
SIMPATH: An Efficient Algorithm for Influence

Maximization under the Linear Threshold Model

Amit Goyal, Wei Lu, Laks V. S. Lakshmanan

University of British Columbia

Vancouver, BC

Email: {goyal, welu, laks}@cs.ubc.ca

Abstract—There is significant current interest in the problem
of influence maximization: given a directed social network with
influence weights on edges and a number k, find k seed nodes
such that activating them leads to the maximum expected number
of activated nodes, according to a propagation model. Kempe
et al. [1] showed, among other things, that under the Linear
Threshold model, the problem is NP-hard, and that a simple
greedy algorithm guarantees the best possible approximation
factor in PTIME. However, this algorithm suffers from vari-
ous major performance drawbacks. In this paper, we propose
SIMPATH, an efficient and effective algorithm for influence
maximization under the linear threshold model that addresses
these drawbacks by incorporating several clever optimizations.
Through a comprehensive performance study on four real data
sets, we show that SIMPATH consistently outperforms the state of
the art w.r.t. running time, memory consumption and the quality
of the seed set chosen, measured in terms of expected influence
spread achieved.

Index Terms—Social Networks; Influence Spread; Linear
Threshold Model; Simple Path Enumeration; Viral Marketing.

I. INTRODUCTION

The study of influence propagation in social networks has

attracted a great deal of attention in recent years. One of the

fundamental problems in this area is influence maximization

whose motivation comes from viral marketing where the idea

is to give free or price-discounted samples of a product to

selected individuals in the hope that through the word of mouth

effect, it can result in a large number of adoptions of the

product. In addition, the study of influence propagation has

been found to be useful for personalized recommendations [2],

selecting informative blogs [3] and finding influential tweet-

ers [4], [5].

In their seminal paper, Kempe et al. [1] formulated influence

maximization as a discrete optimization problem: Given a di-

rected social graph with users as nodes, edge weights reflecting

influence between users, and a number k (called budget), find

k users, called the seed set, such that by activating them,

the expected spread of the influence (just spread for brevity)

according to a propagation model is maximized. The influence

diffusion process unfolds in discrete time steps, as captured by

the propagation model.

Two classical propagation models discussed in [1] are the

Linear Threshold (LT) Model and the Independent Cascade

(IC) Model, both taken from mathematical sociology. In both

models, at any time step, a user is either active (an adopter

of the product) or inactive. In the IC model, when an inactive

user becomes active at a time step t, it gets exactly one chance

to independently activate its currently inactive neighbors at

time t + 1. In the LT model, the sum of incoming edge

weights on any node is assumed to be at most 1 and every

user chooses an activation threshold uniformly at random from

[0, 1]. At any time step, if the sum of incoming influence (edge

weights) from the active neighbors of an inactive user exceeds

its threshold, it becomes active. In both models, influence

propagates until no more users can become active.

Influence maximization under both IC and LT models is

NP-hard and the spread function is monotone and submodular

[1]. A set function f : 2U → R
+ is monotone if f(S) ≤ f(T )

whenever S ⊆ T ⊆ U . It is submodular if f(S ∪ {w}) −
f(S) ≥ f(T ∪ {w}) − f(T ) for all S ⊆ T and w ∈ U \ T .

Intuitively, submodularity says the marginal gain f(S∪{w})−
f(S) from adding a new node w shrinks as the seed set grows.

Exploiting these properties, Kempe et al. [1] presented a

simple greedy algorithm which repeatedly picks the node with

the maximum marginal gain and adds it to the seed set, until

the budget k is reached. However, computing exact marginal

gain (or exact expected spread) under both the IC and LT

models is #P-hard [6], [7]. Hence, it is estimated by run-

ning Monte Carlo (MC) simulations. This greedy algorithm,

referred to as simple greedy henceforth, approximates the

problem within a factor of (1− 1/e− ǫ) for any ǫ > 0.

Unfortunately, the simple greedy algorithm suffers from

the following severe performance drawbacks: (i) The MC

simulations that are run sufficiently many times (typically

10,000) to obtain an accurate estimate of spread prove to

be very expensive. (ii) The simple greedy algorithm makes

O(nk) calls to the spread estimation procedure (MC in this

case) where n is the number of nodes in the graph and k is

the size of the seed set to be picked.

Considerable work has been done to address the first lim-

itation in the case of the IC model by developing heuristic

solutions for seed selection [8], [9], [6]. By contrast, for the

LT model, the only similar work to our knowledge is by Chen

et al. [7]. They observed that while computing the spread

is #P-hard in general graphs, it can be computed in linear

time on directed acyclic graphs (DAGs). Moreover, they claim

that the majority of the influence flows only within a small

neighborhood and thus they construct one local DAG (LDAG)

per node in the graph and assume that the influence flows to the

node only through that LDAG. They experimentally show that



this heuristic is significantly faster than the greedy algorithm

and achieves high quality seed set selection, measured in terms

of the spread achieved.

While their approach is interesting, the algorithm has the

following limitations: First, it relies heavily on finding a high

quality LDAG. However, finding an optimal LDAG is NP-

hard [7] and a greedy heuristic is employed to discover a good

LDAG. Recall, their algorithm is already a heuristic and using

a greedy LDAG in place of the optimal one may introduce

an additional level of loss in quality of the seed set chosen in

terms of the spread achieved. Second, it assumes that influence

flows to a node via paths within only one LDAG and ignores

influence flows via other paths. As a result, if other “ignored”

LDAGs together have a high influence flow, the quality of the

seed set chosen may suffer. Finally, they store all LDAGs in

memory, making the approach memory intensive. From here

on, we refer to their algorithm as LDAG. In our experiments,

we explore each of the limitations of LDAG mentioned above.

It is worth noting that LDAG is the state of the art algorithm

for influence maximization under the LT model.

Toward addressing the second limitation of the simple

greedy algorithm, Leskovec et al. [3] proposed the CELF

optimization that significantly reduces the number of calls

made to the spread estimation procedure (MC simulation).

Even though this improves the running time of the simple

greedy algorithm by up to 700 times [3], it has still been

found to be quite slow and definitely not scalable to very

large graphs [7], [10]. In particular, the first iteration is

very expensive as it makes n calls to the spread estimation

procedure. It should be mentioned that LDAG was shown [7] to

be significantly faster than even the simple greedy, optimized

using CELF.

In this paper, we propose the SIMPATH algorithm for influ-

ence maximization under the LT model. SIMPATH incorporates

three key novel ways of optimizing the computation and

improving the quality of seed selection, where seed set quality

is based on its spread of influence: the larger its spread, the

higher its quality.

A. Contributions and Roadmap

In Section III, we establish a fundamental result on influence

propagation in the LT model which says the spread of a set of

nodes can be calculated as the sum of spreads of each node

in the set on appropriate induced subgraphs. This paves the

way for our SIMPATH algorithm. SIMPATH builds on the CELF

optimization that iteratively selects seeds in a lazy forward

manner. However, instead of using expensive MC simulations

to estimate the spread, we show that under the LT model,

the spread can be computed by enumerating the simple paths

starting from the seed nodes. It is known that the problem

of enumerating simple paths is #P-hard [11]. However, the

majority of the influence flows within a small neighborhood,

since probabilities of paths diminish rapidly as they get longer.

