

18/07/10 1

GUIs

� Using Java Swing is easy

� In terms of creating components, adding them
to a panel, listening for events, and so on

� But Swing is also tedious

� In terms of laying things out

� The layout managers save us a lot of trouble,
but they also make it difficult for us to be
precise in how things are arranged

18/07/10 2

Layout Managers

� A layout manager is associated with a
particular component, usually a background
component that contains other components

� If a frame contains a panel, and the panel
contains a button, the layout manager of the
panel controls the size and placement of the
button, and the frame controls the size and
placement of the panel

18/07/10 3

Layout Managers

button 1

button 2

panel

frame

�The frame layout
manager has nothing to
say about the placement
of the buttons. It only has
control of the things it
directly contains
�The panel's layout
manager has control of
the buttons.
�Buttons don't need a
layout manager, since
they won't contain
anything else

18/07/10 4

Layout Managers
Here is a bit of the code to create a frame and a panel with two buttons

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panelA = new JPanel();

 panelA.setBackground(Color.white);

 panelA.add(new Button("hi there"));

 panelA.add(new Button("bye"));

 myframe.getContentPane().add(BorderLayout.EAST, panelA);

 myframe.setVisible(true);

18/07/10 5

Layout Managers
Here is a bit of the code to create a frame and a panel with two buttons

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panelA = new JPanel();

 panelA.setBackground(Color.white);

 panelA.add(new Button("hi there"));

 panelA.add(new Button("bye"));

 myframe.getContentPane().add(BorderLayout.EAST, panelA);

 myframe.setVisible(true);

We'll set the background
of the panel to white so
we can see its
boundaries clearly

18/07/10 6

Layout Managers
Here is a bit of the code to create a frame and a panel with two buttons

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panelA = new JPanel();

 panelA.setBackground(Color.white);

 panelA.add(new Button("hi there"));

 panelA.add(new Button("bye"));

 myframe.getContentPane().add(BorderLayout.EAST, panelA);

 myframe.setVisible(true);

We'll add the panel to the
EAST portion of the border
layout

18/07/10 7

Layout Managers

� The panel is arranged
according to the
border layout of the
frame containing it

� The buttons are
arranged according to
the flow layout of the
panel containing them

18/07/10 8

Layout Managers

� Notice that we can
click the buttons but
that nothing happens.

� Why is that?

18/07/10 9

Layout Managers

� Why are the buttons
different sizes?

� In this example the
buttons have different
text field lengths and
end up with different
sizes

18/07/10 10

Layout Managers

� Can't we just tell the
layout manager how
big we want them to
be?

� There are methods for
setPreferredSize,
setMaximumSize and
setMinimumSize

� However...

18/07/10 11

Layout Managers

� Behaviour varies
according to layout
manager

� Some layout
managers will respect
your preferences,
some will respect part
of your preferences,
and sometimes a
layout manager will
not respect your
preferences

18/07/10 12

Layout Scenario
� We made a panel and added two buttons to it

� The panel's layout manager asks each button how
big that button prefers to be (in this case, the
preferred size is based on the amount of text)

� The panel's layout manager uses its layout policies
to decide whether it should respect all, part or none
of the buttons' preferences

� We added the panel to the frame

� The frame's layout manager asks the panel how big it
prefers to be (in this case, the panel needs to be big
enough to hold the two buttons)

� The frame's layout manager uses its layout policies
to decide whether it should respect all, part or none
of the panel's preferences

18/07/10 13

Border Layout

Border Layout (default for a JFrame's content
pane):

� has north, south, east, west, center regions

18/07/10 14

Border Layout

import javax.swing.*;

import java.awt.*;

public class GUIStuff {

public static void main(String[] args) {

JFrame myframe = new JFrame(); // make a new JFrame object

myframe.setSize(200, 200);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton myButton = new JButton("click like you mean it");

myframe.getContentPane().add(BorderLayout.EAST, myButton);

myframe.setVisible(true);

}

} Let's add a button, this time with more text, and
add it directly to the frame, in the EAST section

