

07/20/10 1

Assignment 4
� Due Tuesday July 27th, 8 PM

� No late assignments accepted

� You will have a chance to demo your GUI
during your lab on the 28th

� Sign up for a demo time-slot during your lab
today

� If working with a partner, you do one demo
together

� People within a given lab section have first
dibs on the time-slots in that section

� After the labs today, I will post a time-sheet
indicating remaining open slots

07/20/10 2

Review

07/20/10 3

Recursive Methods
� We have seen that a method can make a call to another

method (e.g. a method calling a helper method).
� Many programming languages, including Java, allow a

method to make a call to itself � we call this recursion.
� A method that makes a call to itself is known as a recursive

method.
� When a method calls itself, it is essentially repeating itself

and so recursion is a form of looping.
� Note that in some programming languages, recursion is the

only way to loop through a block of code.

07/20/10 4

Recursive Methods

� Some problems are more naturally solved using recursion
than a looping construct such as a for loop.

� Problems whose solution can be defined in terms of
solutions to smaller sub-problems have natural recursive
solutions.

� There are also some data structures whose structure can
be defined recursively (a binary tree, for example). These
structures can be processed recursively in a very natural
way.

� We'll start with some easy examples.

07/20/10 5

Real-World Examples
� Shampoo bottle instructions

oLather
oRinse
oRepeat

� An unhelpful dictionary definition
oBook (n.) - A bunch of pages that make

up a book
� Neither of these ever terminate � they

keep calling themselves

repeat all three steps,
including the repeat step

07/20/10 6

Terminating Conditions
� We need a defined stopping point

oe.g. �If hair is clean, stop. Otherwise,
repeat.�

� Without this, you get infinite recursion,
and eventually a memory overload error

07/20/10 7

Recursive Method Calls � General
Form

� Our drawRamp method illustrates the general form of a recursive
method call:

type recursiveMethod(type param1, type param2,�)

{

 if(base case)

 // handle base case (code omitted)

 else

 {

 // operations to do before recursive call

 // (code omitted)

 recursiveMethod(�); // recursive call

 // operations to do after recursive call

 // (code omitted)

 }

}

07/20/10 8

Recursion vs Iteration (cont�d)

� Recursion usually requires more memory than iteration
� each method call creates a new stack frame in which its

parameters and local variables are stored

� Sometimes recursion is more natural so it may take
more time to develop an iterative solution.

� Rule of thumb:
� use iteration when it is easy and natural to do so.

� use recursion when it is easy and natural to do so.

07/20/10 9

Conclusion
� Recursion can add simplicity, elegance and

readability to a program
� Not always the most efficient method
� Check whether you could solve the problem

more efficiently in an iterative fashion
� Check whether your problem naturally lends

itself to being solved by solving a number of
subproblems
o e.g. Tree traversal

07/20/10 10

In-Class Exercise I

� We know how to write a method to take an
ArrayList<String> and print out each item
using a for-loop or an iterator

� Write a recursive method that does the same
thing

� What is your base case?

� How do you get closer to your base case?

07/20/10 11

Learning Goals Review
� trace code that uses recursion to determine what the code

does
� draw a recursion tree corresponding to a recursive method

call
� draw a stack trace of code that uses single and multi-

branch recursion
� write recursive methods
� replace a recursive implementation of a method with an

iterative solution (may need to use a stack to model the
run-time stack)

07/20/10 12

Threads

Reading

 2nd Ed: Chapter 23
 3rd and 4thrEds: Chapter 20

Other Resources
http://www.ugrad.cs.ubc.ca/~cs219/CourseNotes/Threads/intro.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html

07/20/10 13

Learning Objectives

� describe the multi-threaded programming model including thread
scheduler, thread priority, and time slices.

