

07/25/10 1

Labs

� Today is a review lab

� Look over any of the labs, finish last
Wednesday's if you haven't yet

� Wednesday is a demo lab

� You will demo your music player GUI

� Sign up for a slot if you haven't yet

� Since you will be doing the demo in the lab
with a TA, today's lab is a good chance to
make sure that your GUI works on a lab
machine

07/25/10 2

Final Exam

� The final exam is this Friday, 9:00 AM in DMP
110 (usual time, usual location)

� Let me know immediately if you have a conflict
(and a valid reason) and I will arrange for you
to sit the alternate exam (probably Thursday)

07/25/10 3

Object Serialization

� Suppose you are writing a program that allows
the user to store the names, telephone
numbers and addresses of their contacts.

� When the user enters data, they expect it will
be available to them the next time they run the
program.

� To do this, the program needs to store the
data (likely on a hard disk) from one session
to the next.

� You can do this easily using object
serialization.

07/25/10 4

Saving Objects

� There are actually two approaches we could
take

� If you want to save the data of an object so
that it can be used by other programs, you can
just write to a plain text file, writing the value of
each instance variable for that object in some
sort of consistent format

� We now know how to write text to a file

� This data could then be used by a
spreadsheet, database or other program

07/25/10 5

Saving Objects

� But if we want to be able to save an object
and reload it in Java at a later date, it is much
easier to use serialization

07/25/10 6

Serialization: Object Streams
� Java�s serialization API supports the saving of the state

of an object to a sequence of bytes; those bytes can
later be used to restore the object

� The ability to save an object is sometimes called
�persistent objects�

� Serialization makes it possible to save an object, stop
the program, restart it, and then restore the object

� To make objects of a class serializable, you just need to
implement the Serializable interface.
Serializable is a marker interface (that means it
has no methods)
� E.g., to make the Account class serializable:
class Account implements Serializable {

… }

07/25/10 7

Saving an Object
� To save serializable objects in a file we need to

� associate a FileOutputStream with the file

� wrap an ObjectOutputStream around it

� use writeObject() to store the objects

sequentially

� e.g., if Account implements Serializable and

a1,a2 are accounts we can save them in the file

named account.dat

ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream("account.dat"));

out.writeObject(a1);

 out.writeObject(a2);

� Most Java library classes are serializable (but not all)

� Java takes care of serializing the variables in the
class, etc.

07/25/10 8

Saving an Object

� Notice another example of chaining

� ObjectOutputStream is chained to
FileOutputStream

� FileOutputStream knows how to connect to
(and create) a file

� ObjectOutputStream lets us write objects, but
it can't directly connect to a file

07/25/10 9

Chaining

� By the way, why don't we just have a single
stream that does exactly what we want?

� For one, it's good OO to have these
specialized classes. Each class does one
thing well.

� It also gives us a lot of flexibility as far as
combining connection and processing
streams.

07/25/10 10

What gets saved?

� All of an object's instance variables get saved

� Why don't we save methods as well? What
makes an object unique?

� This seems straightforward in the case of
primitive values like 37 and 70, but what about
instance variables that are object references?

� For example, what if our Car object has
instance variables that refer to an Engine
object and a Tire[] array?

07/25/10 11

What gets saved?

� Serialization saves the entire object graph. All
objects referenced by instance variables,
starting with the object being serialized

� So when you save the Car object, the Engine
object and Tire objects are also saved

Engine

Tire[]

Car object

Engine object

Tire[] array object

07/25/10 12

Serialization is �all or nothing�

� Either the entire object graph is serialized
correctly or serialization fails

� This poses a problem:

� We can't serialize an object if it contains an
object reference for a class that is not
serializable

� For example, if we design a class Pond that
implements Serializable, but it contains
objects of the class Duck and Duck does not
implement Serializable, then we will get an
exception when we try to serialize Pond

07/25/10 13

Serialization is �all or nothing�

� But what if someone else designed the Duck
class and it's not possible for us to make it
Serializable?

� One option is to mark it as transient

� Anything marked as transient will be skipped
over during the serialization process

� transient String currentID;

07/25/10 14

Transient
� If we mark some instance variables as

transient, what happens when we bring the
object back to life (deserialize it)?

