

04/07/10 1

Java Collections Framework

Reading:

Java Tutorial on
Collections:

http://java.sun.com/docs/
books/tutorial/collectio
ns/index.html

Lessons: Introduction
and Interfaces

� explain the structure of the Java Collections
 framework.

� program to the generic
 Collection interface including
 reading and using the APIs

� program to the generic Iterator
 interface including reading and
 using the APIs

� read and write code that uses a for
 each loop to iterate over a
 collection

� determine when a for-each loop can
 be used and how to avoid
 concurrent modification of a
 collection

04/07/10 2

Review � ArrayLists and Generics

04/07/10 3

List

� A List is an interface defined in the Java libraries.

� An object of type List acts like an array except
that it automatically grows and shrinks as needed.

� There are several kinds of List classes which differ in
their performance characteristics

� ArrayList, Vector, LinkedList, etc..

� Details are described in CPSC 221

� We will use an ArrayList for this lecture

04/07/10 4

List

� A List is an example of a generic interface/class.

� We specify the type of data to be stored in the list when
a List is declared and instantiated:

� List<Account> accts = new ArrayList<Account>();
// a list of Account objects

� List<String> strings = new ArrayList<String>();
// a list of String objects

04/07/10 5

List

� The compiler will not allow us to add objects of the wrong
type:
� List<Account> accts = new ArrayList<Account>();

accts.add(new Account()); // OK
accts.add(new Account()); // OK
accts.add(new KitchenSink()); // won't compile

� This is a good thing. The compiler will now check that we're
adding the right type of object to our list.

04/07/10 6

List Methods

� List has many useful methods:
public interface List<E> {

. . .

public boolean add(E item)
// add at end of list

public boolean add(int i, E item)
// insert at specific position i

public boolean contains(Object item)
// is item in the accounts collection

public E get(int i)
// get item at position i

public E remove(int i)
// remove account at position i

public int size()
// gets number of elements in list
// NOT current capacity of list

...

E is a generic
parameter

04/07/10 7

Java Generics

� Note that the E in the List API is a generic parameter (or
type parameter)

� E represents the type that is specified by the client when
the List is declared and instantiated

� For example:

List<Account> accList;
// E is Account

List<String> strList;
// E is String

� For the API for this interface, see the online documentation:

http://java.sun.com/javase/6/docs/api/index.html

04/07/10 8

Generic Programming

� Generic programming is the creation of
programming constructs that can be used with
many different types

� A generic class has one or more type
variables, e.g.

� public class ArrayList<E>

� These type variables can be instantiated with
class or interface types

04/07/10 9

Arrays and ArrayLists

� Example comparing Arrays and ArrayLists
� from Head First Java

04/07/10 10

A simple Animal class hierarchy
abstract class Animal {

void eat() {

System.out.println("animal eating");

}

}

public class Dog extends Animal {

void bark() { }

}

public class Cat extends Animal {

void meow() {}

}

04/07/10 11

Arrays

� Let's consider arrays first

� Let's create an array of Animals that hold both
cats and dogs

� Let's also create an array of Dogs that can
hold only dogs

04/07/10 12

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

04/07/10 13

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

Create Animal array

Create Dog array

Call takeAnimals() on each of them

04/07/10 14

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

We can call ONLY the
methods declared in type
Animal since the parameter is
an Animals array

04/07/10 15

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

>
animal eating
animal eating
animal eating
animal eating
animal eating
animal eating

04/07/10 16

ArrayLists

� That was using Arrays

� Let's try the same thing with ArrayLists

04/07/10 17

ArrayLists

import java.util.*;

public class TestGenerics2 {

public static void main(String[]

args) {

new TestGenerics2().go();

}

public void go(){

 ArrayList<Animal> animals = new

ArrayList<Animal>();

 animals.add(new Dog());

 animals.add(new Cat());

 animals.add(new Dog());

takeAnimals(animals);