� describe the various states that a Java thread can achieve and the events
that lead to transition from one state to another

� define the terms deadlock, race condition and critical section

� identify possible legal traces of a multithreaded program

� identify deadlock and race conditions in a multithreaded program

� write a thread-safe code using Lock and Condition objects

� identify possible legal traces of a Java program that uses synchronization,
locks and conditions

07/20/10 14

Multitasking
� Many programs you use do more than one

thing at a time

� You can write an email while the email
program checks for new message

� You can type in a word processor while it auto-
saves your draft

� A web browser can load a large photo or a
YouTube clip while also loading other pages

� Imagine if in each of these cases, the program
could do only one thing at a time in sequential
order

� It would be a huge bottleneck

07/20/10 15

Multitasking

� Up until now, we have created fairly simple
programs that do one thing at a time

� If we had more than one task to do, each task
was completed before the next was started

� In contrast, we can use threads to develop
concurrent software

� Java was designed from the ground up to
support concurrency, so it's fairly easy
compared with some other languages

07/20/10 16

Multitasking
� A typical program (process) spends a lot of time

waiting for events to occur:
� input from user
� read data from/write data to a disk, etc.

� Most modern operating systems are multitasking: the
processor switches between many programs,
interleaving their instructions:

program A: ------- --------- ---------- ----------
program B: -------- --------- --------

� The operating system�s scheduler decides how
programs run.

07/20/10 17

Multitasking

� Notice that the instructions are interleaved,
not parallel like this:

program A: ------------------------------------
program B: ------------------------------------

A typical computer only has a single CPU. Even with
multiple CPUs, it will usually have more programs running
than it has CPUs. So it runs program A for a little then
program B for a little bit, and so on. This gives the illusion
of programs running simultaneously.

07/20/10 18

Concurrent Programming

� Sometimes we need a single program to do more than
one thing at the same time.

� One way is to create multiple processes, but the
overhead from context switching is large for regular
processes
� need to save/restore large amount of state information

� Solution: use threads - lightweight processes with small
state information
� Allows a program to be split into multiple threads, supporting concurrent

programming

� One thread runs while the others wait to be scheduled to run or for some
other condition to occur.

07/20/10 19

Java Threads
� The JVM supports threads and concurrent programming.
� If a program has more than one thread, a (JVM) scheduler will

determine when each thread gets to run.
� There are two types of schedulers:

� pre-emptive: each thread is allowed to run for a maximum amount of time
(a time slice) before it is suspended and another thread is allowed to run

� non pre-emptive: once a thread is allowed to run it continues to run until it
has completed its task or until it explicitly yields to another thread

� The scheduler in most JVMs is pre-emptive.
� As this is not guaranteed, we must not write code that assumes a pre-

emptive scheduler.

07/20/10 20

Java Threads

� A thread in Java
� is an instance of the Thread class

� has a priority and an optional name

� has a start() method

� this method puts the thread into the runnable state so that it can

be selected for execution by the thread scheduler

� has a run() method

� the code in this method is executed when the thread runs

� it is overridden to specify the particular behaviour of the thread

07/20/10 21

Thread States
� A thread can be in one of five states:

� alive

� the thread has been constructed but start() has not been called

� runnable

� the thread is ready to be scheduled to run

� running

� the run() method is executing

� waiting/blocking

� the thread can't run until some event has occurred (e.g., the passing
of a certain amount of time)

� dead

� the run() method has run to completion

07/20/10 22

Thread States
� The diagram below shows the transitions that can occur

between these five states.

� For example, a thread can transition from runnable to
running, or vice versa.

� However, a thread cannot transition directly from runnable
to dead.

alive runnable running dead

waiting/
blocked

07/20/10 23

Thread States

� When a thread dies, its state is still accessible (in other
words, the thread object is not destroyed)

� A thread that reaches the dead state cannot be restarted!

� If you want a thread to run again, just create a new instance of the
corresponding class and start it.

� When the JVM starts, it creates a thread that runs main().
The JVM continues to execute an application until all user-
threads die or System.exit() is called.

07/20/10 24

Creating and Using Threads in
Java

Two ways to create a thread

1. Extend Thread and override the run() method

class SumThread extends Thread {

int end;

int sum;

SumThread(int end) {

 this.end = end;

}

public void run() {

 // sum integers 1, 2, . . ., end

 // and set the sum

}

}

07/20/10 25

Creating and Using Threads in Java

To create and start SumThread :

SumThread t = new SumThread(150);

t.start();
Thread t will

start running

sometime after

that

07/20/10 26

Creating and Using Threads in
Java

2. Using the Runnable interface (has only one method
run())

� Define a class that implements Runnable

� Create an object obj of that class

� Create a thread t wrapped around that object
o Thread has a constructor with a Runnable parameter