18/07/10 15

Border Layout

� Because the button has
more text, it has a larger
preferred size

� Since the button is in the
EAST region, the layout
manager respects its
preferred width

� No matter it's preferred
height, it will be as tall as
the frame 18/07/10 16

Border Layout

import javax.swing.*;

import java.awt.*;

public class GUIStuff {

public static void main(String[] args) {

JFrame myframe = new JFrame(); // make a new JFrame object

myframe.setSize(200, 200);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton myButton = new Jbutton("it's lonely at the top");

myframe.getContentPane().add(BorderLayout.NORTH, myButton);

myframe.setVisible(true);

}

}

Let's change the code to add the button to the
NORTH sector

18/07/10 17

Border Layout

� Now the button in the
NORTH sector gets its
desired height

� But it will be as wide as the
frame, no matter its
preferred width

18/07/10 18

Border Layout
Let's put a button in each sector

JButton north = new JButton("north");

JButton east = new JButton("east");

JButton south = new JButton("south");

JButton west = new JButton("west");

JButton centre = new JButton("centre");

myframe.getContentPane().add(BorderLayout.NORTH, north);

myframe.getContentPane().add(BorderLayout.EAST, east);

myframe.getContentPane().add(BorderLayout.WEST, west);

myframe.getContentPane().add(BorderLayout.SOUTH, south);

myframe.getContentPane().add(BorderLayout.CENTER, centre);

myframe.setVisible(true);

18/07/10 19

Border Layout
� Components in the EAST

and WEST get their
preferred width

� Components in the
NORTH and SOUTH get
preferred height

� Components in the
CENTER get what's left

� Note: components in N
and S go all the way
across frame, so the
things in E and W aren't
as tall as they would be
otherwise

18/07/10 20

Flow Layout
� Flow Layout:

� places components from left to right, with their
centres aligned

� can specify row alignment (LEFT, CENTER,
RIGHT)

� default for JPanel

18/07/10 21

Flow Layout

� Flow layout is the default layout manager of
JPanels

� Let's add an empty JPanel to a JFrame

� Remember, JFrame arranges its components
via border layout

� And the JPanel arranges its components via
flow layout

18/07/10 22

Flow Layout
JFrame myframe = new JFrame(); // make a new JFrame object

myframe.setSize(200, 200);

myframe.setTitle("My Frame"); // this is optional

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

myframe.getContentPane().add(BorderLayout.EAST, panel);

myframe.setVisible(true);

}

}

18/07/10 23

Flow Layout

� The panel doesn't contain
anything, so it doesn't need
much width in the EAST
sector

� But let's add something to
the panel...

18/07/10 24

Flow Layout

myframe.setSize(200, 200);

myframe.setTitle("My Frame"); // this is optional

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("shock me");

panel.add(button);

myframe.getContentPane().add(BorderLayout.EAST, panel);

myframe.setVisible(true);

18/07/10 25

Flow Layout
� The panel's flow layout

controls the button, and
the frame's border layout
controls the panel

� The panel expanded
because it now contains
something

� The button got its
preferred size in both
dimensions because it is
part of the panel now and
the panel uses flow layout

18/07/10 26

Flow Layout
Let's try to add another button below this one

Frame myframe = new JFrame(); // make a new JFrame object

myframe.setSize(200, 200);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setBackground(Color.darkGray);

JButton button = new JButton("shock me");

JButton buttonTwo = new JButton("hi");

panel.add(button);

panel.add(buttonTwo);

myframe.getContentPane().add(BorderLayout.EAST, panel);

myframe.setVisible(true);

18/07/10 27

Flow Layout

� Hmm, we wanted the
second button below the
first, but they got placed
side by side

� We can use a different
layout manager

� Notice that the �hi� button
is smaller. With flow
layout, the button gets the
size it needs and no more 18/07/10 28

Box Layout

myframe = new JFrame(); // make a new JFrame object

myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

panel.setBackground(Color.darkGray);

