graph
G = (V,E), create an instance J of RECMAX as follows.
For each node u € V, create a user u in instance [J. For
each edge (u,v) € E, create an item ., such that users u
and v rate the item i,, with rating 2. Add |V| dummy items
to the instance J such that each user rates exactly one of
these dummy items, with rating 1. Let d be the maximum
number of nearest neighbors that are being considered by the
RS, then also add d dummy users (call this set of dummy
users X ) in instance J such that each of these dummy users
z € X rates all |V| dummy items with rating 2. Hence, in

our construction, we have |V|+ d users, |E|+ |V| items and
2-|E|+ (d+1) - |V] ratings. Let every seed user provide the
same rating to the new item, say 2. Next, let each dummy
user provide rating 1 to the new item p. We will decide the
rating threshold 0, later.

Let S C V be any seed set. Then, we claim that a node
v € V\ S is encircled by S (in instance Z) iff the new item
is recommended to v, that is, v € H(S) (in instance [J). We
prove this claim below. From this claim, it is easy to see
that a set .S of size k encircles n nodes in instance Z if and
only if |H(S)| = n in instance J. Therefore, RECMAX is as
hard to approximate as MEP, following the same logic used
in the proof of Lemma 1, and this proves the theorem.

Consider a user v ¢ S. According to Eq. 2, the similarity
between v and a user v € S is 1. Likewise, the similarity
among v and a dummy user x € X is -1 With deg(v), we
denote the degree of user v in instance Z. If [ < deg(v) (non-
dummy) neighbors of v rate the new item p, then, according
to Eq. 1,

A - EueNp(v) w(u, v) - R(u, 1)
R(v, p) = EueNp(v) abs(w(u,v))

124 d-0)-(-1)-1  3-1—-d
“abs(l-1) +abs((d—1)-(=1))  d

Set the rating threshold 6, = (3-deg(v) —d)/d— 6 where §
is a small number to ensure that R(v, p) is (3-deg(v) —d)/d
iff the new item is recommended to v. This rating threshold
can be achieved iff all neighbors of v rate the new item. As
a result, an item is recommended to a user v iff all of its
neighbors are in S. that is, iff v is encircled by S. This was
to be shown. []

THEOREM 2. Under Item-based Collaborative Filtering
that uses Eq. 8 and 4 to compute predicted ratings, RECMAX
is NP-hard. Moreover, it cannot be approximated within a
factor of IVI% for any fized € > 0, unless P=NP.

PRrOOF. As above, we prove the claim by reducing MEP to
RECMAX under the Item-based method that uses weighted
average along with adjusted cosine similarity (see Eq. 3 and
4). Consider an instance Z of MEP consisting of an undi-
rected graph G = (V| E). Create an instance J of RECMAX
as follows. Each node v € V corresponds to a user. Create
|E| items in instance J, one for each edge in instance Z. An
item 4y, corresponding to edge (u,v) € E is rated by users
u and v with rating 2. Add a special item j such that each
user rates it with rating 1. Thus, in instance 7, we have |V|
users, |E|+ 1 items and 2 - |E| 4 |V/| ratings. We will decide
the values of rating thresholds later.

Let S C V be any seed set. Like above, we claim that
anode v € V\ S will be in H(S) (in instance J) iff v is
encircled by S (in instance Z). The proof then follows from
the same logic used in the proof of Theorem 1.

We now show the above claim. Say, each seed user pro-
vides a rating 2 to the new item. Then, for a user u € S,
R, = (2-deg(u) + 1 + 2)/(deg(u) + 2), as it provides rat-
ing 2 to all the items that correspond to the edges in 7
and 1 to the special item j, in addition to rating 2 to
the new item p. Considering the adjusted cosine similar-
ity function among items (see Eq. 4), for any item ¢ that
corresponds to an edge in instance Z, the deviation term is
2 — (2-deg(u) + 3)/(deg(u) + 2) = 1/(deg(u) + 2). Let us



call this x,,. The similarity of ¢ with p would then be
ZueU Tu " T
\/ZuEU i \/ZuEU 3
where U = V(i) N V(p) = V(i) N'S. Similarly, for the
special item j, the deviation term is y, = 1 — (2 - deg(u) +
3)/(deg(u) + 2) < 0. It implies that the similarity between

j and p is strictly less than 0. Let it be z. Thus, from Eq. 3,
the expected rating of a user v on item p is