2. start t
1. JVM will invoke the run() method of obj

� Method 2 is preferable when
� the class that contains run() already extends another class

� you want to separate

o the code executed by the thread

o the state info that is maintained by the thread

07/20/10 27

Runnable interface

� With this second approach, the Thread can be
seen as a worker and the Runnable object is a
job provided to the worker

07/20/10 28

Creating and Using Threads in Java

� As mentioned, the second approach is chosen
when the class already extends something
else (and thus can't extend Thread)

� It's also considered a better design from an
OO standpoint

� We shouldn't subclass Thread unless we are
creating a more specific type of Worker and
need more specific worker behaviours. If all
we need is a new job to be carried out by a
worker, it's better to implement Runnable
and provide that Runnable object (job) to the
worker

07/20/10 29

Creating and Using Threads in Java

� We will see examples of both approaches,
however, so that you will be familiar with both

07/20/10 30

Creating Threads (cont�d)
� Here is the same example in this style:

class SumRun implements Runnable {

int end;

int sum;

SumRun(int end) {

 this.end = end;

}

public void run() {

 // sum integers 1, 2, . . ., end

 // set sum

}

}

07/20/10 31

� To create a thread for SumRun and start it :

SumRun srun = new SumRun(150);

Thread sumRunThread = new Thread(srun);

sumRunThread.start();

07/20/10 32

Runnable Example
public class MyRunnable implements Runnable {

public void run()

{

go();

}

public void go()

{

doMore();

}

public void doMore()

{

System.out.println("top o' the stack");

}

}

07/20/10 33

Runnable Example
public class MyRunnable implements Runnable {

public void run()

{

go();

}

public void go()

{

doMore();

}

public void doMore()

{

System.out.println("top o' the stack");

}

}

The class implements Runnable, so we
have to define its run() method

07/20/10 34

Runnable Example
public class MyRunnable implements Runnable {

public void run()

{

go();

}

public void go()

{

doMore();

}

public void doMore()

{

System.out.println("top o' the stack");

}

}

All run() does is call another method
go(), which in turn calls doMore(),
which has a simple print statement.

07/20/10 35

Runnable Example

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/20/10 36

Runnable Example

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

Create an instance of this Runnable
job.

07/20/10 37

Runnable Example

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

Pass the job to a worker Thread
object.

07/20/10 38

Runnable Example

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

Start the thread � this will call the run() method of
the Runnable object

07/20/10 39

Runnable Example

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

We'll also put a print statement here in the main
method.

07/20/10 40

Multiple Threads

main()

myThread.start()

run()

go()

doMore()

main thread new thread

07/20/10 41

What gets printed if we run this?

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/20/10 42

The Thread Scheduler

� We talked about threads being in different
states, e.g. runnable and running

� The thread scheduler makes all the decisions
about which thread moves from runnable to
running, or when a thread leaves the running
state

� We do not control the scheduler

� We do not control which thread runs when,
nor how long it runs

07/20/10 43

The Thread Scheduler
� Because of this, we should never write code

that depends on the scheduler working in a
particular way

� We cannot assume that threadA will run to
completion and then threadB will run to
completion and so on

� There are some things we can do to affect
which threads are run

� e.g. putting a thread to sleep for a few
milliseconds gives other threads a chance to
run

� More on that in a moment

07/20/10 44

So, what gets printed if we run this?

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/20/10 45

Answer: it depends

� It depends on the scheduler and how the
scheduler decides what to run and when

� If you run this program multiple times, you are
liable to get different results:

% java ThreadTester

 back in main

 top o' the stack

% java ThreadTester

 top o' the stack

 back in main

07/20/10 46

Why does it vary?

� Sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts
the new thread

main()

myThread.start()

main
thread

The scheduler
send the main()
thread back to
runnable so that
the new thread
can run

run()

go()

doMore()

new
thread

The scheduler lets the
new thread run to
completion, print out
�top o' the stack�

main()

main
thread

The new thread
goes away because
its run() method has
completed. The
main thread
becomes the
running thread, and
prints �back in main�

07/20/10 47

Why does it vary?