}

public void

takeAnimals(ArrayList<Animal>

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

We've just changed from Animal[] to
ArrayList<Animal>
We create an ArrayList of Animals
containing Cats and Dogs, and call the
takeAnimals() method

04/07/10 18

ArrayLists

import java.util.*;

public class TestGenerics2 {

public static void main(String[]

args) {

new TestGenerics2().go();

}

public void go(){

 ArrayList<Animal> animals = new

ArrayList<Animal>();

 animals.add(new Dog());

 animals.add(new Cat());

 animals.add(new Dog());

takeAnimals(animals);

}

public void

takeAnimals(ArrayList<Animal>

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

The method takes an ArrayList<Animal>.
The output is:
>
animal eating
animal eating
animal eating

04/07/10 19

ArrayLists

� So far, so good

� With the Array example, we were able to pass
a Dog array to a method that took an Animal
array parameter

� What happens if we pass an ArrayList<Dog>
to our takeAnimals() method, which takes
ArrayList<Animal> as a parameter?

04/07/10 20

ArrayLists
public void go(){

 ArrayList<Dog> dogs = new ArrayList<Dog>();

 dogs.add(new Dog());

 dogs.add(new Dog());

 takeAnimals(dogs);

}

public void takeAnimals(ArrayList<Animal> animals){

for(Animal a: animals)

{

a.eat();

}

}

04/07/10 21

ArrayLists
public void go(){

 ArrayList<Dog> dogs = new ArrayList<Dog>();

 dogs.add(new Dog());

 dogs.add(new Dog());

 takeAnimals(dogs);

}

public void takeAnimals(ArrayList<Animal> animals){

for(Animal a: animals)

{

a.eat();

}

}

Exception in thread "main"
java.lang.Error: Unresolved compilation
problem:

The method
takeAnimals(ArrayList<Animal>) in the
type TestGenerics2 is not applicable for
the arguments (ArrayList<Dog>)

at
TestGenerics2.go(TestGenerics2.java:13)

at
TestGenerics2.main(TestGenerics2.java:5
)

04/07/10 22

Assignment with Generics

� Note that List<Dog> is not a subclass of
List<Animal>

� Even though Dog is a subclass of Animal

� Inheritance of type parameters does not lead
to inheritance of generic classes

� This restriction saves us some trouble, as just
shown

04/07/10 23

Arrays, ArrayLists, and
Polymorphism

� With arrays, we could pass a Dog array to a
method expecting an Animal array

� Polymorphism in action

� Dog IS-A Animal

� We lost this ability with ArrayLists

� What if we were allowed to pass an
ArrayList<Dog> to that method? What would
happen?

� Just hypothetically (Java won't let us)

04/07/10 24

ArrayLists

� What's the worst that could happen?

public void takeAnimals(ArrayList<Animal> animals){

animals.add(new Cat()); // bad! A Cat in what should

 // have been a Dogs-only

 // ArrayList

� So Java just won't let you take this risk

� If you declare a method to take
ArrayList<Animal> it can take ONLY an
ArrayList<Animal>, not ArrayList<Dog> or
ArrayList<Cat>

04/07/10 25

Arrays and ArrayLists

� So why could we do that with Arrays but not
ArrayLists?

� We could pass a Dog array to a method that
takes an Animal array

� Couldn't somebody add a Cat to the Dog
array?

