

07/22/10 1

Review

07/22/10 2

Multitasking
� Many programs you use do more than one

thing at a time

� You can write an email while the email
program checks for new message

� You can type in a word processor while it auto-
saves your draft

� A web browser can load a large photo or a
YouTube clip while also loading other pages

� Imagine if in each of these cases, the program
could do only one thing at a time in sequential
order

� It would be a huge bottleneck

07/22/10 3

Multitasking

� Up until now, we have created fairly simple
programs that do one thing at a time

� If we had more than one task to do, each task
was completed before the next was started

� In contrast, we can use threads to develop
concurrent software

� Java was designed from the ground up to
support concurrency, so it's fairly easy
compared with some other languages

07/22/10 4

Concurrent Programming
� Sometimes we need a single program to do more

than one thing at the same time.

� One way is to create multiple processes, but the
overhead from context switching is large for
regular processes
� need to save/restore large amount of state information

� Solution: use threads - lightweight processes
with small state information
� Allows a program to be split into multiple threads, supporting

concurrent programming
� One thread runs while the others wait to be scheduled to run or

for some other condition to occur.

07/22/10 5

Java Threads
� The JVM supports threads and concurrent programming.
� If a program has more than one thread, a (JVM) scheduler

will determine when each thread gets to run.
� There are two types of schedulers:

� pre-emptive: each thread is allowed to run for a
maximum amount of time (a time slice) before it is
suspended and another thread is allowed to run

� non pre-emptive: once a thread is allowed to run it
continues to run until it has completed its task or until it
explicitly yields to another thread

� The scheduler in most JVMs is pre-emptive.
� As this is not guaranteed, we must not write code that

assumes a pre-emptive scheduler.
07/22/10 6

Java Threads

� A thread in Java
� is an instance of the Thread class

� has a priority and an optional name

� has a start() method

� this method puts the thread into the runnable state so that it

can be selected for execution by the thread scheduler

� has a run() method

� the code in this method is executed when the thread runs

� it is overridden to specify the particular behaviour of the

thread

07/22/10 7

Thread States
� A thread can be in one of five states:

� alive

� the thread has been constructed but start() has not been
called

� runnable

� the thread is ready to be scheduled to run

� running

� the run() method is executing

� waiting/blocking

� the thread can't run until some event has occurred (e.g., the
passing of a certain amount of time)

� dead

� the run() method has run to completion

07/22/10 8

Thread States
� The diagram below shows the transitions that can

occur between these five states.

� For example, a thread can transition from
runnable to running, or vice versa.

� However, a thread cannot transition directly from
runnable to dead.

alive runnable running dead

waiting/
blocked

07/22/10 9

Thread States
� When a thread dies, its state is still accessible (in

other words, the thread object is not destroyed)

� A thread that reaches the dead state cannot be
restarted!
� If you want a thread to run again, just create a new

instance of the corresponding class and start it.

� When the JVM starts, it creates a thread that runs
main(). The JVM continues to execute an
application until all user-threads die or System.exit()
is called.

07/22/10 10

Creating and Using Threads in Java
Two ways to create a thread

1. Extend Thread and override the run() method

class SumThread extends Thread {

int end;

int sum;

SumThread(int end) {

 this.end = end;

}

public void run() {

 // sum integers 1, 2, . . ., end

 // and set the sum

}

}

07/22/10 11

Creating and Using Threads in Java

To create and start SumThread :

SumThread t = new SumThread(150);

t.start();
Thread t will

start running

sometime after

that

07/22/10 12

Creating and Using Threads in Java
2. Using the Runnable interface (has only one

method run())
� Define a class that implements Runnable

� Create an object obj of that class

� Create a thread t wrapped around that object
o Thread has a constructor with a Runnable parameter

2. start t
1. JVM will invoke the run() method of obj

� Method 2 is preferable when
� the class that contains run() already extends

another class

� you want to separate
o the code executed by the thread

o the state info that is maintained by the thread

07/22/10 13

Creating and Using Threads in Java

� As mentioned, the second approach is chosen
when the class already extends something
else (and thus can't extend Thread)

� It's also considered a better design from an
OO standpoint

� We shouldn't subclass Thread unless we are
creating a more specific type of Worker and
need more specific worker behaviours. If all
we need is a new job to be carried out by a
worker, it's better to implement Runnable
and provide that Runnable object (job) to the
worker 07/22/10 14

Creating Threads (cont�d)
� Here is the same example in this style:

class SumRun implements Runnable {

int end;

int sum;