� Those instance variables will be brought back
as null (primitives are brought back w/

default values)

� Your options then are to

� reinitialize that null instance variable back to
some default state

� Or, if it's important that it have the same key
values that it had before, then save those
values so that you can create a new instance
variable that's identical to the original, e.g. a
new Duck with the same colour and size

07/25/10 15

Serialization is �all or nothing�

� Another option is to subclass the non-
serializable class and make that subclass
implement Serializable

07/25/10 16

Saving Objects

� If you try to save an object multiple times, the
object will only get written once during
serialization but there can be multiple
references that will be resolved during
deserialization

07/25/10 17

Reading Objects from a File

� To read back in the objects we have saved in a
file we need to
� associate a FileInputStream with that file

� wrap an ObjectInputStream around it

� use readObject() to get the objects sequentially,
in the order they were saved

� e.g., to get the first two accounts stored in

account.dat
ObjectInputStream in =
 new ObjectInputStream(

 new FileInputStream("account.dat"));

Account a1 = (Account) in.readObject();

 Account a2 = (Account) in.readObject();

07/25/10 18

Reading Objects from a File

� If you try to read back more objects than you
wrote, you'll get an exception

� The return type of readObject() is Object, so
you need to cast it back to the type you know
it really is

� A new object is given space on the heap, but
the serialized object's constructor does not run

� Why not? What might happen to its values?

07/25/10 19

Reading Objects from a File

� However, if the object has a non-serializable
class somewhere up its inheritance tree, the
constructor for that non-serializable class will
run along with any constructors above that
(even if they're serializable)

07/25/10 20

Reading Objects from a File

� Java needs to be able to find the Class of the
objects you are reading in

� Remember, the class itself did not get saved, just
the objects

� If you change the definition of the class in
between saving an object and reading it back (it
could be days or weeks or years before you read
it back!), a
java.io.InvalidClassException may be
thrown because the version of the class is not
compatible with the class of the saved object

07/25/10 21

Ponds and Frogspublic class Frog {

private String name;

private int age;

public Frog(String name, int age)

{

this.name = name;

this.age = age;

}

public Frog()

{

this.name = "kermit";

this.age = 1;

}

We have a Frog class with a couple of
constructors. Notice that the no-arg
constructor sets the name and age of
the Frog to some defaults: �kermit� and
1

07/25/10 22

Frog, cont'd

public String getName()

{

return name;

}

public int getAge()

{

return age;

}

}

Our Frog class also has some accessor
methods for the name and age
attributes.

07/25/10 23

BullFrog

public class BullFrog extends Frog

{

public BullFrog(String name, int age)

{

super(name, age);

}

// other code omitted -

// extends Frog in some way

}

BullFrog extends Frog. Notice that
neither BullFrog nor Frog are
Serializable.

07/25/10 24

Pond
import java.io.*;

public class Pond implements Serializable

{

 private BullFrog aFrog;

 private int pondDepth;

 public Pond(BullFrog aFrog, int depth)

 {

 this.aFrog = aFrog;

 pondDepth = depth;

 }

 public BullFrog getFrog()

 {

 return aFrog;

 }

We have a Pond class that contains a
reference to a BullFrog object. Notice
that the pond is serializable.

07/25/10 25

Pond, cont'd

public int getDepth()

 {

 return pondDepth;

 }

07/25/10 26

Creating Ponds and Frogs
public static void main(String[] args)

 {

 Pond littlePond = new Pond(new BullFrog("Henry", 10), 4);

We create a new Pond object, which contains a Duck object
(named Henry, 10 years old) and has a depth of 4 meters.

07/25/10 27

Serializing Pond
public static void main(String[] args)

 {

 Pond littlePond = new Pond(new BullFrog("Henry", 10), 4);

 try

 {

 ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream("pond.dat"));

 out.writeObject(littlePond);

 out.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 }

Let's try to serialize the Pond. What
will happen?

07/25/10 28

Serializing Pond

java.io.NotSerializableException: BullFrog
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1156)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1474)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1392)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1150)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:326)
at Pond.main(Pond.java:32)

Even though Pond is serializable, BullFrog is not. So we get an exception telling
us as much. We have a couple of options for correcting this.