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

button = new JButton("shock me");

buttonTwo = new JButton("hi");

panel.add(button);

panel.add(buttonTwo);

myframe.getContentPane().add(BorderLayout.EAST, panel);

myframe.setVisible(true);

18/07/10 29

Box Layout

myframe = new JFrame(); // make a new JFrame object

myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

panel.setBackground(Color.darkGray);

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

button = new JButton("shock me");

buttonTwo = new JButton("hi");

panel.add(button);

panel.add(buttonTwo);

myframe.getContentPane().add(BorderLayout.EAST, panel);

myframe.setVisible(true);

The BoxLayout constructor
needs to know the component it
is laying out, and it needs to
know the axis on which it is
stacking things (in this case,
vertical).

18/07/10 30

Box Layout

� Now the buttons are
stacked

� The panel has shrunk
because it doesn't need
as much width as before

18/07/10 31

Components

� That's a bit more information on layout

� Let's look at some other types of components

18/07/10 32

JTextField
JTextField field = new JTextField(�Your name�);

// create a text field

System.out.println(field.getText());

// get its contents

field.setText(�whatever�);

// set it to something else

field.setText(��); // clear the field

field.addActionListener(myActionListener);

// register for key events

field.selectAll();

// highlight the text in the field

field.requestFocus();

// put cursor in the field

18/07/10 33

Scrolling Panes

� Often we instead us a JTextArea, which can
have more than one line

� We associate a JTextArea with a ScrollPane
so that the text will wrap and scroll

� We then add the ScrollPane to the Panel

� And add the Panel to the Frame

� Let's walk through that...

18/07/10 34

Scroll Pane
myframe = new JFrame(); // make a new JFrame object

myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

JTextArea text = new JTextArea(10, 20);

text.setLineWrap(true);

We create a text area (10 rows by 20 columns) and turn
on line wrapping

18/07/10 35

Scroll Pane
myframe = new JFrame(); // make a new JFrame object

myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

JTextArea text = new JTextArea(10, 20);

text.setLineWrap(true);

JScrollPane scroller = new JScrollPane(text);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICA

L_SCROLLBAR_ALWAYS);

scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZO

NTAL_SCROLLBAR_NEVER);

We create a JScrollPane object and associate it with the text. We also indicate
whether we want it to scroll horizontally or vertically. In this case, we just want vertical
scrolling. 18/07/10 36

Scroll Pane
myframe = new JFrame(); // make a new JFrame object

myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

JTextArea text = new JTextArea(10, 10);

text.setLineWrap(true);

JScrollPane scroller = new JScrollPane(text);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICA

L_SCROLLBAR_ALWAYS);

scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZO

NTAL_SCROLLBAR_NEVER);

panel.add(scroller);

myframe.getContentPane().add(panel);

myframe.setVisible(true);

We add the scroller to the panel and the panel
to the frame.

18/07/10 37

JTextArea

� What other things can we do with the text
area?

� Replace the text that's in it

� text.setText(�now that's something else�);

� Append to the text that's in it

� text.append(�and another thing!�);

� Select/highlight the text in the field

� text.selectAll();

� Put the cursor back in the field

� text.requestFocus();

18/07/10 38

JTextArea Example
� Here's a longer example
public class TextExample implements ActionListener

{

 JFrame myframe;

 JButton button;

 JPanel panel;

 JTextArea text;

 public static void main(String[] args)

 {

 TextExample newDemo = new TextExample();

 newDemo.go();

 }

18/07/10 39

public void go()

 { myframe = new JFrame(); // make a new JFrame object

 myframe.setSize(300, 300);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new JPanel();

 button = new JButton("Just click it");

 button.addActionListener(this);

 text = new JTextArea(10, 20);

 text.setLineWrap(true);

 JScrollPane scroller = new JScrollPane(text);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLL

BAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCR
OLLBAR_NEVER);

 panel.add(scroller);

 myframe.getContentPane().add(BorderLayout.CENTER, panel);

 myframe.getContentPane().add(BorderLayout.SOUTH, button);

 myframe.setVisible(true);