Thus, the spread can be computed accurately by enumerating

paths within a small neighborhood. We propose a parameter

η to control the size of the neighborhood that represents a

direct trade-off between accuracy of spread estimation and

running time. Our spread estimation algorithm which we call

SIMPATH-SPREAD is given in Section IV.

We propose two novel optimizations to reduce the number

of spread estimation calls made by SIMPATH. The first one,

which we call VERTEX COVER OPTIMIZATION, cuts down on

the number of calls made in the first iteration (Section V.A),

thus addressing a key weakness of the simple greedy algorithm

that is not addressed by CELF. We show that the spread of

a node can be computed directly using the spread of its out-

neighbors. Thus, in the first iteration, we first construct a vertex

cover of the graph and obtain the spread only for these nodes

using the spread estimation procedure. The spread of the rest

of the nodes is derived from this. This significantly reduces

the running time of the first iteration.

Next, we observe that as the size of the seed set grows

in subsequent iterations, the spread estimation process slows

down considerably. In Section V.B, we provide another op-

timization called LOOK AHEAD OPTIMIZATION which ad-

dresses this issue and keeps the running time of subsequent

iterations small. Specifically, using a parameter ℓ, it picks the

top-ℓ most promising seed candidates in the start of an iteration

and shares the marginal gain computation of those candidates.

In Section VI, we show through extensive experiments on

four real datasets that our SIMPATH algorithm is more efficient,

consumes less memory and produces seed sets with larger

spread of influence than LDAG, the current state of art. Indeed,

among all the settings we tried, the seed selection quality of

SIMPATH is quite close to the simple greedy algorithm.

Related work is discussed in Section II, while Section VII

summarizes the paper and discusses promising directions for

further research.

II. RELATED WORK

Influence maximization from a data mining perspective was

first studied by Domingos and Richardson [12]. Later, Kempe

et al. [1] modeled the problem as the discrete optimization

problem described in the introduction. A major limitation of

their approach is the inefficiency.

Significant amount of work has been done to find effi-

cient solutions to influence maximization. Leskovec et al. [3]

exploited submodularity and proposed a “lazy-forward” op-

timization (called CELF) to the simple greedy algorithm.

The idea is that the marginal gain of a node in the current

iteration cannot be more than its marginal gain in previous

iterations and thus the number of spread estimation calls can

be reduced significantly. Goyal et al. [13] proposed CELF++,

an extension to CELF that further reduces the number of

spread estimation calls. The key idea behind CELF++ is that

in any iteration, whenever the marginal gain of a node u is

computed w.r.t. the current seed set S, the algorithm also

computes the marginal gain of u w.r.t. S ∪ {x} where x
is the node that has the maximum marginal gain among all

the nodes examined in the current iteration until now. Thus,

if x is chosen as the seed node at the end of the current

iteration, there is no need to recompute the marginal gain

of u in the next iteration. Clearly, the algorithm performs

well when it is possible to compute the marginal gain of a



bu,v Influence weight on edge (u, v)
ΥS,v Prob. that v activates if S is the initial seed set

σ(S) Expected spread of influence achieved by seed set S

Nin(v) Set of in-neighbors of v

Nout(v) Set of out-neighbors of v

P = 〈v1, ..., vm〉 A simple path from v1 to vm

P(u, v) Set of all simple paths from node u to v

η Pruning threshold (see Section IV)

ℓ Look-ahead value (see Section V.B)

Fig. 1. Notations used. Terms Υ, σ and P(·) can have superscripts implying
that these terms are evaluated on the corresponding subgraph. E.g., σW (S)
is the influence spread achieved by the seed set S on the subgraph induced
by nodes in W .

node u w.r.t. S and S ∪ {x} simultaneously without much

overhead. The authors of [13] report that CELF++ is found to

be approximately 35-55% faster than CELF. A natural question

that arises is how the SIMPATH algorithm compares with the

simple greedy algorithm leveraging CELF++ instead of CELF.

We will address this question in Section VI.

A substantial amount of work has been done to get round

the MC simulations for seed selection, particularly for the IC

model [9], [8], [6]. By contrast, much less work has been

done to improve the efficiency of seed selection under the LT

model. A notable exception is the scalable LDAG algorithm

of Chen et al. [7]. The key differences between LDAG and

SIMPATH were discussed in the introduction. An extensive

empirical comparison appears in Section VI.

Goyal et al. [10] proposed an alternative approach to in-

fluence maximization which, instead of assuming influence

probabilities are given as input, directly uses the past available

data. The complementary problem of learning influence prob-

abilities from the available data is studied in [14] and [15].

III. PROPERTIES OF LINEAR THRESHOLD MODEL

Consider a digraph G = (V,E, b) with edges (u, v) ∈ E
labeled with influence weights bu,v that represent the influence

weight of node u on v. Kempe et al. [1] showed that the LT

model is equivalent to the “live-edge” model where a node

v ∈ V picks at most one incoming edge with a probability

equal to the edge weight. If an edge is selected, it is considered

live. Otherwise, it is considered dead/blocked. This results

in a distribution over possible worlds. Then the spread is

the expected number of nodes reachable from the initial

seed set S over the possible worlds. Let X be any possible

world and σX(S) denote the number of nodes reachable

from S via live paths in (the deterministic graph) X where

a live path is a path made of live edges. Then the spread

of S, by definition, is σ(S) =
∑

X Pr[X] · σX(S) where

σX(S) =
∑

v∈V I(S, v,X). Here, I(S, v,X) is the indicator

function which is 1 if there is a “live” path in X from any

node in S to v and 0 otherwise. Hence,

σ(S) =
∑

v∈V

∑

X

Pr[X] · I(S, v,X) =
∑

v∈V

ΥS,v, (1)

where ΥS,v is the probability that v activates if S is the

initial seed set. We call it the total influence weight of S on

v. We consider only directed paths. Let P = 〈v1, v2, ...vm〉 be

a path. We write (vi, vj) ∈ P to indicate that the edge (vi, vj)
belongs to path P. A simple path is a path in which no nodes

x

y

z

0.1

0.3 0.2

0.5

0.4

Fig. 2. Example

are repeated. Henceforth by paths we mean directed simple

paths. Clearly, Pr[P] =
∏

(vi,vj)∈P
bvi,vj

. By definition of the

“live-edge” model, we have1,

Υu,v =
∑

P∈P(u,v)

Pr[P] (2)

where Pr[P] is the probability of a path P being live and

P(u, v) is the set of all paths from node u to v. As an example,

consider the influence graph shown in Fig. 2. The influence

of node x on z is Υx,z = 0.3 · 0.2 + 0.4 = 0.46.