07/25/10 29

Serializing Pond

� We could mark BullFrog as transient

� Anything marked as transient will be skipped
during serialization

� After we deserialize (bring the Pond object
back to life) the BullFrog will be returned as
null

� At that point we could initialize a new BullFrog
object

07/25/10 30

Pond
import java.io.*;

public class Pond implements Serializable

{

 private transient BullFrog aFrog;

 private int pondDepth;

 . . .

} So we go back and make BullFrog
transient. We can go ahead and serialize
the Pond object now. We won't get an
exception. But what happens when we
deserialize?

07/25/10 31

Deserializing
try

 {

 ObjectInputStream in = new ObjectInputStream(new

FileInputStream("pond.dat"));

 Pond myPond = (Pond) in.readObject();

 in.close();

 BullFrog myFrog = myPond.getFrog();

 System.out.println(myFrog == null);

 }

catch(Exception ex)

 {

 ex.printStackTrace();

 }

07/25/10 32

Deserializing
try

 {

 ObjectInputStream in = new ObjectInputStream(new

FileInputStream("pond.dat"));

 Pond myPond = (Pond) in.readObject();

 in.close();

 BullFrog myFrog = myPond.getFrog();

 System.out.println(myFrog == null);

 }

catch(Exception ex)

 {

 ex.printStackTrace();

 }

true

07/25/10 33

Deserializing

� Since BullFrog had a non-serializable
superclass Frog, you may have expected that
when Pond was deserialized, a new BullFrog
object would be created and the superclass
constructor would run, giving the BullFrog the
name �kermit� and the age 1

� This doesn't happen, because any object that
is skipped during serialization (marked as
transient) is simply null after deserialization

07/25/10 34

Serializable BullFrogs
� But let's say BullFrog was Serializable and

Frog was not Serializable
import java.io.Serializable;

public class BullFrog extends Frog implements Serializable

{

public BullFrog(String name, int age)

{

super(name, age);

}

// other code omitted � extends Frog in some way

}

07/25/10 35

Pond

import java.io.*;

public class Pond implements Serializable

{

 private BullFrog aFrog;

 private int pondDepth;

 . . .

}

We no longer have to mark BullFrog as
transient. But what happens when we
deserialize?

07/25/10 36

What gets printed?
try {

 ObjectInputStream in = new ObjectInputStream(new

FileInputStream("pond.dat"));

 Pond myPond = (Pond) in.readObject();

 in.close();

 BullFrog myFrog = myPond.getFrog();

 System.out.println("My frog's name is " +

myFrog.getName());

 System.out.println("He is " + myFrog.getAge() + " years

old");

 System.out.println("He lives in a pond that is "+

myPond.getDepth() + " feet deep");

 }

catch(Exception ex){ex.printStackTrace();}

07/25/10 37

Deserialization

My frog's name is kermit

He is 1 years old

He lives in a pond that is 4 feet deep

� During deserialization, Java sees that BullFrog has a
non-serializable superclass Frog, and runs the no-
arg constructor for that superclass

� The BullFrog then ends up with the name Kermit and
age of 1, even though previously it was named Henry
and was 10 years old

07/25/10 38

Frog
� What if we make Frog serializable too?

public class Frog implements Serializable

� Now both Frog and BullFrog are Serializable

� Now what happens when we serialize, deserialize,
and print out the attributes of the BullFrog?

My frog's name is Henry

He is 10 years old

He lives in a pond that is 4 feet deep

� Since the Frog class is now serializable, its
constructor never runs and the BullFrog ends up with
the same attributes it had before serialization

07/25/10 39

Frog and BullFrog

� By the way, what would happen if only Frog
implemented Serializable and BullFrog did
not?

� If we try to serialize Pond without making
BullFrog also implement Serializable, will we
get an exception again?

07/25/10 40

Frog and BullFrog

� No � BullFrog is still of type Serializable
because it inherits from Frog

07/25/10 41

Subclassing

� If we didn't define Frog or BullFrog (someone
else did) and neither are Serializable, is our
only option to make them transient when we
serialize a Pond object?

� No, we could also subclass BullFrog and
make that subclass serializable

� Or we could keep them as transient and save
critical attribute values and use those to create
new objects after deserialization

07/25/10 42

In-Class Exercise I

public class Frog implements Serializable

{

private String name;

private transient int age;

. . .

}

Say we have Frog defined along these
lines...