 }

18/07/10 40

public void go()

 { myframe = new JFrame(); // make a new JFrame object

 myframe.setSize(300, 300);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new JPanel();

 button = new JButton("Just click it");

 button.addActionListener(this);

 text = new JTextArea(10, 20);

 text.setLineWrap(true);

 JScrollPane scroller = new JScrollPane(text);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLL

BAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCR
OLLBAR_NEVER);

 panel.add(scroller);

 myframe.getContentPane().add(BorderLayout.CENTER, panel);

 myframe.getContentPane().add(BorderLayout.SOUTH, button);

 myframe.setVisible(true);

 }

Create the text area and its
scroll pane.

18/07/10 41

public void go()

 { myframe = new JFrame(); // make a new JFrame object

 myframe.setSize(300, 300);

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new JPanel();

 button = new JButton("Just click it");

 button.addActionListener(this);

 text = new JTextArea(10, 20);

 text.setLineWrap(true);

 JScrollPane scroller = new JScrollPane(text);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLL
BAR_ALWAYS);

scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCR
OLLBAR_NEVER);

 panel.add(scroller);

 myframe.getContentPane().add(BorderLayout.CENTER, panel);

 myframe.getContentPane().add(BorderLayout.SOUTH, button);

 myframe.setVisible(true);

 }

Create a button and associate
it with a listener. Notice that
we made this class implement
a listener type, rather than
using an inner class.

18/07/10 42

The listener

public void actionPerformed(ActionEvent ev)

 {

 text.append("button clicked \n");

 }

}

So each time the button is clicked,
we append text to the text area.

18/07/10 43

JCheckBox

� Create a simple check box

� Do something when it is checked or
unchecked

18/07/10 44

JCheckBox
import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class CheckBoxTester implements ItemListener

{

 JFrame myframe;

 JCheckBox checker;

 JPanel panel;

 public static void main(String[] args)

 {

 CheckBoxTester cb = new CheckBoxTester();

 cb.go();

 }

18/07/10 45

JCheckBox

public void go()

 {

 myframe = new JFrame(); // make a new JFrame object

 myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new JPanel();

 checker = new JCheckBox("Goes to 11");

 checker.addItemListener(this);

 panel.add(checker);

 myframe.getContentPane().add(panel);

 myframe.setVisible(true);

 }

18/07/10 46

JCheckBox

public void go()

 {

 myframe = new JFrame(); // make a new JFrame object

 myframe.setSize(300, 300);

myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new JPanel();

 checker = new JCheckBox("Goes to 11");

 checker.addItemListener(this);

 panel.add(checker);

 myframe.getContentPane().add(panel);

 myframe.setVisible(true);

 }

Create the check box and
associate it with an item listener

18/07/10 47

JCheckBox

public void itemStateChanged(ItemEvent ev)

 {

 String onOrOff = "off";

 if (checker.isSelected()) onOrOff = "on";

 System.out.println("Checkbox is "+onOrOff);

 }

18/07/10 48

JCheckBox

public void itemStateChanged(ItemEvent ev)

 {

 String onOrOff = "off";

 if (checker.isSelected()) onOrOff = "on";

 System.out.println("Checkbox is "+onOrOff);

 }

Now each time somebody clicks the checkbox we will
print out whether it is checked or unchecked.

18/07/10 49

JList

� Sometimes we want to present the user with a
list

� The user can select items in the list

18/07/10 50

JList

String[] listEntries = {"giant", "cerevelo", "trek",

"specialized"};

Jlist mylist = new JList(listEntries);

mylist.setVisibleRowCount(2);

mylist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mylist.addListSelectionListener(this);

18/07/10 51

JList

String[] listEntries = {"giant", "cerevelo", "trek",

"specialized"};

Jlist mylist = new JList(listEntries);

mylist.setVisibleRowCount(2);

mylist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mylist.addListSelectionListener(this);

JList constructor takes an
array of any object type. It
doesn't have to be String, but
a String representation will
appear in the list.