SumRun(int end) {

 this.end = end;

}

public void run() {

 // sum integers 1, 2, . . ., end

 // set sum

}

}

07/22/10 15

� To create a thread for SumRun and start it :

SumRun srun = new SumRun(150);

Thread sumRunThread = new Thread(srun);

sumRunThread.start();

07/22/10 16

The Thread Scheduler

� We talked about threads being in different
states, e.g. runnable and running

� The thread scheduler makes all the decisions
about which thread moves from runnable to
running, or when a thread leaves the running
state

� We do not control the scheduler

� We do not control which thread runs when,
nor how long it runs

07/22/10 17

The Thread Scheduler
� Because of this, we should never write code

that depends on the scheduler working in a
particular way

� We cannot assume that threadA will run to
completion and then threadB will run to
completion and so on

� There are some things we can do to affect
which threads are run

� e.g. putting a thread to sleep for a few
milliseconds gives other threads a chance to
run

� More on that in a moment

07/22/10 18

So, what gets printed if we run this?
public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/22/10 19

Answer: it depends

� It depends on the scheduler and how the
scheduler decides what to run and when

� If you run this program multiple times, you are
liable to get different results:

% java ThreadTester

 back in main

 top o' the stack

% java ThreadTester

 top o' the stack

 back in main
07/22/10 20

Why does it vary?

� Sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts
the new thread

main()

myThread.start()

main
thread

The scheduler
send the main()
thread back to
runnable so that
the new thread
can run

run()

go()

doMore()

new
thread

The scheduler lets the
new thread run to
completion, print out
�top o' the stack�

main()

main
thread

The new thread
goes away because
its run() method has
completed. The
main thread
becomes the
running thread, and
prints �back in main�

07/22/10 21

Why does it vary?

� And sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts the
new thread

main()

myThread.start()

main
thread

The scheduler send
the main() thread
back to runnable so
that the new thread
can run

run()

go()

new
thread

The scheduler
lets the new
thread run for a
while, but not
long enough for
run() to complete

main()

main
thread

Main thread
selected as
running
thread,
prints �back
in main�

run()

go()

new
thread

Scheduler
sends new
thread back
to runnable

run()

go()

new
thread

doMore()

New thread
returns to
running
state and
prints out
�top o' the
stack�

07/22/10 22

Thread Scheduler

� As mentioned, we can't assume that the new
thread will be allowed to run to completion

07/22/10 23

sleep(), yield() and join()
� We can have an effect on which thread gets

run by calling one of these methods

� sleep() puts the current running thread to sleep
for some amount of time (in waiting state,
then becomes runnable)

� yield() puts the current running thread into
runnable state)

� If running thread t calls join(r) then t will be in
waiting/blocked state until r finishes

� Allow other threads to compete for running
state

� We can also assign priorities to threads (0-10)
07/22/10 24

Sharing Resources
� Many threads may need to access the same

resource (object, file, memory, etc.). Such cases
must be handled carefully.

� In the following (very contrived) example, we'll
create a single bank account with an initial
balance of $0 that will be shared by three threads.

� Each thread will deposit $100 to the account.

� We'll see that, unless we're careful, the account
will not have a deposit of $300 by the time the
three threads have finished running�

07/22/10 25

Sharing Resources
 public class UnsyncAccount {

private double balance;

public UnsyncAccount() {

 balance = 0.0;

 }

 public void deposit(double amount) {

 double tempBalance = balance;

 // run some lengthy process here (or just sleep())

 balance = tempBalance + amount;

}

public double getBalance() {

 return balance;

}

}
07/22/10 26

Example: A simple shared account ...

public class UnsyncDeposit extends Thread {

private UnsyncAccount account;

public UnsyncDeposit(UnsyncAccount a) {

account = a;

}

public void run() {

System.out.println("Thread " + this.getId()

+ " BEFORE deposit balance: "

+ account.getBalance());

account.deposit(100);

System.out.println("Thread " + this.getId()

+ " AFTER deposit balance: "

+ account.getBalance());

}

All the run() method does is
check the balance, try to
deposit something, and check
the balance again

07/22/10 27

public static void main(String[] args) {

UnsyncAccount acc = new UnsyncAccount();

Thread th1 = new UnsyncDeposit(acc);

Thread th2 = new UnsyncDeposit(acc);

Thread th3 = new UnsyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: " +

acc.getBalance());

}

}

Example: A simple shared account ...