� And sometimes it runs like this:

main()

myThread.start()

main
thread

main() starts the
new thread

main()

myThread.start()

main
thread

The scheduler send
the main() thread
back to runnable so
that the new thread
can run

run()

go()

new
thread

The scheduler
lets the new
thread run for a
while, but not
long enough for
run() to complete

main()

main
thread

Main thread
selected as
running
thread,
prints �back
in main�

run()

go()

new
thread

Scheduler
sends new
thread back
to runnable

run()

go()

new
thread

doMore()

New thread
returns to
running
state and
prints out
�top o' the
stack�

07/20/10 48

Thread Scheduler

� As mentioned, we can't assume that the new
thread will be allowed to run to completion

07/20/10 49

Thread Priorities
� Programmers may assign priorities to threads

� using set/getPriority methods and constants
MIN_PRIORITY, MAX_PRIORITY, NORM_PRIORITY (range
from 0 to 10)

� By default a thread gets the same priority as the thread that
created it.

� In general, the running thread will be of equal or higher
priority than the other threads in the runnable state but this
isn't guaranteed!

� When all the threads in the runnable state have the same
priority, the behaviour will depend on the way the scheduler is
implemented.

07/20/10 50

Putting threads to sleep

� If we want to help our threads take turns, we
can put them to sleep periodically

� We do this by calling the static sleep()
method, indicating a duration in milliseconds

� Thread.sleep(2000)

� This removes the thread from the running
state

� It also means that the thread can't become the
running thread again for at least 2 seconds

07/20/10 51

Putting threads to sleep

� Note: that doesn't mean the thread will
become the running thread again in two
seconds

� It means that after two seconds have elapsed,
it will go back into the runnable() state and will
wait to be chosen

07/20/10 52

Putting threads to sleep

� The sleep() method throws an
InterruptedException

� It is rare that a thread will ever be interrupted
from its sleep, but we still have to catch the
exception

try {

 Thread.sleep(2000);}

catch (InterruptedException ex) {

 ex.printStackTrace();

}

07/20/10 53

public class MyRunnable implements Runnable {

public void run(){

 go();

}

public void go()

{

try {

 Thread.sleep(2000);}

catch(InterruptedException ex){

 ex.printStackTrace();}

doMore();

}

public void doMore()

{

System.out.println("top o' the stack");

}

}

In the go() method, let's add this
sleep() call before doMore() gets
called.

07/20/10 54

Now what gets printed if we run
this?

public class ThreadTester {

public static void main(String[] args)

{

Runnable threadJob = new MyRunnable();

Thread myThread = new Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/20/10 55

Putting threads to sleep

� We should now get a consistent ordering of
our print statements

% java ThreadTester

 back in main

 top o' the stack

% java ThreadTester

 back in main

 top o' the stack

07/20/10 56

Putting threads to sleep

� We should now get a consistent ordering of
our print statements

% java ThreadTester

 back in main

 top o' the stack

% java ThreadTester

 back in main

 top o' the stack

You will also see a pause of about
2 seconds before the second line
is printed

07/20/10 57

Deadlock
� There are many pitfalls that one must be aware of when

programming with threads.

� Deadlock is one of them.

� Deadlock occurs when two or more threads are unable to
make progress because they are each waiting for each
other to do something.

07/20/10 58

Busy Wait

� Example:
public class Worker extends Thread {

 private sometype result;

 public void run() {

 // Performs very long computation and sets result

 }

public static void main(String[] args) {

 Thread wt = new Worker();

 wt.start();

 while (wt.isAlive());

 System.out.println(result);

}

}

Busy-Wait loop

07/20/10 59

Busy Wait (continued)

� Problems with the last example and a non-preemptive scheduler:
� the main thread loops until the Worker thread completes;

� the Worker thread cannot get the processor because the main thread is
looping

� We must avoid writing code like this
� result relies on the scheduler�s decision; cannot show that it is correct

� may not work for non-preemptive schedulers.

� So how do we fix it?

07/20/10 60

Thread Coordination using
sleep()

� One way to fix the problem is to use the sleep() method to tell
the scheduler to switch to another thread.

� sleep(long n) � stops running the current thread for (at least) n
milliseconds

� sleep() is a static method of the Thread class
� you can put to sleep only the current thread

� Sleep time is not accurate
� when sleep() is executed the thread moves to the waiting state

� when sleep time is over, it is moved back to the runnable state

� thread can run any time after that.