07/25/10 43

In-Class Exercise I
public class FrogSerialTester{

 public static void main(String[] args){

 Frog frank = new Frog("Frank", 3);

 Frog flo = new Frog("Flo", 2);

 Frog fran = new Frog("Fran", 5);

 try {

 ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream("frogs.dat"));

 out.writeObject(frank);

 out.writeObject(flo);

 out.writeObject(fran);

 out.close();

 }

 catch(Exception ex){ex.printStackTrace();}

} }

Write the code to read these Frog objects
back in, and print out the name and age of
each Frog. Indicate what the output would
be.

07/25/10 44

More Threads
public class MyRunnable implements Runnable {

public void run()

{

go();

}

public void go()

{

doMore();

}

public void doMore()

{

System.out.println("top o' the stack");

}

}

Remember this example? We had a class
implementing Runnable, and the run()
method just calls a couple other methods
and something gets printed out.

07/25/10 45

More Threads
public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunner();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

We then passed an instance of that Runnable
job to a new Thread instance, and started the
 Thread. We also put a print statement here.

We mentioned in the lecture that the order of
the print statements will vary. Sometimes �top
o' the stack� prints first and then �back in
main� and sometimes the other way around.

07/25/10 46

Why does it vary?

� Sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts
the new thread

main()

myThread.start()

main
thread

The scheduler
send the main()
thread back to
runnable so that
the new thread
can run

run()

go()

doMore()

new
thread

The scheduler lets the
new thread run to
completion, print out
�top o' the stack�

main()

main
thread

The new thread
goes away because
its run() method has
completed. The
main thread
becomes the
running thread, and
prints �back in main�

07/25/10 47

Why does it vary?

� And sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts the
new thread

main()

myThread.start()

main
thread

The scheduler send
the main() thread
back to runnable so
that the new thread
can run

run()

go()

new
thread

The scheduler
lets the new
thread run for a
while, but not
long enough for
run() to complete

main()

main
thread

Main thread
selected as
running
thread,
prints �back
in main�

run()

go()

new
thread

Scheduler
sends new
thread back
to runnable

run()

go()

new
thread

doMore()

New thread
returns to
running
state and
prints out
�top o' the
stack�

07/25/10 48

More Threads
public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunner();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

But you may have gone home and tried this
and found that it always prints in the same
order. So what's up?

It depends on your scheduler (preemptive or
non-preemptive). Your scheduler might allow
the main thread always to run to completion
before running the new thread. Or it might
not.

07/25/10 49

More Threads
public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunner();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

The important thing is that we can't assume
what type of scheduler it is. It's very easy to
make yourself think that the ordering is
always going to be one way because that's
always how it is on your computer. Don't
make that assumption!

07/25/10 50

sleep()
public void go()

{

try {

Thread.sleep(2000);

}

catch(InterruptedException ex)

{

ex.printStackTrace();

}

doMore();

}

We found that making this change
influences the order of the printing. The
thread goes to sleep for a short while, and
during that time it is waiting/blocked and
other threads have a chance to be
selected.

07/25/10 51

yield()

� Another option was to use yield()

� sleep() and yield() behave differently, though

� sleep(t) guarantees that the thread will not
resume running for at least time t, even if there
are no other threads to select

� yield() puts thread back in Runnable state,
gives threads with equal priority a chance to
run

07/25/10 52

yield()
public void go()

{

Thread.yield();

doMore();

}

07/25/10 53

join()

� If thread t calls r.join() on thread r, then t will
be waiting/blocked until r finishes

07/25/10 54

public class MyRunnable

implements Runnable {

public void run(){

go();

}

public void go(){

Thread.yield();

doMore();

}

public void doMore(){

System.out.println("top o' the

stack");

}

}

public class ThreadTester {

public static void main(String[]

args)

{

Runnable threadJob = new

MyRunnable();

Thread myThread = new

Thread(threadJob);

myThread.start();

try {

myThread.join();

}

catch (Exception ex){}

System.out.println("back in main");

}

}

What gets printed?