We create three threads with a shared
resource (a single account) and call start() on
each of them. After they have completed, we
print out the current balance of the account.

07/22/10 28

public static void main(String[] args) {

UnsyncAccount acc = new UnsyncAccount();

Thread th1 = new UnsyncDeposit(acc);

Thread th2 = new UnsyncDeposit(acc);

Thread th3 = new UnsyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: " +

acc.getBalance());

}

}

Example: A simple shared account ...

What value is
printed out?

300 or 100

07/22/10 29

Shared resources
� As you may have guessed by now, it depends

public void deposit(double amount) {

 double tempBalance = balance;

 // run some lengthy process here (or just sleep())

 balance = tempBalance + amount;

}

� (Again, this is a very contrived example, but illustrates
something important)

� We set tempBalance to the current balance, say 0

� Then the scheduler selects some other thread to be running.
In that thread, 100 more dollars is deposited.

� When this current thread gets back to the running state, it sets
balance equal to tempBalance (still 0) and adds 100

� So we could get a balance of 100 when it should have been
200

07/22/10 30

Race Condition & Critical Sections
� In the previous example, the outcome depends on the

way that the threads are scheduled to run. This is
called a race condition.

� To get correct results we need to ensure that the code
that updates the account is executed by at most one
thread at a time.

� Any code segment that must be run by only one thread
at a time is called a critical section.

� Any code segment that updates a resource that can be
shared by multiple threads is a critical section.

� Java provides lock objects that can be used to tell the
system that a section can be executed by only one
thread at a time.

07/22/10 31

Lock Objects
� A lock object implements the Lock interface

which is defined in the
java.util.concurrent.locks package

� The Lock interface includes methods

� lock() - if lock is available, it is acquired, otherwise wait
� unlock() � releases the lock

� The same package has a number of classes
implementing Lock.

� The most common is the ReentrantLock
class which provides mutually exclusive or
mutex locks
� only one thread can hold a given lock at a time

07/22/10 32

Using Locks
� Normally, a class whose objects are shared would declare a lock, say myLock

and each critical section will be surrounded by calls to lock() and unlock():

myLock.lock();

critical section code

myLock.unlock();
� But if the critical section code throws an exception the lock will never be

released. For that reason we always use the following:

myLock.lock();

try {

critical section code

}

finally {

myLock.unlock();

}
� So, the lock is always released (even if an exception is thrown)

07/22/10 33

Example: Bank Account with Lock object

public class SyncAccount {

private double balance;

private Lock lock = new

ReentrantLock();

public double getBalance() {

return balance;

}

Create a new Lock object

07/22/10 34

Example (cont�d)
public void deposit(double amount) {

lock.lock();

try {

double tempBalance = balance;

System.gc(); // run an expensive process

balance = tempBalance + amount;

}

finally {

lock.unlock();

}

}

}

We've now protected that critical section of
code by locking it (and unlocking afterward)
to ensure that only one thread at a time can
run that section of code.

07/22/10 35

Example (cont�d)
public class SyncDeposit extends Thread{

private SyncAccount account;

public SyncDeposit(SyncAccount a) {

account = a;

}

public void run() {

System.out.println("Thread " + this.getId()

+ " BEFORE deposit balance: "

+ account.getBalance());

account.deposit(100);

System.out.println("Thread " + this.getId()

+ " AFTER deposit balance: "

+ account.getBalance());

}
Again, we check the balance, add
100 dollars, and check the
balance again. 07/22/10 36

Example (cont�d)
public static void main(String[] args) {

SyncAccount acc = new SyncAccount();

Thread th1 = new SyncDeposit(acc);

Thread th2 = new SyncDeposit(acc);

Thread th3 = new SyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: "

+ acc.getBalance());

}

}

What value is

printed out?

100 or 300

07/22/10 37

Example (cont'd)

� The appropriate use of a lock ensures that at
most one thread can be running the critical
section of code in the deposit() method at any
given time.

� Now, every time we run this program, the balance
on the account will be $300.

07/22/10 38

Synchronized Methods of Old
Versions of Java

� Older versions of Java (prior to 1.5)do not have
lock objects.

� Instead, every object has a lock that behaves like
a ReentrantLock.

� If the lock is available, it is acquired when a
synchronized method is called.

� A synchronized method is declared as
public synchronized void push(Object item)

 {

 // code for the method goes here

 }

and is synchronized on the lock of its implicit
argument (this)

07/22/10 39

Synchronized Methods

� Synchronized instance methods allow at most
one thread to run any of the object�s
synchronized methods at any time.