07/20/10 61

Example using sleep()
public class Worker extends Thread {

private sometype result;

public void run() {

 // Performs very long computation and sets result }

public static void main(String[] args) {

 Thread wt = new Worker();

 wt.start();

 while (wt.isAlive()) {

 try {

Thread.sleep(800); // sleep for 800 msec

 }

 catch (InterruptedException e){
...
}

 }

 System.out.println(result);

}

07/20/10 62

Example using sleep()

� Now the Worker thread has a chance to get
the processor

07/20/10 63

Thread Coordination using
yield()

� yield() is another static method of the Thread class

� When a thread executes yield() it is pre-empted and
placed in the runnable state
� preempted thread starts execution again when it is selected by

the scheduler

� it does not necessarily have to wait

� Example:
� could replace sleep(800) with yield() in the previous program

� we should remove the try block; yield() does not throw any exception

� would this do what we want?

07/20/10 64

Example using yield()
public class Worker extends Thread {

 private sometype result;

 public void run() {

 // Performs very long computation and sets result

 }

 public static void main(String[] args) {

 Thread wt = new Worker();

 wt.start();

 while(wt.isAlive())

 Thread.yield();

 System.out.println(result);
 }

}

07/20/10 65

Thread Coordination using join()
� sleep() and yield() usually require a loop that keeps

checking a condition

� waste processor cycles

� When the current thread t executes r.join() on another
thread r, t will be placed in the wait/blocked state until r
terminates

� The version join(long n) will make t wait at most n
milliseconds

� join() throws an InterruptedException if the thread is
interrupted

� Example: we can replace the last example�s while loop with
a call to join().

07/20/10 66

Example using join()
public class Worker extends Thread {

private sometype result;

public void run() {

 // Performs very long computation and sets result }

public static void main(String[] args) {

Thread wt = new Worker();

wt.start();

try {

 wt.join(); // wait for wt to terminate

}

catch (InterruptedException e) {

...
 }

System.out.println(result);

}

07/20/10 67

In-Class Exercise II

� For the following two examples, indicate what
you expect the output to be

07/20/10 68

public class MyRunner implements
Runnable

{

public void run()

{

System.out.println("This is
great");

Thread.yield();

go();

}

public void go()

{

System.out.println("having fun");

}

}

public class ThreadTester {

public static void main(String[]
args)

{

Runnable threadJob = new MyRunner();

Thread myThread = new
Thread(threadJob);

myThread.start();

System.out.println("back in main");

}

}

07/20/10 69

public class MyRunner implements
Runnable

{

public void run()

{

System.out.println("This is
great");

Thread.yield();

go();

}

public void go()

{

System.out.println("having fun");

}

}

public class ThreadTester {

public static void main(String[]
args)

{

Runnable threadJob = new MyRunner();

Thread myThread = new
Thread(threadJob);

myThread.start();

try{

myThread.join();

}

catch (InterruptedException ex){}

System.out.println("back in main");

}

}

07/20/10 70

Tea break!

07/20/10 71

Sharing Resources
� Many threads may need to access the same resource (object,

file, memory, etc.). Such cases must be handled carefully.

� In the following (very contrived) example, we'll create a single
bank account with an initial balance of $0 that will be shared
by three threads.

� Each thread will deposit $100 to the account.

� We'll see that, unless we're careful, the account will not have
a deposit of $300 by the time the three threads have finished
running�

07/20/10 72

Sharing Resources
 public class UnsyncAccount {

private double balance;

public UnsyncAccount() {

 balance = 0.0;

 }

 public void deposit(double amount) {

 double tempBalance = balance;

 // run some lengthy process here (or just sleep())

 balance = tempBalance + amount;

}

public double getBalance() {

 return balance;

}

}

07/20/10 73

Example: A simple shared account ...

public class UnsyncDeposit extends Thread {

private UnsyncAccount account;

public UnsyncDeposit(UnsyncAccount a) {

account = a;

}

public void run() {

System.out.println("Thread " + this.getId()

+ " BEFORE deposit balance: "

+ account.getBalance());

account.deposit(100);

System.out.println("Thread " + this.getId()

+ " AFTER deposit balance: "

+ account.getBalance());

}

All the run() method does is
check the balance, try to
deposit something, and check
the balance again

07/20/10 74

public static void main(String[] args) {

UnsyncAccount acc = new UnsyncAccount();

Thread th1 = new UnsyncDeposit(acc);

Thread th2 = new UnsyncDeposit(acc);

Thread th3 = new UnsyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: " +

acc.getBalance());

}

}

Example: A simple shared account ...