07/25/10 55

In-Class Exercise II
public class MyRunnable

implements Runnable {

public void run()

{

System.out.println("in the new

thread");

}

}

public class ThreadTester {

public static void main(String[]

args){

Runnable threadJob = new

MyRunnable();

Thread myThread = new

Thread(threadJob);

myThread.start();

System.out.println("first in

main");

System.out.println("second in

main");

}

}

How can we get it to print this?
first in main
in the new thread
second in main
List all the ways you can think of

 56

Implementing Associations

Learning Objectives:

� explain the similarites and differences between how
associations map to object-oriented (Java) code

� write code that implements unidirectional, bidirectional,
1-1 and 1-many associations

07/25/10 57

Unidirectional one-to-one
associations

� The simplest type of association to implement is a
unidirectional one-to-one association between two
classes

� With a unidirectional association, you can navigate
from an object of one class to an object of the other
class (as indicated by the direction of the arrow) but
not vice-versa

� This kind of association is easily implemented using
an attribute that holds a reference to an object of the
other class

07/25/10 58

Unidirectional one-to-one cont�d

� Consider the following association:

� Implementation:

public class Watch
{
 private Display theDisplay;

 ...
}

Watch Display

111 1

07/25/10 59

Bidirectional one-to-one
associations

� The following UML diagram indicates a bidirectional
association
� no arrows on any end of the association

� We must be able to navigate from an account to the
corresponding customer and vice versa

� Implementation:
� each class needs an attribute that holds a reference to

an object of the other class
� each class must have setter methods that allow the

reference to the object of the other class be established

Customer Account

111 1

07/25/10 60

A Bad Implementation
 public class Customer

 {

 private Account theAccount;

 public void setAccount(Account account)

 {

 theAccount = account;

 }

 // etc.

 }
 public class Account
 {
 private Customer theCustomer;
 public void setCustomer(Customer customer)
 {
 theCustomer = customer;
 }
 // etc.
 }

What is
Wrong?

07/25/10 61

How about this?

 public class Customer
 {
 private Account theAccount;

 public void setAccount(Account account)

 {

 theAccount = account;

 account.setCustomer(this)

 }

 }

 public class Account

 {

 private Customer theCustomer;

 public void setCustomer(Customer customer)

 {
 theCustomer = customer;
 customer.setAccount(this)

 }

 }

What is
Wrong?

07/25/10 62

Infinite Recursion

� When we first saw this example a couple of
weeks ago, we hadn't yet discussed recursion

� In the recursion lecture, we talked about
indirect recursion

� This is an example of indirect recursion that
results in an infinite recursion

� Why is it infinite? Which key component of
recursion is missing here?

07/25/10 63

A Better Solution
 public class Customer
 {
 private Account theAccount;
 public void setAccount(Account account)
 {
 if (theAccount != account) {

 theAccount = account;
 account.setCustomer(this)

 }
 }

 }
 public class Account
 {
 private Customer theCustomer;
 public void setCustomer(Customer customer)
 {
 if (theCustomer != customer) {
 theCustomer = customer;
 customer.setAccount(this)

}
 }
 }

07/25/10 64

Another 1-to-1 Association (Bikes and Riders)
public class Bicycle {

private Cyclist rider;

private String brand;

public Bicycle(String brand){

this.brand = brand;

}

public Cyclist getRider(){

return rider;

}

public String getBrand(){

return brand;

}

}

07/25/10 65

Bicycle, cont'd

public void setRider(Cyclist newRider)

{

???

}

}

07/25/10 66

Bicycle, cont'd

public void setRider(Cyclist newRider)

{

if (rider != newRider)

 {

 rider = newRider;

 newRider.setBike(this);

 }

}

}

07/25/10 67

Cyclist
public class Cyclist {

private Bicycle bike;

private String name;

public Cyclist(String name){

 this.name = name;

}

public Bicycle getBike(){

 return bike;

}

public String getName(){

return name;

}

07/25/10 68

Cyclist, cont'd
public void setBike(Bicycle newBike)

{

???