=1

w(i, p) =

R(U p) o EiEI(v)ﬂI(S) U/(’L,p) . R(U7Z)
7 2ier(wni(s) abs(w(i, p))

(6)

where I(S) = |J,cq [(u) is the set of items rated by any
seed user in S. Note that if an item 7 is not rated by any user
in S, then it cannot be among the neighbors of new item p
because p is rated only by users in S. That’s why we iterate
over all items ¢ € I(v) N I(S) in Eq. 6. Moreover, |I(v)| =
1 + deg(v). Clearly, the special item j is in I(S), as all
users rate j. Next, any item ¢ # j, if added to I(S), cannot
decrease R(v,p) as all such items are rated with rating 2.
Hence, the maximum possible predicted rating that v could
give the new item p is realized when all the items rated
by v are in I(S), i.e., I(v) C I(S). Following Eq. 6, this

maximum rating is

_ 2-deg(v) — 2z
e = Zgegtuy =

Thus, we can set 0, as Rimaz(v) —9 where § is an extremely
small number which ensures that the item p is recommended
to v if and only if the predicted rating I:B(v7 p) = Rmae. It
means that the user v € H(S) if and only if I(v) C I(S).
However, an item 4., € I(v)\ {j} can be in I(S) if and only
if the neighbor u of v is in S (because only v and v have
rated the item iy,). Thus, I(v) C I(S) iff all neighbors of v
are in S, i.e., iff S encircles v. This was to be shown. []

It should be noted that a slight modification in the reduc-
tion shown above shows that the RECMAX under Item-based
method (that uses weighted average) is as hard as MEP even
when the similarity function is cosine or Pearson. We omit
the details for brevity.

Discussion. By now, it is clear that the RECMAX problem
cannot be approximated within any reasonable factor, for
the specific settings we focus on in this paper. Many real
RS are based on the User-based and Item-based methods
considered in our settings of RECMAX and thus our results
apply to RECMAX over those systems. What can we say
about RS that are based on the hybrid of content-based and
collaborative filtering, on matrix factorization etc.? Given
the complexities of systems based on such methods, it is very
likely that RECMAX continues to be hard (to approximate)
on these systems. The main reason behind this hardness
of RECMAX is its similarity with MEP: in order to push
an item to the recommendation list of a user, several other
users may need to rate the item. This has a flavor simi-
lar to the user being “encircled” by other users. Since the
hit score function is neither monotone nor submodular, as
noted in the beginning of the section, it is not clear a priori
which heuristics will work well for RECMAX. So, the ques-
tion arises: What can we do with RECMAX? Does it still
have a case? As we show in §4, the answer is yes. Even
if the problem is too hard to approximate, it still makes a

good sense for targeted marketing, as the gains (in terms of
hit score) achieved are impressive, even with the RANDOM
heuristic. Clearly, we cannot develop an algorithm with the-
oretical guarantees, but we can try several heuristics and see
what works best and under what conditions — which is what
we do in the next section.

6. EXPERIMENTS

Algorithms. Given that RECMAX cannot be approximated
within any reasonable factor, in this section we explore sev-
eral natural heuristics, and then gauge their performance on
3 real datasets — Movielens, Yahoo! Music and Jester— and
analyze the results. Let k be the budget on seed set size.
We explore the following heuristics in our evaluation.

RANDOM: Seed set is selected randomly. The process is
repeated 100 times and the average hit score of different
choices is taken. We take this as a baseline.

MosT-AcTIVE: Choose the top-k users with most number
of ratings. The intuition here is that the users who are most
active “control” most of the ratings in the system, and thus
can be seen as a good target for marketing.

MosT-PosiTivE: Choose the top-k users with most pos-
itive average ratings as seeds. It is another natural way
for targeted marketing, as many manufacturers may want
to avoid bad ratings/opinions about their product. Thus,
targeting positive users is a “safe” marketing choice.

MosT-CRITICAL: Choose the top-k users with most crit-
ical average ratings. This is another extreme, where it may
be argued that if the most critical users endorse a product,
the chances of success (i.e., large hit score) are high.