We create three threads with a shared
resource (a single account) and call start() on
each of them. After they have completed, we
print out the current balance of the account?

07/20/10 75

public static void main(String[] args) {

UnsyncAccount acc = new UnsyncAccount();

Thread th1 = new UnsyncDeposit(acc);

Thread th2 = new UnsyncDeposit(acc);

Thread th3 = new UnsyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: " +

acc.getBalance());

}

}

Example: A simple shared account ...

What value is
printed out?

300 or 100

07/20/10 76

Shared resources
� As you may have guessed by now, it depends

public void deposit(double amount) {

 double tempBalance = balance;

 // run some lengthy process here (or just sleep())

 balance = tempBalance + amount;

}

� (Again, this is a very contrived example, but illustrates
something important)

� We set tempBalance to the current balance, say 0

� Then the scheduler selects some other thread to be running.
In that thread, 100 more dollars is deposited.

� When this current thread gets back to the running state, it sets
balance equal to tempBalance (still 0) and adds 100

� So we could get a balance of 100 when it should have been
200

07/20/10 77

Race Condition & Critical Sections
� In the previous example, the outcome depends on the

way that the threads are scheduled to run. This is called
a race condition.

� To get correct results we need to ensure that the code
that updates the account is executed by at most one
thread at a time.

� Any code segment that must be run by only one thread at
a time is called a critical section.

� Any code segment that updates a resource that can be
shared by multiple threads is a critical section.

� Java provides lock objects that can be used to tell the
system that a section can be executed by only one thread
at a time.

07/20/10 78

Lock Objects

� A lock object implements the Lock interface which is
defined in the java.util.concurrent.locks package

� The Lock interface includes methods

� lock() - if lock is available, it is acquired, otherwise wait
� unlock() � releases the lock

� The same package has a number of classes implementing
Lock.

� The most common is the ReentrantLock class which
provides mutually exclusive or mutex locks
� only one thread can hold a given lock at a time

07/20/10 79

Using Locks
� Normally, a class whose objects are shared would declare a lock, say myLock

and each critical section will be surrounded by calls to lock() and unlock():

myLock.lock();

critical section code

myLock.unlock();
� But if the critical section code throws an exception the lock will never be released.

For that reason we always use the following:

myLock.lock();

try {

critical section code

}

finally {

myLock.unlock();

}
� So, the lock is always released (even if an exception is thrown)

07/20/10 80

Example: Bank Account with Lock object

public class SyncAccount {

private double balance;

private Lock lock = new ReentrantLock();

public double getBalance() {

return balance;

}

Create a new Lock object

07/20/10 81

Example (cont�d)
public void deposit(double amount) {

lock.lock();

try {

double tempBalance = balance;

System.gc(); // run an expensive process

balance = tempBalance + amount;

}

finally {

lock.unlock();

}

}

}

We've now protected that critical section of
code by locking it (and unlocking afterward)
to ensure that only one thread at a time can
run that section of code.

07/20/10 82

Example (cont�d)
public class SyncDeposit extends Thread{

private SyncAccount account;

public SyncDeposit(SyncAccount a) {

account = a;

}

public void run() {

System.out.println("Thread " + this.getId()

+ " BEFORE deposit balance: "

+ account.getBalance());

account.deposit(100);

System.out.println("Thread " + this.getId()

+ " AFTER deposit balance: "

+ account.getBalance());

}
Again, we check the balance, add
100 dollars, and check the
balance again.

07/20/10 83

Example (cont�d)
public static void main(String[] args) {

SyncAccount acc = new SyncAccount();

Thread th1 = new SyncDeposit(acc);

Thread th2 = new SyncDeposit(acc);

Thread th3 = new SyncDeposit(acc);

th1.start(); th2.start(); th3.start();

try {

th1.join(); th2.join(); th3.join();

}

catch (InterruptedException e){}

System.out.println("Account balance is: "

+ acc.getBalance());

}

}

What value is

printed out?