� Yes! And unfortunately it would compile and
the error wouldn't be caught until runtime

04/07/10 26

Runtime

takeAnimals(dogs);

public void takeAnimals(Animal[] animals)

{

animals[0] = new Cat();

for(Animal a: animals)

{

a.eat();

}

}

Exception in thread "main"
java.lang.ArrayStoreException: Cat

at
TestGenerics1.takeAnimals(TestGenerics1.java:1
9)

at TestGenerics1.go(TestGenerics1.java:14)
at TestGenerics1.main(TestGenerics1.java:6)

04/07/10 27

ArrayList

� With ArrayLists, we avoid this nasty problem
because type checking occurs when we
compile

04/07/10 28

Motivating Wildcards

� Imagine that we want to add a method to Bank that will take a
list of accounts and send a directed advertisement to their
owners

public void spam(List<Account> targetAccounts) �

� We have a problem. We may want to spam a list of
SavingsAccount but we cannot write:

List<SavingsAccount> savingsAccounts

= new ArrayList<SavingsAccount>();

Bank b = new Bank();

b.spam(savingsAccounts); //not allowed

04/07/10 29

Bounded Wildcards

� In such cases we can use wildcards in the type
parameter:

public void spam(

 List<? extends Account> targetAccounts)

{�}

� <? extends Account> indicates that we can pass a List
of any type that is a subtype of Account

� So we can now pass a List of Account or SavingsAccount
or any other type that�s a subtype of Account.

04/07/10 30

Bounded Wildcards - Question

� When we use a bounded wildcard, we can visit the
items in the collection but we are not allowed to add an
item to the collection.

public void spam(List<? extends Account>

targetAccounts)

{

 targetAccounts.add(new Account());

 //…

}

� Why is this not allowed?

04/07/10 31

Bounded Wildcards - Question

� We can answer that by revisiting our
Animals/Dogs/Cats example

� We discovered that we could not pass
ArrayList<Dog> to a method expecting an
ArrayList<Animal> parameter

� But now we know about a workaround:
bounded wildcards

04/07/10 32

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

}
Now we can pass in an
ArrayList<Dog> or ArrayList<Cat>

04/07/10 33

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

04/07/10 34

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

No! When you use a bounded wildcard in a method parameter, the
compiler will not let you add anything to that list. You can use the list
but not add anything to it. Problem solved.

04/07/10 35

Java Collections Framework

� We have examined the use of one collection
class, ArrayList, and observed that we sometimes

need other classes that support very similar

operations (with some differences).

� We will now see how Java uses a hierarchy of
interfaces to abstract the common behaviours
that are shared by these classes.

� This hierarchy is called the Java collections
framework.

04/07/10 36

Java Collection Framework

� The Collections Framework is in the java.util
package.

� The interfaces and classes in this package provide
� standardized interfaces with multiple implementations of most

data structures (e.g., List, Set, etc.)

� efficient, highly-optimized implementations of common data
structures (e.g., ArrayList)

� interoperability between programs by making it easier to
exchange collections

04/07/10 37

Java Collection Framework

Consists of 3 components:

� Interfaces
� provide specifications for the behaviour of the collections

� form inheritance hierarchies

� Implementations
� provide specific structures that store the elements and relevant

operations on those structures

� each interface may have multiple implementations that differ only
by which optional operations they implement and by the efficiency
of the operations

� Algorithms

� polymorphic algorithms that manipulate data stored in collections

� are not members of any collection

04/07/10 38

Some Collection Interfaces
<<interface>>

Iterable

<<interface>>Collect

ion

<<interface>>

List

ArrayList

<<interface>>Iterato

r
<<creates>>

04/07/10 39

Collection Interfaces

� The Collection interface specifies methods that are applicable
to all collections (lists, sets and queues � more later).

� The List interface specifies methods that are particular to
lists (e.g., the ability to add an element at a specific location
in the list).

04/07/10 40

Iterable Objects

� The Iterable interface has a single method and is
defined in java.lang as:

 public interface Iterable<T>

 {
 // Returns an iterator over a set of
 // elements of type T.

 Iterator<T> iterator();
 }

� Each iterable object can return an Iterator:
� An iterator is an object that allows us to visit the items in a

collection

� This is another example of a generic type. The
type T is a generic type that will be specified
when the iterator is declared and instantiated.