MosT-CENTRAL: For
each user, we compute its
similarity with every other
user. Then, we compute its
aggregate similarity score
agg(u) = >, cy sim(u,v).
Next, we select top-k users
with highest aggregate sim-
ilarity scores as the seed
set. In case of User-based,
we compute the similarity
according to the Pearson correlation, which is what is used
in estimating predicted ratings.

For Item-based, the recommendations are generated using
similarities among items, and not users. Hence, it is not
clear how to compute similarities among users in case of
Item-based. For instance, consider the example shown in
Fig. 2. It has 4 items 4,7,4’,5’, and we know the weights
on the red edges: they are computed according to Eq. 4.
No two users are directly connected in Fig. 2. Hence, to
compute the similarity between users u and v, we take the
weighted average of ratings provided by the users u and v
on every pair of items they rate, as follows.

Zigj(u),je[(v) w(i, j) - sim(R(u, i), R(v, j))
Zie[(u),jel(v) w(i, J)

Figure 2: Example.

sim(u,v) =

where stm(R(u, 1), R(v, 7)) is the similarity between the rat-
ings provided by user u on item ¢ and user v on item j.
If users u and v rate a common item 4, i.e., ¢ = j, then,
w(i,j) = w(i,i) = 1. Intuitively, if the ratings are nearly
equal, w(R(u,1), R(v, 7)) should be close to 1 and if the rat-
ings are very different, the similarity score should be close
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to 0. One way to define it is
abs(R(u, i) — R(v,j))
(Rmaa: - Rmzn)

where Raz and R, are the maximum and minimum rat-
ings in the system and abs(-) is the absolute value function.

sim(R(u,1), R(v,7)) =1—

Datasets. We run experiments on three real world datasets,
whose statistics are given in Fig. 3(a). The first dataset is
Movielens. It consists of 1M ratings given by 6040 users
distributed over 3706 movies. The ratings are on a scale of
1-5. Fig. 3(b) shows the distribution of ratings which fol-
lows the normal distribution with mean 3.58 and standard
deviation 1.12. Next, we use Yahoo! Music® data set, pro-
vided as part of the Yahoo! Research Alliance Webscope
program. It represents a sample of Yahoo! users’ ratings of
musical artists, gathered over a thirty-day period sometime
prior to March 2004. The raw data contains 11.5M ratings
over 98K artists given by 1.9M users. The ratings are in-
tegers ranging from 0 to 100, except 255 (a special rating
meaning “never play again”). From this data set, we ran-
domly sampled 10K users who assigned 20 or more ratings.
From the sample, we discarded all the artists who received
less than 20 ratings. This pre-processing resulted in 1M rat-
ings over 5069 artists. We ignored the special rating 255
in the pre-processing and kept only explicit ratings. The
rating distribution of the resulting data set is presented in
Fig. 3(c). Notice that unlike in Movielens, there is a large
number of ratings with value 0 in Yahoo!. Finally, we use
the Jester Joke collaborative filtering data set released by
Ken Coldberg from UC Berkeley”[6]. Tt has 100 jokes rated
by 25K users. There are a total of 1.8M ratings, on a contin-
uous scale of -10 to 10. Since we use the weighted average to
compute expected ratings (according to Eq. 1 and 3) which
is meant for positive ratings, we shift the ratings from the
[—10, 10] scale to [0,20], by adding 10 to each rating. The
ratings distribution is presented in Fig. 3(d). Again, unlike
the movie ratings in Movielens, there is a significant number
of negative ratings in Jester. In our experiments, we derive

Swww.music. yahoo.com
4eigentaste .berkeley.edu/user

a rating R(u, p) for a seed user u by taking an average of the
top-20% of the highest ratings provided by u. Finally, while
computing R(v,p), we ignore the small changes in similar-
ity values among users (in case of User-based) and existing
items (in case of Item-based) that happen because of ratings
provided by seed users to the new item p. We evaluate our
heuristics for RECMAX on both User-based and Item-based
collaborative filtering methods.

