
GuruMine: a Pattern Mining System
for Discovering Leaders and Tribes

Amit Goyal1 Francesco Bonchi2 Laks V. S. Lakshmanan1 Byung-Won On1

1Computer Science Department, University of British Columbia
Vancouver, BC, Canada

{goyal,bwon,laks}@cs.ubc.ca

2Yahoo! Research Barcelona, Spain
bonchi@yahoo-inc.com

Abstract— In this demo we introduce GuruMine, a pattern
mining system for the discovery ofleaders, i.e., influential users
in social networks, and their tribes, i.e., a set of users usually
influenced by the same leader over several actions.
GuruMine is built upon a novel pattern mining framework

for leaders discovery, that we introduced in [1]. In particular, we
consider social networks where users perform actions. Actions
may be as simple as tagging resources (urls) as in del.icio.us,
rating songs as in Yahoo! Music, or movies as in Yahoo! Movies,
or users buying gadgets such as cameras, handholds, etc. and
blogging a review on the gadgets. The assumption is that actions
performed by a user can be seen by their network friends. Users
seeing their friends’ actions are sometimes tempted to perform
the actions themselves. On the basis of the propagation of such
influence, in [1] we proposed various notions of leaders and
developed algorithms for their efficient discovery.
GuruMine provides users with a friendly and intuitive

graphical interface for selecting the actions of interest,and the
kind of leaders to mine. The set of parameters driving the
pattern discovery process can be iteratively refined, and the result
is updated, without incurring a completely new computation
whenever possible. Once a set of leaders has been extracted,
GuruMine can easily validate them on a set of actions unseen
during the pattern mining, by analyzing the portion of network
reached by the influence of the selected leaders, on the unseen
actions.GuruMine also offers various visualizations over social
networks: the propagation of an action, the leaders, their tribes,
and the interactions between different leaders and tribes.In this
demo we will show: (i) how the pattern mining process can
be driven towards the discovery of a good set of leaders, (ii)
the ease of use ofGuruMine system, and (iii) its outstanding
performances on large real-world social networks and actions
databases.

I. I NTRODUCTION

In this demo we introduceGuruMine, a pattern mining
system for the discovery of influential users in social net-
work. The basic assumption underlyingGuruMine is the
well known word-of-moutheffect, thanks to which actions,
opinions, buying behaviors, innovations and so on, propagate
in a social network. Seeing actions performed by their friends
may make individuals perform those actions: we can think
of this as a (potentially recursive)influencepropagating from
users to their network friends. If such influence patterns repeat
with some statistical significance, that can be of interest to
companies, for targeted advertising campaigns. This is known
asviral marketing[2], [3], [4]: by targeting the most influential

users in a social network we can activate a chain-reaction of
influence driven by word-of-mouth, in such a way that with a
very small marketing cost we can actually reach a very large
portion of the network. Viral marketing models are based on
probabilistic causation: there is a probability with whicha user
will perform an action if his neighbors have performed it. Thus
such models require as input the social graph together with the
edge-weights representing the probabilities of influence.

GuruMine is based on a different framework, that we
defined in [1]. Given a social graph together with a log of
user actions, we can determine the propagation of influence for
performing each of the actions. We ask: how can we leverage
this for determining who are the leaders in setting the trendfor
performing actions? And given the leaders, which other users
form their tribes? In [1] we tackle these questions as a pattern
discovery problem. We define various notions of leader, tribe
leader, and their confident and genuine variants. We develop
efficient algorithms for extracting leaders of various flavors
from an input data consisting of a social graph and a table of
user actions.

Based on this frameworkGuruMine is a useful system
for an exploratory analysis of influence in social networks.
GuruMine allows us:

• to discover the leaders and their tribes at a very local
scale;

• to iteratively fine-tune parameters that control the defini-
tion of leaders according to the given application;

• to determine the number of leaders that we actually want
to select;

• to validate the selected leaders on a set of actions unseen
during the pattern mining, by analyzing the portion of
network reached by the influence of the selected leaders,
on the unseen actions;

• to visualize the propagation of an action, the leaders, their
tribes, and the interactions between different leaders and
their tribes.