04/07/10 41

The Iterator Interface

� Is defined in java.util as:

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove(); // Optional

}

� hasNext()returns true if there is another element to visit
� next()returns the next object in the collection and advances

the iterator to another object that has not been visited
� remove() removes the object that was returned by the last next()

operation

� can be called only once per call to next()

� otherwise IllegalStateException is thrown.

04/07/10 42

The Iterator Interface (cont'd)

� Some notes on the optional remove() method:

� Methods in an interface that are documented to
be optional:
� provide flexibility

� allow for a reduction in the number of interfaces
needed

� must be implemented by classes that implement the
interface although those implementations may do
nothing more than throw an
UnsupportedOperationException.

04/07/10 43

The Collection Interface

public interface Collection<E> extends Iterable<E> {

int size();

boolean isEmpty();

boolean contains(Object o);

boolean add(E o); // Optional

boolean remove(Object o); // Optional

Iterator<E> iterator();

// Bulk Operations

boolean containsAll(Collection<?> c);

 ... more ...

// Array Operations

Object[] toArray();

<T> T[] toArray(T[] a);

// Object operations; allow collections to customize

boolean equals(Object o);

int hashCode();

}

04/07/10 44

The Collection Interface
(cont�d)

� Provides a general set of methods applicable to
all collections

� Used as a base for more specific sub-interfaces
(e.g. List and Set)

� Note: the contains() method uses equals() for

comparison.

04/07/10 45

Collection-Iterator - Example

� Complete the following method that prints out all
the elements in a collection of strings:

public static void print(Collection<String> col)
{

04/07/10 46

Collection-Iterator � Generic
Example

� Complete the following method that prints out all
the elements in a collection of any type:

public static <T> void print(Collection<T> col)
{

04/07/10 47

Tea break!

04/07/10 48

For-Each Loop

� Java provides a special type of for loop (called for-each
loop) which can be used with any collection

� Example: Another version of the method that prints out
all the elements in a collection of strings:

public static void print(Collection<String> col)

{
 for(String str : col)

 {
 System.out.println(str);

 }

 }

� Write the generic version using a for-each loop

04/07/10 49

Generic Version

public static <T> void print(Collection<T> col)

{
 for(T str : col)

 {
 System.out.println(str);

 }

 }

04/07/10 50

T vs. ?

� We learned about bounded wildcards

� ? extends B (any subtype of B)

� ? super B (any supertype of B)

� ? (any type)

� Couldn't we just use ? in this case?

04/07/10 51

T vs. ?

� T allows the user to pass a Collection of any
type

� T gets instantiated as that type

� ? also allows any type

� But how would we define the method?

04/07/10 52

T vs. ?

public static void print(Collection<?> col)

{
 for(str : col)

 {
 System.out.println(str);

 }

 } What goes here? Object?

04/07/10 53

Generic Parameters

� The advantage of generic parameters like T is
that T gets instantiated with whatever type the
user supplies, so that all instances of T are
essentially replaced with that type

04/07/10 54

Generic Version

So this...

public static <T> void print(Collection<T> col)

{
 for(T str : col)

 {
 System.out.println(str);

 }

 }

 essentially becomes this...

public static void print(Collection<String> col)

{
 for(String str : col)

 {
 System.out.println(str);

 }

 }

04/07/10 55

For-Each Loop and Collection
Modification

� A for-each loop cannot modify the collection over
which the loop iterates
� if this rule is violated Java throws a
ConcurrentModificationException

� The following method that removes all accounts
with low balance IS WRONG:

public static void removeBelow(

Collection<Account> accounts, double limit) {

 for (Account acc : accounts) {

if (acc.getBalance() < limit)

accounts.remove(acc); // WRONG

 }

}

04/07/10 56

Iterators and Collection
Modification

� A collection cannot be modified during the time an iterator iterated over it, unles
it is done through the iterator remove() method