With superscripts, we denote the corresponding subgraph

considered. For example, ΥV−S
u,v denotes the total influence

weight of u on v in the subgraph induced by V − S. For

simplicity, we write V −S for V \S and V −S+u to denote

((V \S)∪{u}). When there is no superscript, the whole graph

G is considered. Fig. 1 summarizes the notations used in the

paper. SIMPATH builds on the following key result.

Theorem 1. In the LT model, the spread of a set S is the sum

of the spread of each node u ∈ S on subgraphs induced by

V − S + u. That is,

σ(S) =
∑

u∈S

σV−S+u(u)

We first illustrate the theorem using the example shown in

Fig. 2. Let S = {x, y}, then according to the claim, σ(S) =
σV−y(x) + σV−x(y) = 1 + 0.4 + 1 + 0.2 = 2.6 which is the

correct spread of the set {x, y}.

Proof of theorem 1: We claim that ΥS,v =
∑

u∈S ΥV−S+u
u,v .

The theorem follows from this, upon taking the sum over all

nodes v ∈ V (see Eq. (1)). We next prove the claim. Intuitively,

it says that the influence weight of a set S on node v is the sum

of influence weights of each node u ∈ S on v on subgraphs

induced by V − S + u. We prove the claim by induction on

path lengths. Specifically, let ΥS,v(t) denote the total influence

weight of S on v via all paths of length t. Clearly, ΥS,v =∑
t ΥS,v(t). To prove the claim above, it suffices to show

ΥS,v(t) =
∑

u∈S ΥV−S+u
u,v (t), ∀t.

Base Case: When the path length t is 0, we must have

v ∈ S. Then the claim is trivial as ΥS,v(0) = ΥV−S+v
v,v (0) = 1

and ΥV−S+w
w,v (0) = 0, ∀w 6= v.

Induction Step: Assume the claim for t. Consider paths

from S to v of length t + 1. A path of length t + 1 from

S to v must contain a sub-path of length t from S to some

in-neighbor w of v. Clearly, this sub-path cannot pass through

v (since the path is simple). Thus, we have:

ΥS,v(t+ 1) =
∑

w∈Nin(v)

ΥV−v
S,w (t) · bw,v (3)

1This definition is also used in [7].



where N in(v) denotes the set of in-neighbors of v. By

expanding the term ΥV−v
S,w (t) using induction hypothesis in

Eq. 3, we have:

ΥS,v(t+ 1) =
∑

w∈Nin(v)

∑

u∈S

ΥV−v−S+u
u,w (t) · bw,v

By switching the summations, we have ΥS,v(t + 1) =∑
u∈S

∑
w∈Nin(v) Υ

V−v−S+u
u,w (t)·bw,v =

∑
u∈S ΥV−S+u

u,v (t+
1). This was to be shown.

IV. SPREAD ESTIMATION USING SIMPATH-SPREAD

In this section, we develop SIMPATH-SPREAD, the spread

estimation algorithm used by SIMPATH. Eq. 1 and 2 show that

the spread of a node can be computed by summing the weights

(i.e., probabilities) of all simple paths originating from it. For

instance, consider the example shown in Fig. 2. The spread of

the node x is Υx,x + Υx,y + Υx,z = 1 + (0.3 + 0.4 · 0.5) +
(0.4 + 0.3 · 0.2) = 1.96. Moreover, in Theorem 1, we show

that the spread of a seed set S can be obtained as the sum of

spreads of individual nodes u in S in subgraphs induced by

V − S + u. Hence, the spread of a seed set can be computed

by enumerating paths from nodes in S, although on different

subgraphs. Not surprisingly, the problem of enumerating all

simple paths is #P-hard [11]. However, we are interested only

in path weight (that is, probability of a path being live), which

decreases rapidly as the length of the path increases. Thus,

the majority of the influence can be captured by exploring

the paths within a small neighborhood, where the size of the

neighborhood can be controlled by the error we can tolerate.

This is the basis of our algorithm. We adapt the classical

BACKTRACK algorithm [16], [17] to enumerate all simple

paths as follows. We maintain a stack Q containing the nodes

in the current path. Initially, Q contains only the current seed

node. The algorithm calls the subroutine FORWARD which

takes the last element in Q and adds the nodes to it in a depth-

first fashion until no more nodes can be added. Whenever a

new node is added, the subroutine FORWARD ensures that it

does not create a cycle and the path segment has not been

explored before. If no more nodes can be added, the algorithm

backtracks and the last node is removed from the stack Q. The

subroutine FORWARD is called again to get a new path. The

process is continued until all the paths are enumerated.

As argued above, the majority of the influence to a node

flows in from a small neighborhood and can be captured by

enumerating paths within that neighborhood. Thus, we prune a

path once its weight reaches below a given pruning threshold

η. Intuitively, η is the error we can tolerate. It represents

the trade-off between accuracy of the estimated spread and

efficiency of the algorithm (running time). If η is high, we

can tolerate larger error and prune paths early, at the price of

accuracy of our spread estimation. On the other hand, if it is

low, we will explore more paths, leading to high accuracy but

with increased running time. As a special case, if η = 0, then

the spread obtained would be exact. We study the effect of η
on the quality of seed set and running time in Section VI.

The spread estimation procedure SIMPATH-SPREAD is de-

scribed in Algorithms 1, 2, 3. Given a set S and a pruning

threshold η, Algorithm 1 exploits Theorem 1 to compute the

spread of S. For each node u ∈ S, it calls BACKTRACK (line

3) which in turn takes a node u, the pruning threshold η, a

given set of nodes W ⊆ V and estimates σW (u). In addition,

the algorithm also takes a set U ⊆ V which is needed to

implement optimizations proposed in Section V. To give a

preview, in addition to computing σW (u), the algorithm also

computes σW−v(u) for all nodes v ∈ U . We don’t need it

right now and hence assume U to be an empty set. We will

revisit to it in Section V.

Algorithm 1 SIMPATH-SPREAD

Input: S, η, U
1: σ(S) = 0.
2: for each u ∈ S do
3: σ(S)← σ(S) + BACKTRACK(u, η, V − S + u, U).
4: return σ(S).

Algorithm 2 BACKTRACK

Input: u, η,W,U
1: Q← {u}; spd← 1; pp← 1; D ← null.
2: while Q 6= ∅ do
3: [Q,D, spd, pp] ← FORWARD(Q,D, spd, pp, η,W,U).
4: u← Q.last(); Q← Q− u; delete D[u]; v ← Q.last().
5: pp← pp/bv,u.
6: return spd.

The subroutine BACKTRACK (Algorithm 2) enumerates all

simple paths starting from u. It uses a stack Q to maintain

the current nodes on the path, pp to maintain the weight of

the current path and spd to track the spread of node u in the

subgraph induced by W . D[x] maintains the out-neighbors of

x that have been seen so far. Using this, we can keep track

of the explored paths from a node efficiently. The variables

are initialized in line 1. The subroutine FORWARD is called

repeatedly which gives a new pruned path that is undiscovered

until now (line 3). Then, the last node is removed from the

path and the variable pp is set accordingly. Since u no longer

exists in the current path, D[u] is deleted (lines 4-5).