A key novel aspect of the demo is the ability to visualize and
interact with various patterns entirely in terms of graphs.

(a)

User Action Time
u3 b 13
u2 b 13
u2 a 15
u1 b 15
u3 a 16
u5 b 16
u4 b 17
u5 a 18
u7 b 18
u4 a 19
u6 a 20

(b)

(c)
(d)

Fig. 1. (a) Example social graph; (b) A log of actions; (c) Propagation of actiona and (d) of actionb.

II. A PATTERN M INING FRAMEWORK

In this section we provide the background on the pattern
mining framework underlyingGuruMine.

A social graph is an undirected graphG = (V, E) where
the nodes are users, and edges represent social ties be-
tween the users. The tie may be explicit in the form of
declared friendship, or it may be derived on the basis of
shared interests between users. Anaction log is a rela-
tion Actions(User,Action, Time), which contains a tuple
(u, a, t) indicating that useru performed actiona at time t.
We will assume that the projection ofActions on the first
column is contained in the set of nodesV of the social graph
G. In other words, users in theActions table correspond to
nodes of the graph. We letA denote the universe of actions.
We say that an actiona ∈ A propagatesfrom uservi to vj

iff (vi, vj) ∈ E and ∃(vi, a, ti), (vj, a, tj) ∈ Actions with
ti < tj. Notice that there must be a social tie betweenvi and
vj, both must have performed the action, one strictly before
the other. This leads to a natural notion of a propagation
graph. For each actiona, we define apropagation graph
PG(a) = (V(a), E(a)) as follows.V(a) = {v | ∃t : (v, a, t) ∈

Actions}; there is a directed edgevi ∆t−−→
vj whenevera prop-

agates fromvi to vj, with (vi, a, ti), (vj, a, tj) ∈ Actions,
where∆t = tj − ti. Figure 1(a)-(b) shows an example of
a social graph and a log of actions performed by users. By
linking the actions log in Figure 1(b) to the social graph in
Figure 1(a), we can trace the propagation of influence for
performing actions. The result, for actionsa andb, is shown
in Figure 1(c)-(d). Observe that the graphs in Figure 1(c)-
(d) are directed and edges labelled even though the original
social graph is undirected and edges unlabelled. Direction
is dictated by the order in which actions were performed.
If x performed actiona beforey and there is a social tie
betweenx and y in Figure 1(a), then Figure 1(c) contains
a directed edge fromx to y; while the label on the edge is
given by the time elapsed between the two actions. In other
words, the propagation of an action is just a directed instance
(a flow) of the undirected graphG, and the log of actions
Actions(User,Action, Time) can be seen as a collection
of propagations. Influence can propagate transitively. Thus, a
definition of leader w.r.t. setting the trend for performingan
action should take this into account. To aid in the definitionof
leaders, we define the notion of an influence graph next. The

elapsed time along a (directed) path in a propagation graph is
the sum of edge labels along the path. E.g., in Figure 1(c), the
elapsed time on the pathu2→u4→u6 is 4+ 1 = 5.

Given actiona, a useru, and a maximum propagation
time thresholdπ, we define theinfluence graphof the user
u, denotedInfπ(u, a), as the subgraph ofPG(a) rooted at
u, such that it consists of those nodes ofPG(a) which are
reachable fromu in PG(a) and such that every path fromu
to any other node inInfπ(u, a) has an elapsed time at most
π. The propagation time thresholdπ allows us to set limits
on how long after an action is performed, we regard another
user performing that action as influenced by the previous user.
Given a thresholdψ, we say that useru acted as aleader w.r.t.
actiona whenever the size (in number of nodes) ofInfπ(u, a)

is at leastψ. The thresholdψ ensures sufficiently many users
are influenced by the given user in the context of actiona.

A user to be identified as a leader must act as such
sufficiently often, i.e., for a number of actions larger thana
given action thresholdσ. This may be seen as theminimum
frequencyconstraint in pattern discovery and association rule
mining [5].