18/07/10 52

JList

String[] listEntries = {"giant", "cerevelo", "trek",

"specialized"};

Jlist mylist = new JList(listEntries);

mylist.setVisibleRowCount(2);

mylist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mylist.addListSelectionListener(this);

We indicate how many rows
should be visible before
scrolling starts

18/07/10 53

JList

String[] listEntries = {"giant", "cerevelo", "trek",

"specialized"};

Jlist mylist = new JList(listEntries);

mylist.setVisibleRowCount(2);

mylist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mylist.addListSelectionListener(this);

We indicate that a user can
only make a single selection at
a time.

18/07/10 54

JList

String[] listEntries = {"giant", "cerevelo", "trek",

"specialized"};

Jlist mylist = new JList(listEntries);

mylist.setVisibleRowCount(2);

mylist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mylist.addListSelectionListener(this);

We associate a listener with the list.

18/07/10 55

Let's add the list to a scroll pane

JScrollPane scroller = new JScrollPane(mylist);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICA

L_SCROLLBAR_ALWAYS);

scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZO

NTAL_SCROLLBAR_NEVER);

panel.add(scroller);

myframe.getContentPane().add(panel);

myframe.setVisible(true);

18/07/10 56

ListSelectionListener

� We'll make our outer class implement
ListSelectionListener

� Which means we need to implement this method:

public void valueChanged(ListSelectionEvent lse)

 {

 if (!lse.getValueIsAdjusting())

 {

 String selection = (String)

mylist.getSelectedValue();

 System.out.println(selection);

 }

 }

18/07/10 57

ListSelectionListener

� We'll make our outer class implement
ListSelectionListener

� Which means we need to implement this method:

public void valueChanged(ListSelectionEvent lse)

 {

 if (!lse.getValueIsAdjusting())

 {

 String selection = (String)

mylist.getSelectedValue();

 System.out.println(selection);

 }

 }

We just need this check
so that we don't get
things printed twice

18/07/10 58

ListSelectionListener

� We'll make our outer class implement
ListSelectionListener

� Which means we need to implement this method:

public void valueChanged(ListSelectionEvent lse)

 {

 if (!lse.getValueIsAdjusting())

 {

 String selection = (String)

mylist.getSelectedValue();

 System.out.println(selection);

 }

 }

When somebody selects an
item from the list, we print it
out.
We get the selected value
from the event that JList
passes when it calls
valueChanged(). It passes an
Object so we have to cast it to
String.

18/07/10 59

JList

� We can see two items at a
time, and have to scroll to
see the others

� Users can select one at a
time and it will print out the
item they selected

18/07/10 60

In-Class Exercise I

� Write a program to present the user with a list
of colors, and when they select a color it
changes the panel background to that color

� Start with green, orange and blue

18/07/10 61

Recursive Methods

� Reading
�2nd Ed: Chapter 18

�3rd Ed: Chapter 13

� Other Resources
�http://www.iol.ie/~jmchugh/csc302/

�http://www2.hawaii.edu/~qzhang/ToyProject-TowerOfHanoi.htm

18/07/10 62

Learning Objectives

� trace code that uses recursion to determine what the code

does
� draw a recursion tree corresponding to a recursive method

call
� draw a stack trace of code that uses single and multi-

branch recursion
� write recursive methods
� replace a recursive implementation of a method with an

iterative solution (may need to use a stack to model the

run-time stack)

18/07/10 63

Recursive Methods
� We have seen that a method can make a call to another

method (e.g. a method calling a helper method).
� Many programming languages, including Java, allow a

method to make a call to itself � we call this recursion.
� A method that makes a call to itself is known as a recursive

method.
� When a method calls itself, it is essentially repeating itself

and so recursion is a form of looping.
� Note that in some programming languages, recursion is the

only way to loop through a block of code.

18/07/10 64

Recursive Methods

� Some problems are more naturally solved using recursion

than a looping construct such as a for loop.

� Problems whose solution can be defined in terms of

solutions to smaller sub-problems have natural recursive

solutions.