100 or 300

07/20/10 84

Example (cont'd)

� The appropriate use of a lock ensures that at
most one thread can be running the critical
section of code in the deposit() method at any
given time.

� Now, every time we run this program, the balance
on the account will be $300.

07/20/10 85

Synchronized Methods of Old
Versions of Java

� Older versions of Java (prior to 1.5)do not have lock
objects.

� Instead, every object has a lock that behaves like a
ReentrantLock.

� If the lock is available, it is acquired when a
synchronized method is called.

� A synchronized method is declared as
public synchronized void push(Object item)

 {
 // code for the method goes here

 }

and is synchronized on the lock of its implicit argument
(this)

07/20/10 86

Synchronized Methods

� Synchronized instance methods allow at most
one thread to run any of the object�s
synchronized methods at any time.

� Synchronized methods are simpler but less
flexible.

� The Account class would be defined as follows if we
use synchronized methods...

07/20/10 87

Account Example with Synchronized
Methods

public class SyncAccount {

private double balance;

public synchronized void deposit(double amount) {

double tempBalance = balance;

System.gc(); // run an expensive process

balance = tempBalance + amount;

}

public double getBalance() {

return balance;

}

}

07/20/10 88

Advanced Synchronization

� Suppose we have a producer that produces items for a
consumer to consume.

� The producer and consumer will run on different threads

� The producer will place an item into a buffer where it will be
retrieved by the consumer. The buffer will store only a
single item

� producer produces an item and places it in the buffer; the
producer must wait if buffer is full (buffer stores only one item)

� consumer removes the item from the buffer; the consumer must
wait if the buffer is empty (there's nothing to consume)

Producer Buffer Consumer

07/20/10 89

Buffer Class: First attempt
public class BadBuffer {

private int currentItem;

private boolean full = false;

private Lock lock = new ReentrantLock();

public void add(int item) {

lock.lock();

try {

// wait if buffer is full

while (full) ;

currentItem = item;

full = true;

}

finally {

lock.unlock();

}

}

07/20/10 90

Buffer Class: First attempt (cont)
public int remove() {

lock.lock();

try {

// wait if buffer is empty

while (!full) ;

full = false;

return currentItem;

}

finally {

lock.unlock();

}

}

}

07/20/10 91

Deadlock Problems
� BadBuffer provides mutual exclusion :

� add and remove cannot be executed at the same time

� But, there is a possibility for deadlock
� two or more threads are waiting for each other to release some

locks; none can make any progress

� Suppose buffer is empty and consumer executes
remove(). What will happen?

�

�

�

� We need to do better

07/20/10 92

Synchronization Using Conditions

� To resolve this problem we should use condition objects

� A condition object allows a thread to release a lock
temporarily, so another thread can get that lock and run

� Each condition object belongs to a lock object and is
created as follows:

Condition myCondition = lock.newCondition();

07/20/10 93

Synchronization Using Conditions
� A condition object implements the Condition interface that

includes:
� await()

� the current thread releases the associated lock

� the current thread moves to the wait/blocked state until another thread
calls signal() or signalAll() on this condition

� signal() or signalAll()
� causes one or all of the threads that are blocked waiting on the

condition to move to the runnable state

� these threads will compete to get the lock again

� one of them will get the lock and continue to run

07/20/10 94

Buffer Class: Using Conditions
public class GoodBuffer {

private int currentItem;

private boolean full = false;

private Lock lock = new ReentrantLock();

private Condition bufferEmpty = lock.newCondition();

private Condition bufferFull = lock.newCondition();

public void add(int item) {

lock.lock();

try {

while (full) // wait for buffer to be empty

bufferEmpty.await();

currentItem = item;

full = true;

bufferFull.signalAll(); //notify consumers

}

catch (InterruptedException e) {

}

finally {

lock.unlock();

}

}

07/20/10 95

Buffer Class (cont�d)
public int remove() {

int returnValue = 0;

lock.lock();

try {

// whait for buffer to be full

while (!full)

bufferFull.await();

full = false;

returnValue = currentItem;

bufferEmpty.signalAll(); //notify producers

}

catch (InterruptedException e) {

}

finally {

lock.unlock();

}

return returnValue;

}

}

07/20/10 96

Another deadlock example
� Imagine a simple BankAccount class with

deposit() and withdraw() methods.
public void withdraw(double amount)

{

 balanceChangeLock.lock();

 try

 {

 while (balance < amount)

 . . .

 finally

{

 balanceChangeLock.unlock();

}

}

Our BankAccount class has a lock
because its methods access a
shared resource, the balance. So in
the withdraw method, we acquire
the lock.