Algorithm 3 FORWARD

Input: Q,D, spd, pp, η,W,U
1: x = Q.last().
2: while ∃y ∈ Nout(x): y /∈ Q, y /∈ D[x], y ∈W do
3: if pp · bx,y < η then
4: D[x].insert(y).
5: else
6: Q.add(y).
7: pp← pp · bx,y; spd← spd+ pp.
8: D[x].insert(y); x← Q.last().
9: for each v ∈ U such that v /∈ Q do

10: spdW−v ← spdW−v + pp.
11: return [Q,D, spd, pp].

Next, we explain the FORWARD algorithm (Algorithm 3).

It takes the last element as x on the path (line 1) and extends

it as much as possible in a depth-first fashion. A new node y
added to the path must be an out-neighbor of x which is not



yet explored (y /∈ D[x]), should not create a cycle (y /∈ Q)

and should be in the graph considered (y ∈ W ) (line 2). Lines

3-4 prune the path if its weight becomes less than the pruning

threshold η and the node y is added to the seen neighbors of

x. If a node y is added to the path, the weight of the path pp
is updated accordingly and the spread is updated (lines 5-7).

Finally, the node y is added to the seen neighbors of x (line

8). The process is continued until no new nodes can be added

to the path. Lines 9-10 are used only for the optimizations

proposed in section V and can be ignored for now.

V. ASSEMBLING AND OPTIMIZING SIMPATH

In the previous section, we proposed SIMPATH-SPREAD

to compute the spread of a seed set. Now, we can plug it

in the greedy algorithm (optimized with CELF) to obtain an

algorithm for influence maximization. This forms the core

of the SIMPATH algorithm. We propose two optimizations to

further improve SIMPATH which make it highly efficient.

A. Vertex Cover Optimization

Even with the CELF optimization, in the first iteration,

the spread estimation needs to be done for all nodes in

the graph, resulting in |V | calls to the SIMPATH-SPREAD

subroutine, where V is the set of nodes in the input social

graph. This makes the selection process of the first seed

particularly slow. In this section, we propose the VERTEX

COVER OPTIMIZATION that reduces the number of calls to

SIMPATH-SPREAD significantly. It leverages the Theorem 2,

proved below, which says for any node v, if we have the

spread values of all its out-neighbors in the subgraph induced

by V − v, then we can directly compute the spread of v
without making any call to SIMPATH-SPREAD. Using this

insight, in the first iteration, we first split the set V of all

nodes into two disjoint subsets C and V − C such that

C is a vertex cover of the underlying undirected graph G′

of the directed social graph G.2 Then, we simultaneously

compute for each node u ∈ C, the spread of u in G and

in the subgraphs induced by V − v, for each in-neighbor v
of u that is present in V − C. In Algorithm 1, this can be

achieved by setting U = (V −C)∩N in(u) (see Algorithm 4

for details). The BACKTRACK subroutine remains unchanged

and in the FORWARD subroutine, in addition to updating spd
(that is, σ(u)), lines 9-10 update the variable spdV−v (which

represents σV−v(u)) for all v ∈ (V − C) ∩N in(u) properly.

Note that in the first iteration, W = V . Clearly, v must not

be in the current path (v 6∈ Q). Once this is done, we can use

Theorem 2 to compute the spread of every node in V − C
directly.

Theorem 2. In the LT model, the spread of a node linearly

depends on the spread of its out-neighbors as follows.

σ(v) = 1 +
∑

u∈Nout(v)

bv,u · σV−v(u)

2The underlying undirected graph G′ of a digraph G is obtained by ignoring
the directions of edges and deleting any duplicate edges. A vertex cover of
a graph is a set of vertices such that each edge of the graph is incident to at
least one vertex in the set.

As an example, consider the graph shown in Fig. 2. Spread

of node x can be computed as σ(x) = 1 + bx,y · σV−x(y) +
bx,z · σ

V−x(z) = 1 + 0.3 · (1 + 0.2) + 0.4 · (1 + 0.5) = 1.96.

Proof of theorem 2: Consider Υv,y, the influence of v on an

arbitrary node y. Recall that it is the sum of probabilities of

simple paths from v to y. If y ≡ v, Υv,y = 1. For y ∈ V − v,

any path from v to y must pass through some out-neighbor u
of v. Let P = 〈v, u, ..., y〉 be such a path. Clearly, Pr[P] =
bv,u · Pr[P′], where P

′ = 〈u, ..., y〉. From this, we have

Υv,y =
∑

u∈Nout(v)

∑

P′∈P(u,y)

bv,u · Pr[P′]

where Nout(v) is the set of out-neighbors of v. Since path P

does not have any cycles, P′ must not contain v and thus, we

can rewrite the above equation as

Υv,y =
∑

u∈Nout(v)

∑

P′∈PV −v(u,y)

bv,u · Pr[P′]

=
∑

u∈Nout(v)

bv,u ·ΥV−v
u,y

where PV−v(u, y) is the set of (simple) paths from u to y
in the subgraph induced by V − v. Taking the sum over all

y ∈ V , we get the theorem.

Finding Vertex Cover. Minimizing the number of calls to

SIMPATH-SPREAD in the first iteration making use of The-

orem 2, requires finding a minimum vertex cover (that is,

a vertex cover of minimum size). However, this is an NP-

complete problem. Fortunately, this problem is approximable

and several PTIME approximation algorithms are known (e.g.,

see [18] and [19]). However, it is important to keep in mind

that the overhead in finding an approximate minimum vertex

cover should not overshadow the benefits coming from it, by

means of saved spread estimation calls.

In our experiments, we observed that when using the

approximation algorithms, the amount of savings achieved is

dominated by the running time of the algorithms, so we settle

for a heuristic solution. We use a maximum degree heuristic

that repeatedly picks a node of maximum degree and adds it

into the vertex cover C whenever at least one of its incident

edges is not yet covered. It does this until all edges in the

(underlying undirected) graph G′ are covered, i.e., incident

to at least one vertex in C. It is worth pointing out that

the approximation quality of the vertex cover does not affect

the output quality (i.e., seed selection) of our algorithm. We

employ it only to improve the efficiency of our algorithm.

Thus, we recommend a fast heuristic such as the maximum

degree heuristic for VERTEX COVER OPTIMIZATION.

B. Look Ahead Optimization

As the seed set grows, the time spent on the spread

estimation process increases. An important reason is that the

number of calls to the BACKTRACK subroutine in an iteration

increases hurting the performance of SIMPATH. For instance,

if Si is the seed set after the i-th iteration (|Si| = i), then

for each seed candidate x, we need to compute σ(Si + x) to



obtain its marginal gain σ(Si + x) − σ(Si), where σ(Si) is

known from the previous iteration.