Definition 1 (Leaders):Given a set of actionsI ⊆ A, and
three thresholdsπ, ψ andσ, a userv ∈ V is a leader iff:

∃S ⊆ I, |S| ≥ σ : ∀a ∈ S . size(Infπ(v, a)) ≥ ψ

In Figure 1, if we choose the time bound to beπ = 5 units,
number of users to be influenced by a leader to beψ = 3,
and number of actions in which this happens to beσ = 2,
then useru2 is a leader w.r.t. both actionsa and b, since
usersu4, u5, u6 are influenced byu2 in Figure 1(c), while
u1, u4, u5, u7 are influenced byu2 in Figure 1(d). Notice
that u3 is not a leader w.r.t. either action. If useru5 had
performedb after u4, thenu3 would be regarded a leader
w.r.t. b, in addition tou2.

A stronger notion of leadership might be based on requiring
that w.r.t. each of a class of actions of interest, the set of
influenced users must be the same. To distinguish from the
notion of leader illustrated above, we refer to this notion as
tribe leader, meaning the user leads a fixed set of users (tribe)
w.r.t. a set of actions. Clearly, tribe leaders are leaders but not
vice versa.

Definition 2 (Tribe-leaders):Given a set of actionsI ⊆ A,

and thresholdsπ, ψ andσ, a userv ∈ V is a tribe leaderiff:

∃S ⊆ I, |S| ≥ σ, ∃U ⊂ V, |U| ≥ ψ : ∀a ∈ S .U ⊆ Infπ(v, a).

In addition to using an absolute threshold on the number
of actions in which a user acts as a leader, we could apply a
“confidence threshold”, similarly to the classical measureof
confidence in association rules [5]. More precisely, for a user
v ∈ V , let P(v) = {a ∈ A | v performeda} andL(v) = {a ∈

A | v is a leader w.r.t.a}. Then theleadership confidenceof
v is the ratioconf(v) = |L(v)|/|P(v)|. Given a set of actions
I ⊆ A, and a confidence threshold0 < ϕ ≤ 1, a userv is said
to be aconfidence leaderif it is a leader andconf(v) ≥ ϕ.

It may happen that one user acts as a leader according to
the problems defined so far, but in concrete he is always a
follower of the same leader. In some sense he benefits from
the influence of a true leader, so that he also may seem a
leader. To avoid this kind of “fake” leaders, we propose the
following. Given the usual three thresholdsπ, ψ andσ, for a
userv, let gen(v) denote the ratio

|{a ∈ L(v) | ∄u ∈ V : u is leader for a∧ v ∈ Infπ(u, a)}|

|L(v)|

i.e., the fraction of actions led byv for which v’s leadership
is genuine, in that it is not a consequence ofv being present
in the influence graph of some other leader w.r.t. that action.
We call gen(v) the genuineness score ofv. Given a set of
actionsI ⊆ A, and a threshold0 < γ ≤ 1, we define a leader
v to be agenuine leaderprovided the genuineness score ofv
is above the threshold, i.e.,gen(v) ≥ γ.

Both confidence and genuineness constraints can be applied
to tribe leaders as well. Note that when we focus on a single
action a, the notions of leader fora and tribe leader for
a coincide. Thus we use the exact same definitions. So a
genuine tribe leader is a tribe leader whose genuineness score
is above a threshold, and similarly for confidence. Our goal
is to efficiently extract leaders and tribe leaders, possibly with
each of the other criteria (confidence and genuineness) or even
with both.

Influence Matrix

Miner

Influence Cube

Miner

Mining EngineQuery Interpreter

Patterns

Parameters

Interpreter

ExAMiner

Post-processor

Querying

Interface

Data

Visualizer

GUI

Pattern

Browser

Graphviz JDBC – Database Access Interface

Fig. 2. GuruMine architecture.