� Synchronized methods are simpler but less
flexible.

� The Account class would be defined as follows if we
use synchronized methods...

07/22/10 40

Account Example with Synchronized
Methods

public class SyncAccount {

private double balance;

public synchronized void deposit(double amount) {

double tempBalance = balance;

System.gc(); // run an expensive process

balance = tempBalance + amount;

}

public double getBalance() {

return balance;

}

}

07/22/10 41

Another deadlock example
� Imagine a simple BankAccount class with

deposit() and withdraw() methods.
public void withdraw(double amount)

{

 balanceChangeLock.lock();

 try

 {

 while (balance < amount)

 . . .

 finally

{

 balanceChangeLock.unlock();

}

}

Our BankAccount class has a lock
because its methods access a
shared resource, the balance. So in
the withdraw method, we acquire
the lock.

We put in a while loop to wait until
the balance is sufficient to allow the
withdrawal.

But how do we wait? If we put the
thread to sleep, the lock will not be
released and no threads will be able
to call deposit because they will be
unable to get the lock. We will be in
a deadlock situation.

07/22/10 42

Synchronization Using Conditions
� To resolve this problem we should use

condition objects

� A condition object allows a thread to release a
lock temporarily, so another thread can get that
lock and run

� Each condition object belongs to a lock object
and is created as follows:

Condition myCondition =

lock.newCondition();

07/22/10 43

Synchronization Using Conditions
� A condition object implements the Condition

interface that includes:
� await()

� the current thread releases the associated lock

� the current thread moves to the wait/blocked state until
another thread calls signal() or signalAll() on this
condition

� signal() or signalAll()
� causes one or all of the threads that are blocked waiting on

the condition to move to the runnable state

� these threads will compete to get the lock again

� one of them will get the lock and continue to run
07/22/10 44

Condition Objects
� We can again use a condition object
public class BankAccount {

private Lock balanceChangeLock;

private Condition sufficientFundsCondition;

private int balance;

public BankAccount()

{

balanceChangeLock = new ReentrantLock();

SufficientFundsCondition = balanceChangeLock.newCondition();

 . . .

 }

 . . .

 }

07/22/10 45

Condition Objects
public void withdraw(double amount)

{

balanceChangeLock.lock();

try{

while (balance < amount) sufficientFundsCondition.await();

. . .

}

catch (InterruptedException ex){}

finally

{

balanceChangeLock.unlock();

}

}
07/22/10 46

Condition Objects
public void withdraw(double amount)

{

balanceChangeLock.lock();

try{

while (balance < amount) sufficientFundsCondition.await();

. . .

}

catch (InterruptedException ex){}

finally

{

balanceChangeLock.unlock();

}

}

When the balance is not sufficient, this
thread temporarily releases its lock and
goes into a blocked state. It waits for the
balance to become sufficient.

It will know when the balance is sufficient
because a signal will be sent to all
threads currently being blocked as they
await this condition.

In this case, that signal will be sent from
the deposit method.

07/22/10 47

Condition Objects
public void withdraw(double amount)

{

balanceChangeLock.lock();

try{

while (balance < amount) sufficientFundsCondition.await();

. . .

}

catch (InterruptedException ex){}

finally

{

balanceChangeLock.unlock();

}

}

It's important that the await() call is in a
while loop. It is critical that when the
thread is selected to run again that it test
(balance < amount) rather than just
continuing on with the next statements.

07/22/10 48

Condition Objects
public void deposit(double amount)

{

balanceChangeLock.lock();

try

{

 . . .

sufficientFundsCondition.signalAll();

}

finally {

balanceChangeLock.unlock();

}

}

A thread calling this method gets the
lock, updates the balance, and
notifies waiting threads that
sufficient funds may be available
now. Those threads become
unblocked and can again compete
to enter a running state.

07/22/10 49

Common Errors

� Calling await() without calling signalAll()

� If a thread calls await() there needs to be a
matching signalAll() that can be called by
other threads, otherwise it will wait forever

� Calling signalAll() without locking the Object

� A thread must own the lock that belongs to the
condition object on which signalAll() is
called. You'll get an exception otherwise.

07/22/10 50

Conclusion
� We�ve discussed how to build programs with

multiple threads.