It takes i+ 1 calls to BACKTRACK to compute σ(Si + x),
resulting in j · (i+1) calls in total, where j is the index of the

seed node to be picked in the CELF queue. In other words,

j is the number of nodes the algorithm ends up examining

before picking the seed in the iteration. In each BACKTRACK

call, we compute the spread of an individual node v ∈ Si + x
on the subgraph induced by V − S + v. Except for the node

x, the work for all other nodes in Si is largely repeated, al-

though on slightly different graphs. In this section, we propose

LOOK AHEAD OPTIMIZATION, which intelligently avoids this

repetition and as a result, significantly reduces the number of

BACKTRACK calls. We manipulate Theorem 1 as follows.

σ(Si + x) =
∑

u∈Si+x

σV−Si−x+u(u) (4)

= σV−Si(x) +
∑

u∈Si

σV−Si−x+u(u) (5)

= σV−Si(x) + σV−x(Si) (6)

Thus, if we have a set U of the most promising seed

candidates to use from an iteration, say i+1, we can compute

σV−x(Si) for all x ∈ U in the start of the iteration i+1. Then,

for each x, we call BACKTRACK to compute σV−Si(x).
Let ℓ be the look-ahead value, that is, the number of most

promising seed candidates in an iteration. At the beginning of

the i + 1-th iteration, we select the top-ℓ nodes as one batch

from the CELF queue as U , and estimate σ(Si + x) based

on Eq. (7). If the algorithm fails to find a new seed from the

current batch, we take the next top-ℓ nodes from the CELF

queue as U . The process is repeated until a seed is selected

(see Algorithm 4). Consequently, the optimization reduces the

number of BACKTRACK calls to i · ⌈j/ℓ⌉ + j where ⌈j/l⌉ is

the number of batches we end up processing. The look-ahead

value ℓ represents the trade-off between the number of batches

we process and the overhead of computing σV−x(Si) for all

x ∈ U . A large value of ℓ would ensure that the seed node

is picked in the first batch itself (⌈j/ℓ⌉ = 1). However, that

would be inefficient as the overhead of computing σV−x(Si)
for all x ∈ U for a large U is high. On the other hand, a

small value of ℓ would result in too many batches that we end

up processing. As a special case, ℓ = 1 is equivalent to the

optimization not being applied. We study the effect of ℓ on

SIMPATH’s efficiency in Section VI.

C. SIMPATH: Putting the pieces together

Algorithm 4 shows the complete SIMPATH algorithm. Lines

1-8 implement the VERTEX COVER OPTIMIZATION. First, the

algorithm finds a vertex cover C (line 1), then for every node

u ∈ C, its spread is computed on required subgraphs needed

for the optimization (lines 2-4). This is done in a single call

to SIMPATH-SPREAD. Next, for the nodes that are not in the

vertex cover, the spread is computed using Theorem 2 (lines 6-

7). The CELF queue (sorted in the decreasing order of marginal

gains) is built accordingly (lines 5 and 8).

Lines 9-20 select the seed set in a lazy forward (CELF)

fashion using LOOK AHEAD OPTIMIZATION. The spread of

the seed set S is maintained using the variable spd. At a time,

we take a batch of top-ℓ nodes, call it U , from the CELF

queue (line 11). In a single call to SIMPATH-SPREAD, the

spread of S is computed on required subgraphs needed for the

optimization (lines 12). For a node x ∈ U , if it is processed

before in the same iteration, then it is added in the seed set as

it implies that x has the maximum marginal gain w.r.t. S (lines

13-16). Recall that the CELF queue is maintained in decreasing

order of the marginal gains and thus, no other node can have

a larger marginal gain. If x is not seen before, we need to

recompute its marginal gain, which is done in lines 17-19.

The subroutine BACKTRACK is called to compute σV−S(x)
and Eq. 6 is applied to get the spread of the set S + x. The

CELF queue is updated accordingly (line 20).

Algorithm 4 SIMPATH

Input: G = (V,E, b), η, ℓ
1: Find the vertex cover of input graph G. Call it C.
2: for each u ∈ C do
3: U ← (V − C) ∩N in(u).
4: Compute σ(u) and σV −v(u), ∀v ∈ U in a single call to

Algorithm 1: SIMPATH-SPREAD(u, η, U).
5: Add u to CELF queue.
6: for each v ∈ V − C do
7: Compute σ(v) using Theorem 2.
8: Add v to CELF queue.
9: S ← ∅. spd← 0.

10: while |S| < k do
11: U ← top-ℓ nodes in CELF queue.
12: Compute σV −x(S), ∀x ∈ U , in a single call to Algorithm 1:

SIMPATH-SPREAD(S, η, U).
13: for each x ∈ U do
14: if x is previously examined in the current iteration then
15: S ← S + x; Update spd.
16: Remove x from CELF queue. Break out of the loop.
17: Call BACKTRACK(x, η, V − S, ∅) to compute σV −S(x).
18: Compute σ(S + x) using Eq. 6.
19: Compute marginal gain of u as σ(S + x)− spd.
20: Re-insert u in CELF queue such that its order is maintained.
21: return S.

VI. EXPERIMENTS

We conduct extensive experiments on four real-world

datasets ranging from small to large scale, to evaluate the

performance of SIMPATH and compare it with well-known

influence maximization algorithms on various aspects such as

efficiency, memory consumption and quality of the seed set.

The code is written in C++ using the Standard Template

Library (STL), and all the experiments are run on a Linux

(OpenSuSE 11.3) machine with a 2.93GHz Intel Xeon CPU

and 64GB memory. The code is available for download at

http://people.cs.ubc.ca/∼welu/downloads.html. It includes the

implementation of all the algorithms listed in this section.

A. Datasets

We use four real-world graph data sets whose statistics are

summarized in Table I. To obtain influence weights on edges,



TABLE I
STATISTICS OF DATASETS.

Dataset NetHEPT Last.fm Flixster DBLP

#Nodes 15K 61K 99K 914K

#Directed Edges 62K 584K 978K 6.6M

Avg. Degree 4.1 9.6 9.9 7.2
Maximum Out-degree 64 1073 428 950
#Connected Components 1781 370 1217 41.5K

Avg. Component Size 8.55 164 81.4 22
Largest Component Size 6794 59.7K 96.5K 789K

we adopt the methods in [15] and [1] and learn them. More

precisely, we assign the weight on an edge (u, v) as bu,v =
A(u, v)/N(v) where A(u, v) is the number of actions both u
and v perform, and N(v) is a normalization factor to ensure

that the sum of incoming weights to v is 1, i.e., N(v) =∑
u∈Nin(v) A(u, v). The details are as follows:

NetHEPT. Frequently used in previous works [1], [8], [6],

[7] in this area, NetHEPT is a collaboration network taken

from the “High Energy Physics (Theory)” section of arXiv3

with nodes representing authors and edges representing co-

authorship. Here, an action is a user publishing a paper, and

A(u, v) is the number of papers co-authored by u and v. The

numbers of nodes and directed edges in the graph are 15K

and 62K respectively4.