}

}

07/25/10 69

Cyclist, cont'd
public void setBike(Bicycle newBike)

{

if (bike != newBike)

 {

 bike = newBike;

 newBike.setRider(this);

 }

}

}

07/25/10 70

Cycle/Rider Tester
public class BikesAndRiders

{

public static void main(String[] args)

{

Cyclist rider1= new Cyclist("Steve");

Bicycle bike1 = new Bicycle("Giant");

rider1.setBike(bike1);

System.out.println(rider1.getName()+ " rides a

"+rider1.getBike().getBrand());

System.out.println(bike1.getBrand()+" is ridden by

"+bike1.getRider().getName());

}

}

07/25/10 71

Consistency
public class BikesAndRiders

{

public static void main(String[] args)

{

Cyclist rider1= new Cyclist("Steve");

Bicycle bike1 = new Bicycle("Giant");

rider1.setBike(bike1);

System.out.println(rider1.getName()+ " rides a

"+rider1.getBike().getBrand());

System.out.println(bike1.getBrand()+" is ridden by

"+bike1.getRider().getName());

}

}

Steve rides a Giant
Giant is ridden by Steve

07/25/10 72

Recursion Redux
public void setBike(Bicycle newBike)

{

if (bike != newBike)

 {

 bike = newBike;

 newBike.setRider(this);

 }

}

}

Even with the check we are doing, there is
still a way to end up with infinite recursion.
What if both setBike() and setRider() had
their method calls first, i.e. switching these
two lines...

07/25/10 73

public void setBike(Bicycle newBike)

{

if (bike != newBike)

 {

 newBike.setRider(this);

 bike = newBike;

 }

}

public void setRider(Cyclist newRider)

{

if (rider != newRider)

 {

 newRider.setBike(this);

 rider = newRider;

 }

}

Trace through the code � how do we end up
with infinite recursion?

07/25/10 74

In-Class Exercise III

� Let's say that, against our better judgment, we
defined these methods in the initial naïve way

public void setBike(Bicycle newBike)

{

 bike = newBike;

}

public void setRider(Cyclist newRider)

{

 rider = newRider;

 }

}

07/25/10 75

What would be our output here?
public class BikesAndRiders {

 public static void main(String[] args){

 Cyclist rider1= new Cyclist("Steve");

 Bicycle bike1 = new Bicycle("Giant");

 rider1.setBike(bike1);

 Cyclist rider2 = new Cyclist("Svein");

 Bicycle bike2 = new Bicycle("Cerevelo");

 bike2.setRider(rider2);

 bike1.setRider(rider2);

 rider1.setBike(bike2);

 System.out.println(rider1.getName()+ " rides a

"+rider1.getBike().getBrand());

 System.out.println(bike2.getBrand()+" is ridden by

"+bike2.getRider().getName());

}

}

07/25/10 76

One-to-many Associations
� One-to-many associations can also be bidirectional:

or unidirectional:

depending on the needs of the application. In either
case the �many� part of the association is realized
using a collection of references.

Customer Video

0..*11 0..*

Customer Video

0..*11 0..*

07/25/10 77

One-to-many Associations cont�d
� public class Customer

{
 private Set<Video> rentedVideos;

 public void addVideo(Video video)
 {

 …

 }
 // etc.
}

� The particular type of collection that is used
will depend on the needs of the application.

� If ordering matters, we may use an Array or List.
� If an element appears in the collection only

once, we may choose to use a Set, etc.

07/25/10 78

One-to-many Associations cont�d
� Assuming a bidirectional association between

customer and Video, the implementation of
the Video class would look something like:

� public class Video

{

 private Customer rentee;

 public void setRentee(Customer c)

 {

 �

 }

}

07/25/10 79

One-to-many associations cont�d
� Again, we have to be careful to ensure consistency. Would this be ok?

public class Customer {
 //…

public void addVideo(Video video)
{
 rentedVideos.add(video);
 video.setRentee(this);
}

}

 public class Video {
 //…

 public void setRentee(Customer c)
{
 rentee = c;

 rentee.addVideo(this);

 }

}

07/25/10 80

One-to-many associations cont�d
� Here�s a better implementation �

public class Customer {
 //…

public void addVideo(Video video)
{
 if (rentedVideos.add(video)){
 video.setRentee(this);

}

}

}

public class Video {
 //…
 public void setRentee(Customer c)

{
 if (rentee != c)
 {

 rentee = c;
 rentee.addVideo(this);
 }
 }

}

07/25/10 81

One-to-many, cont'd

� Maybe we decide that Cyclists and Bicycles
are many-to-one...

07/25/10 82

Cyclist
public class Cyclist

{

private Set<Bicycle> bikes;

private String name;

// . . .

public void addBike(Bicycle newBike)

 {

 if (bikes.add(newBike))

 {

 newBike.setRider(this);

 }

 }

// . . .