In this section we provided the needed background about the
pattern mining framework underlyingGuruMine. However,
it should be noted that it is not mandatory forGuruMine’s
user to provide all the thresholds: she can query our system
asking, e.g., the top-k users w.r.t. average number of followers
per action givenπ, or the top-k tribe leaders w.r.t. confidence,
as will be discussed in the following section.

III. T HEGuruMine SYSTEM OVERVIEW

TheGuruMine architecture (see Figure 2) is composed of
three modules (GUI, query interpreter, mining engine), plus an
underlying DBMS which interacts with all the three modules.
For sake of compatibility, the coupling between the core
mining system and the underlying DBMS, have been realized
by means of JDBC [6], an API that provides cross-DBMS
connectivity to a wide range of SQL databases. This means
that, wherever the underlying data is stored,GuruMine can
be easily connected to that database.

A. The Mining Engine
GuruMine mining engine is based on the algorithms we

developed in [1]. Given a social graph and a table of user
actions, our algorithms can discover leaders of various flavors
by making one pass over the actions table. This makes our
algorithms scalable to very large input graphs and action
logs. By sliding a time window of widthπ chronologically
backwards on the actions log table (see [1] for more details)
we can compute aninfluence matrixIMπ(U,A), whereU
is the number of users andA is the number of actions. The
entry IMπ(u, a) is the number of users/nodes, influenced by
u w.r.t. actiona within time π. This number includesu. So,
a useru performed actiona iff IMπ(u, a) > 0. Then leaders
can be computed from theIMπ easily. When it comes to
computing tribe leaders, influence matrix is inadequate: for
tribe leaders, we need to check that a fixed set of≥ ψ users
were influenced by the leader on sufficiently many actions.
To address this problem, we compute aninfluence cube. The
influence cube is aUser × Action × User cube with cells
containing boolean entries:ICπ(u, a, v) = 1 if user v was
influenced by useru w.r.t. action a, w.r.t. an underlying
time thresholdπ. Post-processing the influence matrix or the
influence cube for producing the final result is done by the
Post-processormodule, within the query interpreter.

B. The Query Interpreter
The second module takes care of interpreting the given

query, i.e., taking the various parameters, retrieving from the
underlying DBMS the source data, and passing them to the
correct module. In particular, it must inform the mining engine:
(1) what to compute – the influence matrix (for standard
leaders) or the influence cube (for tribe leaders), (2) the value
of parameterπ, and (3) which data is to be used. All the
other parameters will be passed on to the post-processor which
takes care of assembling the final result to and passes it on to
the Pattern Browsermodule in the GUI. The post-processor
computes leaders by a simple scan of the rows of the influence
matrix. In the case of tribe leaders, they are extracted from
the influence cubeICπ(u, a, v) by means of frequent itemsets
mining [5]. Notice that we arenot interested in all frequent
itemsets, but only in those ones whose size isψ or more.
For this purpose, we useExAMiner [7], a special algorithm
optimized for our needs.

C. Incremental Mining
Our system supports incremental analysis and analysis and

exploration on two levels. All our mining algorithms have

been developed to support incremental mining. E.g., if more
actions are added to the actions log, our algorithms can just
go over the additional action tuples and update the mined
patterns. In addition, the query interpreter ofGuruMine also
implements a caching system, so that some incremental queries
can be answered without redoing the whole computation from
scratch. Whenever an influence matrix or cube is computed,
GuruMine also stores its metadata: i.e., the parameterπ, and
the data set from which it as been computed. If a new query
arrives that is defined over the same data set and with the same
value for parameterπ but with the other parameters changed,
the query interpreter will pass the request directly to the post-
processor, that will be retrieve the previously computed matrix
or cube without activating the mining engine, and compute the
required patterns.
D. Graphical User Interface