� There are also some data structures whose structure can

be defined recursively (a binary tree, for example). These

structures can be processed recursively in a very natural

way.

� We'll start with some easy examples.

18/07/10 65

Real-World Examples
� Shampoo bottle instructions

oLather
oRinse
oRepeat

� An unhelpful dictionary definition
oBook (n.) - A bunch of pages that make

up a book
� Neither of these ever terminate � they

keep calling themselves

repeat all three steps,
including the repeat step

18/07/10 66

Terminating Conditions

� We need a defined stopping point
oe.g. �If hair is clean, stop. Otherwise,

repeat.�
� Without this, you get infinite recursion,

and eventually a memory overload error

18/07/10 67

Example

� Suppose we want to write a method to draw the following down-

triangle (because the pointy end is down) of size 4 on the screen:

**

*

� We can break this problem down as follows:

� ****

*** ***

** ** **

* * * *

� Hence we define the problem in terms of smaller sub-problems.
18/07/10 68

Example cont'd

=

>
=

1 size if) 1 drawRow(

1 size if) 1-size iangle(drawDownTr) size drawRow(
) size iangle(drawDownTr

then

� We can therefore write the following recursive

definition of a triangle of a certain size:

18/07/10 69

Example cont'd

� The following method will draw a row of stars:

private void drawRow(int size) {

 for(int count = 0; count < size; count++)

 System.out.print('*');

 System.out.println();

}

� This method will be used as a helper to draw our triangle.

18/07/10 70

Example cont'd

� The following method uses the recursive definition given earlier

to draw a down-triangle of a certain size:

public void drawDownTriangle(int size) {

 if(size == 1)

 drawRow(size);

 else {

 drawRow(size);

 drawDownTriangle(size � 1);

 }

}

Base case

Recursive case

Recursive call

18/07/10 71

Example cont'd

� Trace the following method call: drawDownTriangle(4);

18/07/10 72

Example

� Suppose we want to write a method to draw the following up-triangle

(up because the pointy end is up) of size 4 on the screen:

*

**

� We can break this problem down as follows:

� * * * *

** ** **

*** ***

� Hence we define the problem in terms of smaller sub-problems.

18/07/10 73

Example cont'd

=

>
=

1 size if) 1 drawRow(

1 size if) size drawRow() 1-size ngle(drawUpTria
) size ngle(drawUpTria

then

� We can therefore write the following recursive

definition of a triangle of a certain size:

18/07/10 74

Example cont'd

� The following method uses the recursive definition on the

previous slide to draw a triangle of a certain size:

public void drawUpTriangle(int size) {

 if(size == 1)

 drawRow(size);

 else {

 drawUpTriangle(size � 1);

 drawRow(size);

 }

}

Base

case

Recursive

case

Recursive call

18/07/10 75

Example cont'd

� Trace the following method call: drawUpTriangle(4);

18/07/10 76

Example

� Suppose we want to write a method to draw the following ramp of size

3 on the screen:

**

*

**

� We can define this problem in terms of smaller ones as follows:

� ***

** **

* * *

** **

18/07/10 77

Example cont'd

=

>
=

1 size if) 1 drawRow(

1 size if) size drawRow() 1-size drawRamp() size drawRow(
) size drawRamp(

thenthen

� We can therefore write the following recursive

definition of a ramp of a certain size:

18/07/10 78

Example cont'd

� The following method uses the recursive definition on the

previous slide to draw a triangle of a certain size:

public void drawRamp(int size) {

 if(size == 1)

 drawRow(size);

 else {

 drawRow(size);

 drawRamp(size � 1);

 drawRow(size);

 }

}

Base

case

Recursive

case

Recursive call

18/07/10 79

Example cont'd

� Trace the following method call: drawRamp(3);

18/07/10 80

Recursive Method Calls � General

Form
� Our drawRamp method illustrates the general form of a recursive

method call:

type recursiveMethod(type param1, type param2,�)

{

 if(base case)

 // handle base case (code omitted)

 else

 {

 // operations to do before recursive call

 // (code omitted)

 recursiveMethod(�); // recursive call

 // operations to do after recursive call

 // (code omitted)

 }

}

18/07/10 81

Recursion and Stacks

� There is a strong connection between recursion and stacks.