Last.fm. Taken from a popular music and online radio website

with social networking features5, this network data contains

100K users, 3.15M edges, 66K groups, and 1M subscriptions

[20]. We consider “joining a group” as an action, and thus,

A(u, v) is the number of groups both u and v have joined.

After excluding users who did not join any group, we are left

with 60K users with 584K directed edges.

Flixster. Taken from a social movie site6 allowing users to

share movie ratings, the raw data contains 1M users with 28M

edges. There are 8.2M ratings distributed among 49K distinct

movies [21]7. Here, an action is a user rating a movie and

thus, A(u, v) is the number of movies rated by both u and v.

Users who do not rate any movies are excluded. The resulting

graph contains 99K users and 978K directed edges.

DBLP. A collaboration network from the DBLP Computer

Science Bibliography, much larger compared to NetHEPT.

We obtain all the latest bibliographic records (snapshot on June

7, 2011) available from the website. Similar to NetHEPT,

A(u, v) is the number of manuscripts both u and v have co-

authored. The graph consists of 914K nodes and 6.6M edges.

B. Algorithms Compared

Besides LDAG, which is the state of art, we include several

other algorithms and some generic model independent heuris-

tics (listed below) in our empirical evaluation.

3http://arxiv.org/
4The dataset is publicly available at http://research.microsoft.com/en-us/

people/weic/graphdata.zip
5http://www.last.fm/
6http://www.flixster.com/
7The dataset is available at http://www.cs.sfu.ca/∼sja25/personal/datasets

HIGH-DEGREE. A heuristic based on the notion of “degree

centrality”, considering high-degree nodes as influential [1].

The seeds are the nodes with the k highest out-degrees.

PAGERANK. A link analysis algorithm to rank the importance

of pages in a Web graph [22]. We implement the power method

with a damping factor of 0.85 and pick the k highest-ranked

nodes as seeds. We stop when the score vectors from two

consecutive iterations differ by at most 10−6 as per L1-norm.

MC-CELF. The greedy algorithm with CELF optimization [3].

Following the literature, we run 10, 000 Monte Carlo (MC)

simulations to estimate the spread of a seed set.

LDAG. The algorithm proposed in [7]. As recommended by

the authors, we use the influence parameter θ = 1/320 to

control the size of the local DAG constructed for each node.

SIMPATH. Our proposed algorithm described in Sections IV

and V (Algorithm 4). Unless otherwise noted, the pruning

threshold η used in SIMPATH is set to 10−3 and the look-

ahead value ℓ is set to 4. These values were chosen based on

empirically observing the performance.

SPS-CELF++. As mentioned in Section II, an improvement to

CELF, called CELF++, was recently proposed in [13]. Thus,

a natural question is whether we can obtain an algorithm

better than SIMPATH by using CELF++ in place of CELF. We

investigate this question next. More concretely, define SPS-

CELF++ to be the greedy algorithm with CELF++ (instead

of CELF) used to select seeds and SIMPATH-SPREAD (instead

of MC) used for spread estimation. SPS-CELF++ also lever-

ages VERTEX COVER OPTIMIZATION for the first iteration

(Section V.A). As recommended by [13], we apply CELF++

starting from the second iteration. For fairness of comparison,

we set η to the same value 10−3 that we used in SIMPATH.

As described in Section II, CELF++ works well when it is

possible to compute marginal gain of a node u w.r.t. the current

seed set Si and Si + x simultaneously where x is the node

having the maximum marginal gain among all nodes examined

in the current iteration. Next, we show how to do this within

SIMPATH architecture. From Theorem 1, using an algebraic

manipulation similar to that in Eq. (6), we can obtain

σ(Si + x+ u) = σV−x(Si + u) + σV−Si−u(x)

Thus, in the i-th iteration, while computing σ(Si+u), we also

compute σV−x(Si + u) by setting U = {x} in Algorithm 1.

Finally, if x is selected as seed, we just compute σV−Si−u(x)
to obtain σ(Si + x+ u).

However, CELF++ cannot be applied in conjunction with

the LOOK AHEAD OPTIMIZATION as CELF++ requires to

compute σV−x(Si + u), where x is the previous best node

(having maximum marginal gain), but when we compute the

spread of Si on different subgraphs at the beginning of an

iteration, this x is unknown. As a result, in SPS-CELF++,

we can incorporate VERTEX COVER OPTIMIZATION but not

LOOK AHEAD OPTIMIZATION. We include SPS-CELF++ in

our evaluation. Since it is more efficient than simple greedy

using CELF++, we do not evaluate the latter separately.



 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d
 o

f 
In

fl
u
e
n
c
e

Number of Seeds

MC-CELF
SimPath/SPS-CELF++

LDAG
PageRank

High-Degree
 6

 8

 10

 12

 14

 16

 18

 20

 22

 5  10  15  20  25  30  35  40  45  50

S
p

re
a

d
 o

f 
In

fl
u

e
n

c
e

 (
x
 1

0
0

0
)

Number of Seeds

MC-CELF
SimPath/SPS-CELF++

LDAG
PageRank

High-Degree
 0

 5

 10

 15

 20

 25

 5  10  15  20  25  30  35  40  45  50

S
p

re
a

d
 o

f 
In

fl
u

e
n

c
e

 (
x
 1

0
0

0
)

Number of Seeds

SimPath/SPS-CELF++
LDAG

PageRank
High-Degree

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5  10  15  20  25  30  35  40  45  50

S
p

re
a

d
 o

f 
In

fl
u

e
n

c
e

 (
x
 1

0
0

0
)

Number of Seeds

SimPath/SPS-CELF++
LDAG

PageRank
High-Degree

(a) NetHEPT (b) Last.fm (c) Flixster (d) DBLP

Fig. 3. Influence spread achieved by various algorithms.

 0.01

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Number of Seeds

MC-CELF
LDAG

SPS-CELF++
SimPath

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30  35  40  45  50

R
u
n
n
in

g
 T

im
e
 (

m
in

)

Number of Seeds

MC-CELF
LDAG

SPS-CELF++
SimPath

PageRank

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25  30  35  40  45  50

R
u
n
n
in

g
 T

im
e
 (

m
in

)

Number of Seeds

LDAG
SPS-CELF++

SimPath
PageRank

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40  45  50

R
u
n
n
in

g
 T

im
e
 (

m
in

)

Number of Seeds

LDAG
SPS-CELF++

SimPath
PageRank

High-Degree

(a) NetHEPT (b) Last.fm (c) Flixster (d) DBLP

Fig. 4. Efficiency: Comparisons of running time. Running times below 0.01 minutes are not shown.

TABLE II
SIMPATH’S IMPROVEMENT OVER LDAG

Dataset
Improvement in

Spread Running Time Memory

NetHEPT 8.7% 21.7% 62.9%
Last.fm 1.7% 42.9% 86.5%
Flixster 8.9% 33.6% 87.5%
DBLP 2.3% 67.2% 87.1%

C. Experimental Results

We compare the performance of the various algorithms on

the following metrics: quality of seed sets, running time, mem-

ory usage, and scalability. We also study the effectiveness of

our two optimizations: the VERTEX COVER OPTIMIZATION

and LOOK AHEAD OPTIMIZATION.