One of the highlights of the system is that the patterns are
visualized in the form of graphs. The user can explore these
patterns directly by interacting with the graphs. We describe
and illustrate the graphs and the types of interactions supported
below.
1. Leaders Interaction Graph: In this graph, all the leaders
will be displayed along with the interactions between them.
Nodes will represent leaders and will be color-coded. The
intensity of the color is propotional to number of followers,
while the size of node (diameter of the circle) is propotional
to confidence. This will give a feel for the extent of influence
of a leader at a quick glance. Edges are directed and represent
interaction between leaders in the form of flow of influence.
Solid edges assert that there is a direct social tie between the
leader nodes in the original social graph. Broken edges capture
the fact that there is no direct social tie between the leader
nodes. They are connected by a path where the intermediate
nodes themselves are not leaders. Edges will also be color-
coded. Stronger intensity of color of edge(u, v) implies node
v is influenced by nodeu for more actions.
2. Leaders Influence Graph: This graph will represent the
influence of one leader at a time, with leader as the root.
All nodes except the root represent followers of the leader.
Edges are directed and represent the flow of influence. Edges
are color-coded with intensity of the color being proportional
to number of actions for which the influence propagates (as
defined above). Stronger the intensity of color means of edge
u, v), the more the actions for whichv is influenced byu. The
graph will be animated. That is, the flow of influence would
be shown in real time.
3. Propagation Graph for an Action: This will show the
interaction between several leaders and their followers for a
particular action. The action can be chosen by the user. Nodes
include leaders and followers for the chosen action. Leader
nodes will be color coded, Followers nodes will be simply
black. Intensity of the color is proportional to number of
followers. Similarly size of the node represents confidence. We
can also use colors to distinguish between tribe ;leaders and
non-tribe leaders. Edges are directed and represent the flowof
influence. There is no color-coding of edges in this case. This

graph will be animated. That is, the flow of influence would
be shown in real time.
Interacting with the Graphs : The user can ask for any of
the three types of graphs from the GUI. There will be a
zoom/scroll facility to manipulate displayed graphs whichcan
help the user visualize it effectively depending on its size.
Once a graph is displayed, she can change the values of the
parameters. As mentioned earlier, the changed output graph
will be computed incrementally and quickly returned to the
user. Additionally, the user may navigate from one graph to
another. Here are some examples. The user can double-click
on a node (leader) in the leaders interaction graph and thus see
the leader influence graph for the chosen leader. In the latter
graph, she may choose to double-click on an edge and see
what the actions are for which influence propagates from one
node to another and then double-click on one of the displayed
actions. This will take her to the propagation graph for the
chosen action. She can also visualize the propagation graph
for more than one action and study their commonalities and
differences. The user can impose genuineness threshold as
a constraint using a slider bar. As the threshold is adjusted
existing nodes/edges may drop off or new ones may pop up.

IV. W HAT WILL BE DEMONSTRATED

Our demo will showGuruMine at work on a real-world
social network and actions dataset. The demo will show how,
thanks to the friendly and intuitive GUI and the efficient
mining engine, the exploratory pattern mining process (i.e.
human-guided, interactive, iterative, and visual) can be driven
towards the discovery of a good set of leaders. The importance
of the efficient exploratory mining together with incremental
computing will be also highlighted. We will show how to
visually browse through the leaders and their tribes, how to
validate a set of leaders on new, unseen actions, and how to
visualize the propagation of their influence.

REFERENCES

[1] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Discovering leaders from
community actions,” Computer Science Department, University of British
Columbia Vancouver, BC, Canada, Tech. Rep. 7, June 2008, Submitted
for publication.

[2] P. Domingos and M. Richardson, “Mining the network valueof cus-
tomers,” inProc. of the Seventh ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD’01).

[3] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for
viral marketing,” in Proc. of the Eighth ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD’02).

[4] D. Kempe, J. M. Kleinberg, and́E. Tardos, “Maximizing the spread of
influence through a social network,” inProc. of the Ninth ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD’03).

[5] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules
between sets of items in large databases,” inProc. of the 1993 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’93).

[6] http://java.sun.com/javase/technologies/database/.
[7] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAMiner:

Optimized level-wise frequent pattern mining with monotone constraints,”
in Proceedings of the Third IEEE International Conference on Data
Mining (ICDM’03).