User-Based collaborative filtering. We first report our
findings in User-based systems. Predicted ratings are com-
puted using weighted average along with Pearson correlation
(see Eq. 1 and 2). For R(v,1) to be non-zero, we require that
at least 5 of v’s nearest neighbors must rate the item 4, i.e.,
|Ni(v)| > 5. Similarly, for the similarity between users u and
v to be non-zero, we require them to rate at least 5 items in
common, i.e., [I(u)NI(v)| > 5. Finally, we consider at most
25 nearest neighbors of v while computing R(v,i). These
settings are used and recommended by previous works (E.g.,
see [14, 9]). On Movielens and Yahoo!, we set the length of
the recommendation list ¢ as 15, as popular recommenda-
tion music/movies systems like Yahoo! Music, Movielens,
Youtube usually show 15-20 recommendations on a single
page. On Jester, £ is set to 1 because only one joke is rec-
ommended at a time on the Jester website. Based on these
settings, we compute the rating thresholds 6, of every user
v. The distributions of the rating thresholds for the three
data sets are shown in Fig. 4.

Fig. 5 compares the various heuristics, described above,
on all 3 datasets. The plots reveal many interesting points.
(i) On all 3 datasets, we see that MosT-ACTIVE and MOST-
CRITICAL perform poorly, and MOST-POSITIVE and MOST-
CENTRAL perform relatively better. Thus, simply choos-
ing users who provide lots of ratings or users who are very
critical does not seem to help. Surprisingly, even RANDOM
exhibits a relatively good performance. For instance, on Ya-
hoo! (Fig. 5(b)), with a budget of 500, RANDOM is able to
achieve a hit score of 3719. With the same budget, MoOsT-
CENTRAL and MoOST-POSITIVE achieve 4628 and 5073, that
is, a 24.4% and a 36.4% improvement over RANDOM, re-
spectively. By contrast, MOST-ACTIVE and MOST-CRITICAL
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Figure 5: Hit Score achieved with various algorithms on different datasets on User-based RS.

achieve poor hit scores of only 132 and 2 respectively. This
clearly establishes that the choice of seed sets is critical and
can make a substantial difference. Except on Yahoo! where
MosT-POSITIVE wins, MOST-CENTRAL is found to be the
best. MoOST-CENTRAL picks seeds who have the greatest
affinity to other users in the aggregate and in the context
of User-based collaborative filtering, this does make sense.
(ii) In general, the hit score achieved is impressive. For in-
stance, with a budget of only 300, MoST-CENTRAL attains
a hit score of 4444, 3377 and 15.6K on Movielens, Yahoo!
and Jester respectively. It shows even the simple heuris-
tic strategies for seed selection make RECMAX relevant and
useful for targeted marketing, despite the problem being in-
approximable within any reasonable factor. (iii) Depending
on the data set and the seed set selected, we may encounter
a “tipping point”, a point at which a slight increase in budget
can make a significant difference in the hit score achieved.
For example, on Movielens, using MosT-POSITIVE, the hit
score with a budget of 50 is only 288, i.e., the average hit
score per seed is 5.76. On the other hand, the overall hit
score shoots up to 3656 with a the budget of 250, i.e., the
average hit score for the last 200 seeds is 16.84. The rate
of growth in hit score slows down as the budget is increased
beyond a point. E.g., when the budget is extended futher
by 200 to 450, the hit score increases to 4962, that is, the
average hit score for the last 200 seeds drops to 6.53. When
we continue to expand the budget, the hit score plateaus
and in some cases it may even decrease. For instance, on
Movielens with MOST-POSITIVE, if we increase the budget
from 700 to 1000, the hit score falls from 5215 to 5008.

Item-Based collaborative filtering. We now report our
findings in Item-based collaborative filtering. Again, to com-
pute the expected rating R(v, 1), we use the weighted average
with similarities among items computed using adjusted co-
sine (see Eq. 3 and 4). As earlier, we require for R(v, j) > 0,
that there be at least 5 similar items to j that are rated by
v, that is, [N, (j)] > 5. Similarly, the similarity among items
i and j can be more than 0 only if they are rated by at least
5 common users, i.e., |V (1) NV (j)| > 5. Finally, we consider
at most 25 most similar items to j to compute R(v, ;). We
keep the length of the recommendation list ¢ the same as be-
fore, that is, 15, 15 and 1 for Movielens, Yahoo! and Jester
respectively. Based on these settings, the rating thresholds
of all users are computed. We found their distributions to
be very similar to those for User-based (see Fig. 4) and so
suppress their plots for brevity.