Table II gives an overall summary of the relative perfor-

mance of LDAG and SIMPATH observed in our experiments.

It shows the percentage improvement registered by SIMPATH

over LDAG on quality of seed set (measured in spread),

running time, and memory consumption. On all counts, it can

be seen that SIMPATH outperforms LDAG, the state of the art.

We will drill down into the details in the next subsections.

Due to MC-CELF’s lack of efficiency and scalability, its

results are only reported for NetHEPT and Last.fm, the two

datasets on which it can finish in a reasonable amount of time.

On Quality of Seed Sets. The quality of the seed sets obtained

from different algorithms is evaluated based on the expected

spread of influence. Higher the spread, better the quality. For

fair comparisons, we run MC simulations 10, 000 times to

obtain the “ground truth” spread of the seeds sets obtained by

all algorithms. Fig. 3 shows the spread achieved against the

size of the seed set. We show the spread of the seed sets chosen

by SIMPATH and SPS-CELF++ as one plot because they both

use Algorithm 1 (SIMPATH-SPREAD) to estimate the spread

and hence, the seed sets produced by both the algorithms are

exactly the same.

The seed sets output by SIMPATH are quite competitive in

quality with those of MC-CELF. For instance, both have the

spread 1408 on NetHEPT, while on Last.fm, SIMPATH is

only 0.7% lower than MC-CELF in spread achieved. Note that

MC-CELF is too slow to complete on Flixster and DBLP.

Except for MC-CELF, on all datasets, SIMPATH is able to

produce seed sets of the highest quality. The biggest differ-

ences between SIMPATH and LDAG are seen on Flixster and

NetHEPT, where the seed set of SIMPATH has 8.9% and 8.7%
larger spread than that of LDAG, respectively. PAGERANK and

HIGH-DEGREE have similar performances, both being worse

than SIMPATH, e.g., PAGERANK is 9.7%, 8.2%, 27.5%, and

4.7% lower than SIMPATH in spread achieved on NetHEPT,

Last.fm, Flixster, DBLP, respectively.

On Efficiency and Memory Consumption. We evaluate

the efficiency and scalability on two aspects: running time

and memory usage. Fig. 4 reports the time taken by various

algorithms against the size of the seed set. Note that the plots

for NetHEPT and Last.fm have a logarithmic scale on the

y-axis. MC-CELF takes 9 hours to finish on NetHEPT and

7 days on Last.fm while it fails to complete in a reasonable

amount of time on Flixster and DBLP.

HIGH-DEGREE and PAGERANK finish almost instantly in

most cases8. Except for them, SIMPATH is the fastest among

other algorithms on all datasets. It is not only highly efficient

on moderate datasets such as NetHEPT (10 seconds), but also

scalable to large data, finishing in 5.6 min. on Flixster and in

12.0 min. on DBLP to select 50 seeds. LDAG is approximately

twice and 3 times slower on Flixster and DBLP, respectively.

On the other hand, SPS-CELF++ is less scalable than

SIMPATH on large datasets. This is because that SPS-CELF++

is not compatible with the LOOK AHEAD OPTIMIZATION, so

it makes a much larger number of calls to BACKTRACK

(Algorithm 2) to compute the marginal gains of seed can-

didates, especially when |S| becomes large. Recall that

8Running time below 0.01 min. are not shown on the plots.



Fig. 5. Comparison of memory usages by
MC-CELF, SIMPATH, and LDAG (logarithmic
scale).

Fig. 6. Effects of Vertex Cover Optimization
on the running time of SIMPATH’s 1st iteration
(logarithmic scale).

Fig. 7. Size of Vertex Covers for four datasets
(logarithmic scale).

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Number of Seeds

SimPath l=1
SPS-CELF++

SimPath l=2
SimPath l=4
SimPath l=6

SimPath l=10

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90  100

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Number of Seeds

SimPath l=1
SPS-CELF++

SimPath l=2
SimPath l=4
SimPath l=6

SimPath l=10

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25  30  35  40  45  50

N
u

m
b

e
r 

o
f 

C
a

lls
 t

o
 B

a
c
k
tr

a
c
k

Number of Seeds

No Look Ahead
Look Ahead (l=4)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20  25  30  35  40  45  50

N
u
m

b
e
r 

o
f 
C

a
lls

 t
o
 B

a
c
k
tr

a
c
k

Number of Seeds

No Look Ahead
Look Ahead (l=4)

(a) Flixster (b) DBLP (c) Flixster (d) DBLP

Fig. 8. LOOK AHEAD OPTIMIZATION on Flixster and DBLP: (a) and (b) show the effects of different look-ahead values ℓ on running time; (c) and (d)
show the number of BACKTRACK calls reduced by LOOK AHEAD OPTIMIZATION.

the VERTEX COVER OPTIMIZATION is indeed applicable to

SPS-CELF++, indicating that LOOK AHEAD OPTIMIZATION

makes a substantial difference in running time between

SIMPATH and SPS-CELF++ (more on this later).

Next, we compare the memory consumption of MC-CELF,

SIMPATH, SPS-CELF++, and LDAG in Fig. 5 (logarithmic

scale). LDAG consumes the most memory among the three

algorithms, as it maintains a local DAG for every single node

in the graph. Relatively, the memory usage by SIMPATH is

much less. For instance, on the largest dataset DBLP, LDAG

consumes 9.3GB while SIMPATH uses only 1.2GB. Indeed,

Table II shows that SIMPATH can save up to 87% of the

memory footprint that is used by LDAG.

On Vertex Cover Optimization. Recall that VERTEX COVER

OPTIMIZATION aims to reduce the number of spread estima-

tion calls in the first iteration, thus addressing a limitation

of CELF. We show its effectiveness in Fig. 6 and 7 (both

have logarithmic scale on Y -axis). In Fig. 6, we compare the

running time of the first iteration of SIMPATH with and without

the VERTEX COVER OPTIMIZATION. With the optimization

turned on, the first iteration is 28.6%, 11.9%, 17.5%, and

13.6% faster on NetHEPT, Last.fm, Flixster, and DBLP, re-

spectively, than without the optimization. This is because with

this optimization, the number of calls to SIMPATH-SPREAD is

only for a fraction of nodes in the graph (i.e., the vertex cover).

Next, in Fig. 7, we report the size of the vertex cover found

by the maximum degree heuristic for each dataset. On an

average, VERTEX COVER OPTIMIZATION reduces the number

of calls to SIMPATH-SPREAD by approximately 50%.

On Look Ahead Optimization. We show the effectiveness of

LOOK AHEAD OPTIMIZATION on Flixster and DBLP (results

are similar on other two datasets). First, we choose five values

to compare running time: 1 (equivalent to no look ahead), 2,

4, 6, and 10 (Fig. 8 (a)-(b)). We also include SPS-CELF++

(which is not compatible with this optimization) as baseline.