� To synchronize threads we can use Java�s
primitives:
� lock objects
� condition objects

07/22/10 51

Streams and Persistent Objects

Reading:
• 2nd Ed: 16.1-16.3, 16.5

• 3rd Ed: 11.1, 19.1, 19.4

� http://java.sun.com/docs/books/tutorial/essential/io/streams.html

07/22/10 52

Learning Objectives

� describe stream abstraction used in Java for byte and
character input/output

� write programs that use streams to read and write data
� incorporate data persistence in a program using Java's

serialization mechanism

07/22/10 53

Input and Output

� We know how to read input from the "standard input
stream", and to write output to the "standard output stream":

� How do we read text that is input by the user?

Scanner in = new Scanner(System.in);

String line = in.nextLine();
� How do we output text for the user?

System.out.println(line);

� What if we want to read text from a file, and write text to a
file?

07/22/10 54

Reading Text Files

� The easiest way to read text from a file is to use the
Scanner class. This allows us to read any of the primitive
types (i.e. int, double, string etc.) from a text file.

� Scanner is defined in java.util and has the following
behaviour:
� has a constructor that creates a scanner from a specified

stream
� has methods like next, nextLIne , nextInt,
NextDouble, etc. to read data for java�s built-in types

� Example:

Scanner in = new Scanner(new FileReader(�input.txt�));

int x = in.nextInt();

String s = in.next();

// etc.

07/22/10 55

Reading Text Files

� A FileReader is a connection stream for
characters that connects to a text file

� A Scanner object can take a FileReader in its
constructor

� Scanner provides many methods for parsing
and splitting text

07/22/10 56

Reading Text Example
 try {

 Scanner in = new Scanner(new FileReader("C:\\Documents
and Settings\\Gabriel Murray\\My Documents\\quiz.txt"));

 while (in.hasNextLine())

 {

 System.out.println(in.nextLine());

 }

 in.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 }

The file quiz.txt contains questions
and answers for a pub quiz. The first
line contains a question, the second
line its answer, and so on.

Note the double slash, since \ has
special meaning.

07/22/10 57

Reading Text Example
 try {

 Scanner in = new Scanner(new FileReader("C:\\Documents
and Settings\\Gabriel Murray\\My Documents\\quiz.txt"));

 while (in.hasNextLine())

 {

 System.out.println(in.nextLine());

 }

 in.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 }

We have to be sure to close the file
when we are done. Particularly if we
are writing to a file and our
programs quits without closing the
file, all the output may not be
written.

07/22/10 58

Reading Text Example
 try {

 Scanner in = new Scanner(new FileReader("C:\\Documents
and Settings\\Gabriel Murray\\My Documents\\quiz.txt"));

 while (in.hasNextLine())

 {

 System.out.println(in.nextLine());

 }

 in.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 }

If the file doesn't exist, we can get a
FileNotFoundException. So we have
to catch that.

07/22/10 59

Reading Text Example
 try {

 Scanner in = new Scanner(new FileReader("C:\\Documents
and Settings\\Gabriel Murray\\My Documents\\quiz.txt"));

 while (in.hasNextLine())

 {

 System.out.println(in.nextLine());

 }

 in.close();

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 }

We simply get the text file printed out line
by line:
1. What is the name of the Canadian Finance
Minister?
A: Jim Flaherty.
2. Who is president of the Palestinian Authority?
A: Mahmoud Abbas.
3. Name the screen actor whose 16-year old son
recently died in the Bahamas.
A: John Travolta.

07/22/10 60

In-Class Exercise I

� Modify the previous example to print out just
the answers

� Modify the previous example to print out just
the questions

07/22/10 61

Writing Text Files
� The easy way to write values of primitive types to a file is to

use a PrintWriter
� A PrintWriter

� can be directly associated with a file or with an
OutputStream

� has a constructor with the file name as parameter
� has methods print and println which accept any of

the primitive types and convert their values to strings
� print and println convert general objects to strings

using toString()
� Example:

PrintWriter out = new PrintWriter(�output.txt�);

out.println(123.05);

out.println(�Hello World�);

 out.println(new Account(�john�, 100));

// etc.

07/22/10 62

What Are These Streams?

� What exactly are "FileReader" and "PrintWriter",
"Reader", "OutputStream", and for that matter,
"System.in", and "System.out"?

�

FileReader and PrintWriter are examples of streams.