We put in a while loop to wait until
the balance is sufficient to allow the
withdrawal.

But how do we wait? If we put the
thread to sleep, the lock will not be
released and no threads will be able
to call deposit because they will be
unable to get the lock. We will be in
a deadlock situation.

07/20/10 97

Condition Objects
� We can again use a condition object
public class BankAccount {

private Lock balanceChangeLock;

private Condition sufficientFundsCondition;

private int balance;

public BankAccount()

{

balanceChangeLock = new ReentrantLock();

SufficientFundsCondition = balanceChangeLock.newCondition();

 . . .

 }

 . . .

 }

07/20/10 98

Condition Objects
public void withdraw(double amount)

{

balanceChangeLock.lock();

try{

while (balance < amount) sufficientFundsCondition.await();

}

catch (InterruptedException ex){}

finally

{

balanceChangeLock.unlock();

}

}

07/20/10 99

Condition Objects
public void withdraw(double amount)

{

balanceChangeLock.lock();

try{

while (balance < amount) sufficientFundsCondition.await();

}

catch (InterruptedException ex){}

finally

{

balanceChangeLock.unlock();

}

}

When the balance is not sufficient, this
thread temporarily releases its lock and
goes into a blocked state. It waits for the
balance to become sufficient.

It will know when the balance is sufficient
because a signal will be sent to all
threads currently being blocked as they
await this condition.

In this case, that signal will be sent from
the deposit method.

07/20/10 100

Condition Objects
public void deposit(double amount)

{

balanceChangeLock.lock();

try

{

 . . .

sufficientFundsCondition.signalAll();

}

finally {

balanceChangeLock.unlock();

}

}

A thread calling this method gets the
lock, updates the balance, and
notifies waiting threads that
sufficient funds may be available
now. Those threads become
unblocked and can again compete
to enter a running state.

07/20/10 101

Common Errors

� Calling await() without calling signalAll()

� If a thread calls await() there needs to be a
matching signalAll() that can be called by
other threads, otherwise it will wait forever

� Calling signalAll() without locking the Object

� A thread must own the lock that belongs to the
condition object on which signalAll() is
called. You'll get an exception otherwise.

07/20/10 102

Conclusion

� We�ve discussed how to build programs with multiple threads.

� To synchronize threads we can use Java�s primitives:
� lock objects

� condition objects

� In CPSC 213 you will learn how to create independent processes on
different processors and make them communicate/synchronize over a
network

07/20/10 103

In-Class Exercise II

� given code with critical section, create lock,
engage lock, run code, and make sure lock is
always released

07/20/10 104

Learning Goals Review
� describe the multi-threaded programming model including thread

scheduler, thread priority, and time slices.

� describe the various states that a Java thread can achieve and the
events that lead to transition from one state to another

� define the terms deadlock, race condition and critical section

� identify possible legal traces of a multithreaded program

� identify deadlock and race conditions in a multithreaded program

� write a thread-safe code using Lock and Condition objects

� identify possible legal traces of a Java program that uses
synchronization, locks and conditions

07/20/10 105

Exercises
Chapter 23, page 901

Exercises P23.1, P23.2, P23.7

07/20/10 106

Appendix: Main Methods of class
Thread

� public Thread() --- Allocates a new Thread object

� public Thread(Runnable target)

� public final boolean isAlive() - Tests if this thread is alive

� public static Thread currentThread() - Get reference to currently executing thread

� public final String getName()

� public final void setName(String name)

� public final int getPriority()

� public final void setPriority(int newPriority)

� public void start() --- Causes thread to be scheduled; JVM calls its run() method

� public void run() --- If thread was constructed using a separate Runnable object, then that

Runnable object's run method is called; otherwise, this method does nothing.

� public void interrupt() --- Interrupts this thread.

� public final void join() --- waits until the thread to which it is applied has died

� public static void sleep(long millis) --- puts currently executing thread to sleep

� public static void yield() --- currently executing thread is temporarily paused and allow
other threads to execute