In both cases we select 100 seeds. On both Flixster and DBLP,

SIMPATH with small ℓ (1 or 2) performs poorly and is slower

than SPS-CELF++. For DBLP, ℓ = 4 is the best choice, while

ℓ = 6 is the best for Flixster. When ℓ increases to 10, the

running time goes up slightly on both datasets, suggesting that

to take a batch of 10 candidates introduces more overhead than

the benefit brought by the optimization (see Section V.B).

In Fig. 8 (c)-(d), we show the number of BACKTRACK calls

reduced by using the LOOK AHEAD OPTIMIZATION. On both

datasets, without look-ahead, the number of BACKTRACK calls

grows drastically and fluctuates when |S| increases, while with

look-ahead, it grows gently and steadily, being mostly around

the value of |S|.

On Pruning Threshold of SIMPATH. To study how effec-

tively the pruning threshold η represents a trade-off between

efficiency and quality of seed set, we run SIMPATH with

different values of η on one moderate dataset (NetHEPT) and

one large (DBLP). The look-ahead value ℓ is set to 4.

The results in Table III clearly show that on both datasets,

as η decreases, the running time of SIMPATH rises, while the

estimated spread of influence σ(S) is improving. For instance,

when we decrease η from 10−3 to 10−4, the running time

increases 7.7 folds while the spread is increased only by

0.41%. Other datasets follow similar behavior. It suggests that

0.001 is indeed a good choice for η. It is worth mentioning

that when η is relatively small (e.g., 10−4 and 10−5), SIMPATH

can even produce seed sets with larger spread than those of

MC-CELF with 10, 000 simulations (which give a spread of

1408 on NetHEPT).

On Number of Hops. The next analysis we perform is how

the choice of the pruning threshold is related to the average



 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8

F
re

q
u

e
n

c
y
 (

x
 1

0
0

0
)

Average Number of Hops

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5  6  7

F
re

q
u

e
n

c
y
 (

x
 1

0
0

0
)

Average Number of Hops

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7

F
re

q
u

e
n

c
y
 (

x
 1

0
0

0
)

Average Number of Hops

 0

 100

 200

 300

 400

 500

 600

 0  1  2  3  4  5  6  7  8

F
re

q
u

e
n

c
y
 (

x
 1

0
0

0
)

Average Number of Hops

(a) NetHEPT (b) Last.fm (c) Flixster (d) DBLP

Fig. 9. Frequency Distribution of Average Number of Hops.

TABLE III
PRUNING THRESHOLD η AS A TRADE-OFF BETWEEN QUALITY OF SEED

SETS AND EFFICIENCY. |S| = 50. RUNNING TIME IN MINUTES.

η
NetHEPT DBLP

σ(S) Time σ(S) Time

10−1 1160 0.02 16592 1.02

10−2 1362 0.03 17868 2.02

10−3 1408 0.18 18076 12.0

10−4 1414 1.3 18151 104.3

10−5 1416 9.9 18350 927.2

number of hops explored. Fig. 9 shows the distribution. On all

the four datasets, the distribution follows a bell curve with the

mean of either 3 or 4. For instance, on Flixster, for 60K users,

the influence decays below 10−3 in 3 hops on an average. We

also found that for any user, on all four datasets, the influence

decays below 10−3 in a maximum of 8 hops. These statistics

support our conjecture that the majority of the influence flows

in a small neighborhood, and thus, even though enumerating

simple paths in #P-hard in general, computation of influence

spread by enumerating simple paths can be done efficiently

and accurately by focusing on a small neighborhood.

To summarize, our experiments demonstrate that SIMPATH

consistently outperforms other influence maximization algo-

rithms and heuristics. It is able to produce seed sets with

quality comparable to those produced by MC-CELF, but is far

more efficient and scalable. Also, SIMPATH is shown to have

higher seed set quality, lower memory footprint, and better

scalability than other well-established heuristics and the state

of the art LDAG.

VII. SUMMARY AND FUTURE WORK

Designing a scalable algorithm delivering high quality seeds

for influence maximization problem under the LT model is the

main goal of this paper. The simple greedy algorithm is known

to produce the best possible seed sets (in terms of influence

spread) in PTIME but suffers from severe performance issues.

The CELF optimization [3] helps reduce the number of spread

estimation calls significantly, except in the first iteration. On

the other hand, the LDAG heuristic proposed by Chen et

al. [7], the current state of art, is shown to be significantly

faster than the greedy algorithm and is often found to gen-

erate a seed set of high quality. We propose an alternative

algorithm SIMPATH that computes the spread by exploring

simple paths in the neighborhood. Using a parameter η, we

can strike a balance between running time and desired qual-

ity (of the seed set). SIMPATH leverages two optimizations.

The VERTEX COVER OPTIMIZATION cuts down the spread

estimation calls in the first iteration, thus addressing a key

limitation of CELF, while the LOOK AHEAD OPTIMIZATION

improves the efficiency in subsequent iterations. Through

extensive experimentation on four real data sets, we show

that SIMPATH outperforms LDAG, in terms of running time,

memory consumption and the quality of the seed sets. Cur-

rently, we are investigating extension of our techniques for

other propagation models.

Acknowledgments. This research was partially supported by

a strategic network grant from NSERC Canada on Business

Intelligence Network.

REFERENCES

[1] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD 2003.

[2] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun, “Personalized recom-
mendation driven by information flow,” in SIGIR 2006.

[3] J. Leskovec et al., “Cost-effective outbreak detection in networks,” in
KDD 2007.

[4] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: finding topic-
sensitive influential twitterers,” in WSDM 2010.

[5] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in WSDM 2011.

[6] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in KDD 2010.

[7] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in ICDM 2010.

[8] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in KDD 2009.

[9] M. Kimura and K. Saito, “Tractable models for information diffusion
in social networks,” in ECML PKDD 2006.

[10] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based approach to
social influence maximization,” in PVLDB 2012.

[11] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410421, 1979.

[12] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in KDD 2001.

[13] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “CELF++: Optimizing
the greedy algorithm for influence maximization in social networks,” in
WWW (Companion Volume) 2011.

[14] K. Saito, R. Nakano, and M. Kimura, “Prediction of information
diffusion probabilities for independent cascade model,” in KES 2008.

[15] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM 2010.

[16] D. Kroft, “All paths through a maze,” Proc. IEEE 55, 1967.
[17] D. B. Johnson, “Find all the elementary circuits of a directed graph,” J.

SIAM, 4:77-84, 1975.
[18] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.
[19] G. Karakostas, “A better approximation ratio for the vertex cover

problem,” ACM Transactions on Algorithms, vol. 5, no. 4, 2009.
[20] R. Schifanella et al., “Folks in folksonomies: social link prediction from

shared metadata,” in WSDM 2010.
[21] M. Jamali and M. Ester, “A matrix factorization technique with trust

propagation for recommendation in social networks,” in RecSys, 2010.
[22] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117, 1998.