}

A Cyclist now has a Set of bikes rather
than a single bike

07/25/10 83

Bicyclepublic class Bicycle {

private Cyclist rider;

private String brand;

// . . .

public void setRider(Cyclist newRider)

{

if (rider != newRider)

{

rider = newRider;

newRider.addBike(this);

}

}

A Bicycle is associated with one
Cyclist.

Notice that rider has been set to
newRider, but the Bicycle object hasn't
been removed from the previous
rider's bike Set. We should probably
remove it.

07/25/10 84

Bicyclepublic class Bicycle {

private Cyclist rider;

private String brand;

// . . .

public void setRider(Cyclist newRider)

{

if (rider != newRider)

{

if (rider != null) {rider.removeBike(this);}

rider = newRider;

newRider.addBike(this);

}

}

We will add a removeBike() method to the
Cyclist class.

07/25/10 85

Cyclist, Updated

public class Cyclist {

// . . .

public void removeBike(Bicycle bike)

{

if (bikes.contains(bike))

{

bikes.remove(bike);

}

}

// . . .

}

07/25/10 86

Cyclist rider1= new Cyclist("Steve");

Bicycle bike1 = new Bicycle("Giant");

Bicycle bike2 = new Bicycle("Cerevelo");

rider1.addBike(bike1);

rider1.addBike(bike2);

Cyclist rider2 = new Cyclist("Svein");

rider2.addBike(bike2);

for (Bicycle b: rider1.getBikes()){

System.out.println(rider1.getName()+ " rides a "+b.getBrand());

}

for (Bicycle b2: rider2.getBikes()){

System.out.println(rider2.getName()+" rides a "+b2.getBrand());

}

07/25/10 87

Cyclist rider1= new Cyclist("Steve");

Bicycle bike1 = new Bicycle("Giant");

Bicycle bike2 = new Bicycle("Cerevelo");

rider1.addBike(bike1);

rider1.addBike(bike2);

Cyclist rider2 = new Cyclist("Svein");

rider2.addBike(bike2);

for (Bicycle b: rider1.getBikes()){

System.out.println(rider1.getName()+ " rides a "+b.getBrand());

}

for (Bicycle b2: rider2.getBikes()){

System.out.println(rider2.getName()+" rides a "+b2.getBrand());

}

These getter methods return Sets of
bikes.

07/25/10 88

Cyclist rider1= new Cyclist("Steve");

Bicycle bike1 = new Bicycle("Giant");

Bicycle bike2 = new Bicycle("Cerevelo");

rider1.addBike(bike1);

rider1.addBike(bike2);

Cyclist rider2 = new Cyclist("Svein");

rider2.addBike(bike2);

for (Bicycle b: rider1.getBikes()){

System.out.println(rider1.getName()+ " rides a "+b.getBrand());

}

for (Bicycle b2: rider2.getBikes()){

System.out.println(rider2.getName()+" rides a "+b2.getBrand());

}

What's our output?

07/25/10 89

Many-to Many Associations
� Consider the following many-to-many association

between SalesRep and Customer:

� One way of implementing it is for both classes to
maintain collections of references to instances of the
other class.

� Again, operations need to be added that preserve
consistency between the two collections of
references.

SalesRep Customer

*** *

07/25/10 90

Aggregations and Compositions

� The implementation of an aggregation does
not differ from an association

� The implementation of a composition should
ensure that when the whole is deleted, the
parts are also deleted
� In Java, we need to make sure that when the whole is

deleted, there are no references to its parts, so the parts
are garbage collected.

 91

Learning Goals Review

Learning Objectives:

� explain the similarites and differences between how
associations map to object-oriented (Java) code

� write code that implements unidirectional, bidirectional,
1-1 and 1-many associations

 92

Course Review
� When you complete this course, you will be able to:

�move from personal software development methodologies to professional
standards and practices

o design software following standard principles and formalisms

o create programs that interact with their environment (files etc.) and
human users according to standard professional norms

o develop effective software testing skills

�given an API, write code that conforms to the API to perform a given task

�identify and evaluate trade-offs in design and implementation decisions for
systems of an intermediate size

�read and write programs in Java using advanced features

o collections, exceptions, etc.

�extend your mental model of computation from that developed in CPSC111

o recursion, concurrency, etc.

�work with an existing codebase, including reading and understanding given
code, and augment its functionality [in assignments]