�

System.in is also a stream, it's an instance of
InputStream

�

System.out is also a stream, it's an instance of
PrintStream

07/22/10 63

What are streams?
� Most programs exchange data either with other programs, or

with devices, or both
� e.g., the myUBC portal must load information about who you

are when you login (likely from a database)
� e.g., your web browser remembers recently visited sites,

cookies, etc. on the local file system
� e.g., if you google a term, you are sending data to a web

server somewhere in the world and it is returning data to your
web browser

� We use streams to abstract the concept of data flowing from
one program/device to another

� Each stream has a source (from which data flows) and a sink
(into which data flows)

source sink

Data flows in FIFO order 07/22/10 64

Streams

� Use an input stream to read data from a
source

07/22/10 65

Streams

� Use an output stream to write data to a
destination

07/22/10 66

Using a Stream

� To communicate with another
program/device/file, a program
� creates and opens a stream to (or from) the other

program/device/file

� transfers data through the stream (usually, one
piece at a time)

� closes the stream

07/22/10 67

Java Stream Types
� Java provides many stream classes (in the
java.io package) to support I/O from devices with
different characteristics

� These stream classes are all used in basically the
same way (it does not matter if the streams goes to a
file, another computer, or somewhere else).

� Two basic categories:
1.Character streams, which are used to communicate (16-bit)

characters in a platform independent way

2.Byte streams, which are a sequence of (8-bit) bytes used to
read/write binary data (images, sound), manipulate raw files,
and for object serialization

07/22/10 68

Stream Classes

� Character Input Streams:

� FileReader: input comes from a file.

� Example: Reader r = new FileReader("filename.txt");

� StringReader: input comes from a string.

� Example: Reader r = new StringReader("this is input");

� CharArrayReader: input comes from an array of

char.

� Example: char[] myArray = {‘i’,’n’,’p’,’u’,’t’};

 Reader r = new CharArrayReader(myArray);

07/22/10 69

Stream Classes

� Character Output Streams: same names, replacing

Reader by Writer. There is one additional useful class:
� PrintWriter: has print() and println()

methods

� Byte Input and Output Streams: same names, using

InputStream and OutputStream instead of Reader and Writer

� For more detail, see appendix at the end of these

lecture notes
07/22/10 70

Example: Copying the contents of a file

� Copy the contents of the file recentPhoto.jpg to a new file called
myDog.jpg:

 int data;

try {

 FileInputStream in = new FileInputStream("recentPhoto.jpg");

 FileOutputStream out = new FileOutputStream("myDog.jpg");

 while ((data = in.read()) != -1)

 out.write(data);

 in.close();

 out.close();

}

catch (IOException e) {

 System.err.println("File error: " + e.getMessage());

}

returns -1
when end of file

is reached

07/22/10 71

Source/Sink Streams
� Streams are associated with a source/sink, i.e. a device like a

file:

Source/sink Char Streams Byte Streams

File FileReader FileInputStream

FileWriter FileOutputStream

PrintWriter PrintStream

Memory CharArrayReader ByteArrayInputStream

CharArrayWriter ByteArrayOutputStream

StringReader

StringWriter
07/22/10 72

Processing Streams
�Placed between source/sink streams and perform

data transformations

�For example, we may want to buffer the data as it�s
read and written

�We can do this by embedding our input and output
stream objects in buffer objects.

� The code would look like:

BufferedInputStream in =

 new BufferedInputStream(new FileInputStream("recentPhoto.jpg"));

BufferedOutputStream out =

 new BufferedOutputStream(new FileOutputStream("myDog.jpg"));

file FileInputStream BufferedInputStream program

07/22/10 73

Processing Streams (con�t)

Process Char Streams Byte Streams

Buffering BufferedReader BufferedInputStream
BufferedWriter BufferedOutputStream

Byte/Character InputStreamReader
Conversion OutputStreamWriter

Data DataInputStream DataOutputStream
Conversion

Counting LineNumberReader LineNumberInputStream

etc.
07/22/10 74

Example: Buffered copying of file
contents

� Our copying example, revisited:

 int data;
try {

BufferedInputStream in = new BufferedInputStream(

new FileInputStream("recentPhoto.jpg"));

BufferedOutputStream out = new BufferedOutputStream(

new FileOutputStream("myDog.jpg"));

while ((data = in.read()) != -1)
 out.write(data);

in.close();
out.close();

}

catch (IOException e) {
System.err.println("File error: " + e.getMessage());

}

� Note that the main while loop does not change, just our declarations of the streams
and the way that we construct the streams

07/22/10 75

Buffering

� Using buffers can be much more efficient

� Writing to a file without using a buffer is like
shopping without a cart and taking each
grocery item out to your car one at a time

� In our case, we want to reduce the number of
trips to the disk

� So we write to a buffer, and only when the
buffer is full do its contents get written to the
file