In Fig. 6, we show the hit score achieved by the various
heuristics. Note that the M0OST-CENTRAL heuristic is fun-
damentally different in Item-based. Out of curiosity, we also
include in our comparison the MOST-CENTRAL heuristic of

User-based method. For clarity, we refer to the latter as UB-
MosT-CENTRAL in Fig. 6. Again, many interesting obser-
vations are made. (i) On all 3 datasets, the overall hit score
that is achieved in Item-based is much lower than in User-
based. Moreover, on all the datasets, the hit score plateaus
much faster in Item-based than in User-based. For example,
on Movielens with MoOST-CENTRAL heuristics, the hit score
saturates at 1238 at the budget of 200 in case of Item-based.
In User-based, on the other hand, the hit score saturates at
4825 at the budget of 500 (see Fig. 5(a)). As a result, much
less seeding is required to achieve the maximum possible hit
score in Item-based. (ii) Except in Jester, MOST-CENTRAL
beats every other algorithm. For instance, on Movielens,
with a budget of 200, while MOST-CENTRAL gets the hit
score of 1238, RANDOM achieves just 712. MOST-ACTIVE,
MosT-CRITICAL and MOST-POSITIVE attain the scores 692,
587 and 481 respectively. (iii) Another interesting obser-
vation is that while MOST-POSITIVE performs quite well in
User-based, it performs poorly in Item-based. This shows
strategies that work well in User-based need not work well
in Item-based. However, interestingly enough, the intuition
underlying MoST-CENTRAL seems to be borne out well by
the results for both User-based and Item-based.

Next, we undertake a comparison of User-based with Item-

based. Fig. 7 presents a zoomed-in comparison of hit scores
achieved in User-based and Item-based methods, with the
heuristic MOST-CENTRAL. Except in Movielens, the initial
rise of hit score is much steeper in Item-based than in User-
based. And as the budget increases, hit score in User-based
continues to increase well beyond the peak value of Item-
based and it plateaus at a much higher budget than Item-
based. Finally, we look at the intersection of seed sets ob-
tained from MOST-CENTRAL heuristic in both cases. Out of
1000 seeds, the number of common seeds are 103, 219 and
62 on Movielens, Yahoo! and Jester, respectively, suggesting
that the seed sets are different in both methods.
In summary, the hit scores behave very differently in User-
based and Item-based methods. While the overall hit scores
that are achieved in User-based are much higher, the satu-
ration in hit scores is achieved much faster in case of Item-
based. In both, respective versions of MOST-CENTRAL are
found to be most effective, although other heuristics behave
differently. For instance, MOST-POSITIVE performs quite
well in User-based, while its performance in Item-based is
poor. These observations suggest that different approaches
are required to select good seed sets on different systems,
and no single rule of thumb works well for all systems.

7. CONCLUSIONS AND FUTURE WORK

The main goal of this paper is to propose and study a
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Figure 7: Comparison of User-based and Item-based RS with the algorithm Most-Central.

novel problem that we call RECMAX. It aims to develop
a technology to select seed users in a collborative filtering
based RS such that if they endorse a new product with rel-
atively high ratings, the new product is recommended to a
large number of users, solely because of the underlying me-
chanics of the RS. We motivate the problem with real world
applications. We focus on the two widely used methods —
User-based and Item-based. We perform a thorough theo-
retical analysis and show that RECMAX is not only NP-hard
to solve optimally, it is NP-hard to approximate within any
reasonable factor. Given that, we explore various natural
heuristics and show that, even though the problem is inap-
proximable, simple heuristics like MOST-CENTRAL can fetch
impressive gains. This makes RECMAX an interesting prob-
lem for targeted marketing in RS.

This work opens up a wide array of challenges. First, de-

veloping more effective heuristics is important, interesting
and challenging, given that the hit score function is neither
monotone nor submodular. We also need to calibrate the
proposed and new heuristics on a wide array of real data sets.
Second, as we saw in our empirical evaluation, the hit score
function behaves distinctly on User-based and Item-based
systems. It would be interesting to see how it behaves when
mixed approaches are employed. Third, studying RECMAX
on more recent RS methodologies, for example, Matrix fac-
torization [16] — both theoretically and empirically, would
be exciting. Finally, the vision behind RECMAX is market-
ing based on an operational recommender system, which is
not just a simple RS algorithm but has a much greater com-
plexity. Formulating and solving RECMAX and launching it
on an operational RS is a fascinating challenge with great
potential.
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