� Recall that the compiler uses a stack, called the run-time stack,

in which to store data that is local to each method that is called.

� When a method is called, a new stack frame is generated and

pushed onto the run-time stack. This frame stores, among

other things, parameters and local variables for the method.

� When the method ends, its stack frame is popped off the run-

time stack.

18/07/10 82

Recursion and Stacks cont'd

� The following is a trace of the run-time stack corresponding to

the method call drawRamp(3). Note that we show only the

parameter size in each stack frame.

size 3 size 3

size 2

size 3

size 2

size 1

size 3

size 2

size 3

base case

approaching base case

18/07/10 83

Recursion and Stacks cont'd

� The trace of the run-time stack gives us an insight into the space

complexity of the method call. We observe that the method call

drawRamp(N) will result in the run-time stack holding, at any

given point, a maximum of N stack frames corresponding to the

method drawRamp. Hence the drawRamp method has O(N)

space complexity.

� Compare this to an iterative solution where we use a loop to

draw the ramp in a single call to the method drawRamp. This

implementation has O(1) space complexity.

18/07/10 84

Recursion and Stacks cont'd

� Any recursive method can be converted to an iterative method if

we make a stack available. (Note that the use of a stack isn't

always necessary.)

� We will now rewrite our drawRamp method as an iterative method

that uses a stack to mimic the run-time stack maintained by the

compiler.

18/07/10 85

Recursion and Stacks cont'd

public void drawRamp(int size) {

 Stack<Integer> sizeStack = new Stack<Integer>();

 // head towards the base case

 while(size > 1) {

 sizeStack.push(size);

 drawRow(size);

 size--;

 }

 drawRow(1); // corresponds to base case

 // unwind the stack

 while(!sizeStack.isEmpty()) {

 size = sizeStack.peek();

 drawRow(size);

 sizeStack.pop();

 }

}

18/07/10 86

Computing a factorial

� The factorial of a non-negative integer is

defined as follows:
n! = 1 if n=0

 n! = n*(n-1)*(n-2)�*3*2*1 if n>0

� Examples:

 5! = 5*4*3*2*1 = 120

� Can we replace the definition above with a

recursive definition?

18/07/10 87

� The factorial of a non-negative integer can be recursively defined

as follows:

� Corresponding recursive method:

public int factorial(int n) {

Example: computing a factorial

18/07/10 88

Example cont'd

� Trace the following method call:
int result = factorial(3);

18/07/10 89

Recursive Methods - Checkpoint

� How can you check that a recursive method is

correct?
� check that the base case(s) is (are) correct

� assuming that the recursive call(s) will return the right

answer(s) for the smaller problem(s), show that the recursive

step will return the right answer to the original problem

� make sure that the terminating condition will eventually

become true and the recursion will terminate � each

recursive step should take you one step closer to reaching

the base case

� This is a form of mathematical induction (see

CPSC 121)
18/07/10 90

Example: Fibonacci Numbers

� The Fibonacci sequence is generated as follows:

� the first two numbers in the sequence are 1

� all other numbers are generated by adding the previous two numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, �

� The following web site contains some interesting facts about Fibonacci and his

sequence of numbers: http://plus.maths.org/issue3/fibonacci/

18/07/10 91

Example: Fibonacci Numbers

� The description of the Fibonacci sequence on the previous page

lends itself to the following recursive definition of the Nth

Fibonacci number:

� Note that the recursive step involves two recursive calls to the

method � we call this multi-branch recursion.