� If we want to send the data before the buffer is
full, we can just call its flush() method

07/22/10 76

Standard Streams
� java.lang.System�s in, out and err are streams associated with the standard

input and output devices

� System.in is a static variable of type InputStream

� System.out and System.err are static variables of type PrintStream

� To read character-based data from System.in we need to wrap System.in

using an InputStreamReader (and usually a BufferedReader as well to

be able to read a line at a time)

� E.g.,

 BufferedReader bufferedIn = new BufferedReader(

new InputStreamReader(System.in));

 String line = bufferedIn.readLine();

07/22/10 77

Why streams?
� Streams abstract I/O and support processing of

the data in the stream, allowing us to write
methods that are more general

� For example, suppose we want to determine the
maximum integer, among a group of values:
� in a file

� read from the keyboard using System.in

� in a String or character array (e.g., "123\n453\n848\n")

� Note that a BufferedReader can be attached to any
kind of Reader including: FileReader, InputStreamReader,
CharArrayReader, StringReader

07/22/10 78

Why streams?
/**

 * Read in a set of integers (one per line) and return the maximum value

 * @pre in != null

 * @returns The maximum value read or smallest int value if nothing read

 * @throws IOException on any input exception

 */

public static int maxInput(BufferedReader in)

throws IOException {

String line = null;

int max = Integer.MIN_VALUE; // smallest int value

while ((line = in.readLine()) != null) {

 int n = Integer.parseInt(line);

 max = Math.max(max, n); }

}

return max;

}

07/22/10 79

Why streams?
� For instance, we can call maxInput where the

stream reads data from a text file named
mydata

BufferedReader bufferedIn = new

BufferedReader(

new FileReader("mydata"));

int max = maxInput(bufferedIn);

� Or we can call maxInput, reading the data from
the standard input System.in

BufferedReader bufferedIn = new

BufferedReader(

07/22/10 80

Chaining Streams
� There are a ton of classes in the java.io

package. How do we know which to use?

� There are a variety of connection streams and
processing streams available, and they can be
�chained� together in many different
combinations

� We've already seen examples, e.g. chaining a
BufferedWriter to a FileWriter

� BufferedWriter writer = new
BufferedWriter(new FileWriter(aFile));

� We can end up with constructor nesting
several levels deep

07/22/10 81

Chaining Streams

� Most often, though, you'll use a small handful
of classes including the ones we've seen

� Usually with input and output, there is more
than one way to accomplish the task

� How do you know which classes can be
chained?

� Check their constructors in the API

07/22/10 82

Parsing with String split()

� What if our pub quiz file was formatted differently, with
one question-answer pair per line, with the Q and A
separated by a symbol (e.g. /)?

� We can separate the Q and A by using a String's split()
method, which asks for a separator and splits the String
when it finds that separator

 String qa = "Who is the Prime Minister?/Stephen Harper";

 String[] result = qa.split("/");

 for (String token: result)

 {

 System.out.println(token);

 }

Who is the Prime Minister?
Stephen Harper

07/22/10 83

In-Class Exercise II

� Write code that reads in a pub quiz file in this
format (one QA pair per line, separated by a
forward slash) and writes out just the answers
to a new file

07/22/10 84

Object Serialization

� Suppose you are writing a program that allows
the user to store the names, telephone numbers
and addresses of their contacts.

� When the user enters data, they expect it will be
available to them the next time they run the
program.

� To do this, the program needs to store the data
(likely on a hard disk) from one session to the
next.

� You can do this easily using object serialization.

07/22/10 85

Saving Objects

� There are actually two approaches we could
take

� If you want to save the data of an object so
that it can be used by other programs, you can
just write to a plain text file, writing the value of
each instance variable for that object in some
sort of consistent format

� We now know how to write text to a file

� This data could then be used by a
spreadsheet, database or other program

07/22/10 86

Saving Objects

� But if we want to be able to save an object
and reload it in Java at a later date, it is much
easier to use serialization

07/22/10 87

Serialization: Object Streams
� Java�s serialization API supports the saving of the state

of an object to a sequence of bytes; those bytes can
later be used to restore the object

� The ability to save an object is sometimes called
�persistent objects�

� Serialization makes it possible to save an object, stop
the program, restart it, and then restore the object

� To make objects of a class serializable, you just need to
implement the Serializable interface.
Serializable is a marker interface (that means it
has no methods)
� E.g., to make the Account class serializable:
class Account implements Serializable {