>−+−

==
=

2 if)2()1(

2or1if1
)(

nNFibNFib

nn
NFib

18/07/10 92

Example: Fibonacci Numbers

� The corresponding recursive method:

public int fib(int n) {

 if(n == 1 || n == 2)

 return 1;

 else

 return fib(n � 1) + fib(n � 2);

}

18/07/10 93

Recursion Tree

� Let's call fib(5)

� Notice anything inefficient about this?
 18/07/10 94

Recursion and Memory

� Each subroutine invocation creates an activation record
that holds the values of arguments and local variables for
that invocation. These activation records are stored in an
area of memory called the run-time stack. The diagram
below shows the state of the run-time stack when a call to
fib(4) is made from main.

main()
fib(4)
main()

fib(3)
fib(4)
main()

fib(2)
fib(3)
fib(4)
main()

fib(3)
fib(4)
main()

fib(1)
fib(3)
fib(4)
main()

fib(3)
fib(4)
main()

fib(4)
main()

fib(2)
fib(4)
main()

fib(4)
main() main()

18/07/10 95

Recursion and Memory

� By examining the height of the recursion tree we
can determine the maximum number of fib
activation records on the run-time stack at any
given time.

� Memory for the runtime stack is limited. If we
attempt to generate more activation records than
can be stored on the run-time stack, a stack
overflow occurs and the program will crash.

� The height of the recursion tree is useful for telling
us how much memory will be required when the
function is called 18/07/10 96

Recursion and Time

� The total number of nodes in the recursion tree is
the number of function calls, which can help to
determine the amount of time it will take to
execute the function.

� The recursive solution of fibonacci uses much
more memory and takes longer when done
recursively, than iteratively.

� Recursion might seem to work fine for small
numbers, but try running fib(40) or higher

18/07/10 97

Recursion vs Iteration

� Many recursive functions can be easily defined
iteratively without using a stack:

int fact(int n) {

 if (n == 0) {

 return 1;

 }

 return n*fact(n-1);

}

int fact(int n) {

int result = 1;

while (n > 0) {

 result *= n;

 n = n–1;

}

return result;

}

18/07/10 98

Example: Tree-Traversal
� We have a binary-branching tree structure, and

we want to visit each node in the tree exactly
once

� Additionally, we have the constraint that we
want to visit a parent node before we visit its
children

� Begin at the root node

18/07/10 99

Tree Traversal
� Our traversal instructions, beginning at root

node
� Traverse(tree)

o Visit the node.
o Traverse(the left subtree)
o Traverse(the right subtree)

1

3

2

4

5

18/07/10 100

Recursion vs Iteration (cont�d)

� Recursion usually requires more memory than iteration
� each method call creates a new stack frame in which its

parameters and local variables are stored

� Sometimes recursion is more natural so it may take

more time to develop an iterative solution.

� Rule of thumb:
� use iteration when it is easy and natural to do so.

� use recursion when it is easy and natural to do so.

18/07/10 101

Tail Recursion

� Tail Recursion is when the last line of the
subroutine is the recursive call

� Thus there are no deferred operations
after the last recursive call
o unlike our factorial and fibonacci examples

� Many compilers automatically convert tail
recursion problems to iterative problems

18/07/10 102

Indirect Recursion
� Recursion needn't involve a subroutine

directly calling itself
� For example, Function A calls Function B

which calls Function C, and Function C
calls Function A

18/07/10 103

Conclusion
� Recursion can add simplicity, elegance and

readability to a program
� Not always the most efficient method
� Check whether you could solve the problem

more efficiently in an iterative fashion
� Check whether your problem naturally lends

itself to being solved by solving a number of
subproblems
o e.g. Tree traversal

18/07/10 104

In-Class Exercise II

� We know how to write a method to take an
ArrayList<String> and print out each item
using a for-loop or an iterator

� Write a recursive method that does the same
thing

� What is your base case?

� How do you get closer to your base case?

18/07/10 105

Learning Goals Review
� trace code that uses recursion to determine what the code

does
� draw a recursion tree corresponding to a recursive method

call
� draw a stack trace of code that uses single and multi-

branch recursion
� write recursive methods
� replace a recursive implementation of a method with an

iterative solution (may need to use a stack to model the

run-time stack)