… }

07/22/10 88

Saving an Object
� To save serializable objects in a file we need to

� associate a FileOutputStream with the file
� wrap an ObjectOutputStream around it
� use writeObject() to store the objects

sequentially
� e.g., if Account implements Serializable and
a1,a2 are accounts we can save them in the file
named account.dat

ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream("account.dat"));

out.writeObject(a1);

 out.writeObject(a2);

� Most Java library classes are serializable (but not all)

� Java takes care of serializing the variables in the

07/22/10 89

Saving an Object

� Notice another example of chaining

� ObjectOutputStream is chained to
FileOutputStream

� FileOutputStream knows how to connect to
(and create) a file

� ObjectOutputStream lets us write objects, but
it can't directly connect to a file

07/22/10 90

Chaining

� By the way, why don't we just have a single
stream that does exactly what we want?

� For one, it's good OO to have these
specialized classes. Each class does one
thing well.

� It also gives us a lot of flexibility as far as
combining connection and processing
streams.

07/22/10 91

What gets saved?

� All of an object's instance variables get saved

� Why don't we save methods as well? What
makes an object unique?

� This seems straightforward in the case of
primitive values like 37 and 70, but what about
instance variables that are object references?

� For example, what if our Car object has
instance variables that refer to an Engine
object and a Tire[] array?

07/22/10 92

What gets saved?

� Serialization saves the entire object graph. All
objects referenced by instance variables,
starting with the object being serialized

� So when you save the Car object, the Engine
object and Tire objects are also saved

Engine

Tire[]

Car object

Engine object

Tire[] array object

07/22/10 93

Serialization is �all or nothing�

� Either the entire object graph is serialized
correctly or serialization fails

� This poses a problem:

� We can't serialize an object if it contains an
object reference for a class that is not
serializable

� For example, if we design a class Pond that
implements Serializable, but it contains
objects of the class Duck and Duck does not
implement Serializable, then we will get an
exception when we try to serialize Pond

07/22/10 94

Serialization is �all or nothing�

� But what if someone else designed the Duck
class and it's not possible for us to make it
Serializable?

� One option is to mark it as transient

� Anything marked as transient will be skipped
over during the serialization process

� transient String currentID;

07/22/10 95

Transient
� If we mark some instance variables as

transient, what happens when we bring the
object back to life (deserialize it)?

� Those instance variables will be brought back
as null (primitives are brought back w/
default values)

� Your options then are to

� reinitialize that null instance variable back to
some default state

� Or, if it's important that it have the same key
values that it had before, then save those
values so that you can create a new instance
variable that's identical to the original, e.g. a
new Duck with the same colour and size

07/22/10 96

Serialization is �all or nothing�

� Another option is to subclass the non-
serializable class and make that subclass
implement Serializable

07/22/10 97

Saving Objects

� If you try to save an object multiple times, the
object will only get written once during
serialization but there can be multiple
references that will be resolved during
deserialization

07/22/10 98

Reading Objects from a File

� To read back in the objects we have saved in a
file we need to
� associate a FileInputStream with that file
� wrap an ObjectInputStream around it
� use readObject() to get the objects sequentially,

in the order they were saved
� e.g., to get the first two accounts stored in

account.dat

ObjectInputStream in =

 new ObjectInputStream(

 new FileInputStream("account.dat"));

Account a1 = (Account) in.readObject();

 Account a2 = (Account) in.readObject();

07/22/10 99

Reading Objects from a File

� If you try to read back more objects than you
wrote, you'll get an exception

� The return type of readObject() is Object, so
you need to cast it back to the type you know
it really is

� A new object is given space on the heap, but
the serialized object's constructor does not run

� Why not? What might happen to its values?

07/22/10 100

Reading Objects from a File

� However, if the object has a non-serializable
class somewhere up its inheritance tree, the
constructor for that non-serializable class will
run along with any constructors above that
(even if they're serializable)

07/22/10 101

Reading Objects from a File

� Java needs to be able to find the Class of the
objects you are reading in

� Remember, the class itself did not get saved, just
the objects

� If you change the definition of the class in
between saving an object and reading it back (it
could be days or weeks or years before you read
it back!), a
java.io.InvalidClassException may be
thrown because the version of the class is not
compatible with the class of the saved object

07/22/10 102

Appendix I
Character Streams (from old sun�s tutorial)

A diagram of the classes
for handling character streams

07/22/10 103

Byte Streams (from old Sun�s tutorial)

FileOutputStream

FileInputStream

A diagram of the classes
for handling byte streams