� if this rule is violated Java throws a
ConcurrentModificationException

� The following method IS WRONG:

public static void removeBelow(

Collection<Account> accounts, double limit) {

Iterator<Account> itr = accounts.iterator();

 while(itr.hasNext()){

 Account acc = itr.next();

 if(acc.getBalance() < threshold)

 accounts.remove(acc); // WRONG

 }

}

04/07/10 57

Iterators and Collection Modification
(cont�d)

� The following is the correct code for this method:

public static void removeBelow(

Collection<Account> accounts, double limit) {

Iterator<Account> itr = accounts.iterator();

 while(itr.hasNext()){

 Account acc = itr.next();

 if(acc.getBalance() < threshold)

 }

}

04/07/10 58

Iterators

� We've now seen a few ways we can iterate
over an ArrayList

� for-each loop (enhanced for loop)

� while loop coupled with get() method and
index

� Iterator

04/07/10 59

for-each loop

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

for (String s: myArr)

{

 System.out.println(s);

}

04/07/10 60

for-each loop

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

for (String s: myArr)

{

 System.out.println(s);

}
>
hello
world

04/07/10 61

Using while and get()

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

int x = 0;

while (x < myArr.size()){

String g = myArr.get(x);

System.out.println(g);

x++;

}

04/07/10 62

Using while and get()

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

int x = 0;

while (x < myArr.size()){

String g = myArr.get(x);

System.out.println(g);

x++;

}

>
hello
world

04/07/10 63

Using an Iterator

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

Iterator<String> it = myArr.iterator();

while (it.hasNext())

{

String s = it.next();

System.out.println(s);

}

04/07/10 64

Using an Iterator

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

Iterator<String> it = myArr.iterator();

while (it.hasNext())

{

String s = it.next();

System.out.println(s);

}

Check if there is another item

Get that item

04/07/10 65

Using an Iterator

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

Iterator<String> it = myArr.iterator();

while (it.hasNext())

{

String s = it.next();

System.out.println(s);

}

04/07/10 66

Which should I use?
� It depends

� We've just seen one case where you cannot
use a for:each loop

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

for (String s : myArr) {

if (s.equals("world"))

{

 myArr.remove(s);

 // won't work

}}

Exception in thread "main"
java.util.ConcurrentModificationException

at
java.util.AbstractList$Itr.checkForComodificatio
n(AbstractList.java:372)

at
java.util.AbstractList$Itr.next(AbstractList.java:3
43)

at
WaysToIterate.main(WaysToIterate.java:16)

04/07/10 67

Instead...

ArrayList<String> myArr = new ArrayList<String>();

myArr.add("hello");

myArr.add("world");

Iterator<String> it = myArr.iterator();

while (it.hasNext()){

 String s = it.next();

 if (s.equals("world")){

 it.remove();

 }

 }

04/07/10 68

When to use for-each

� The for-each loop is useful when you want to
iterate over an entire collection (rather than
partway) and you don't plan to modify it

� There are many situations with collections
where a for-each loop is extremely inefficient
or impossible

04/07/10 69

ArrayList and Iterators example

� Let's write a method that can take an
ArrayList<Animal>, remove any Dogs in the
list, add each Dog to a new ArrayList<Dog>
and return the ArrayList<Dog>

� We'll make it a static method

04/07/10 70

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

}

04/07/10 71

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

}

Takes an
ArrayList<Animal>

We will return an
ArrayList<Dog>

04/07/10 72

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

 ArrayList<Dog> dogList = new ArrayList<Dog>();

 Iterator<Animal> it = animList.iterator();

}

We opted for an Iterator
here. Could we use a for-
each loop instead?

04/07/10 73

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

 ArrayList<Dog> dogList = new ArrayList<Dog>();

 Iterator<Animal> it = animList.iterator();

 while (it.hasNext()){

 Animal a = it.next();

}

With an Iterator, we first check
whether there is a next item, and if
so we move to that item

04/07/10 74

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

 ArrayList<Dog> dogList = new ArrayList<Dog>();

 Iterator<Animal> it = animList.iterator();

 while (it.hasNext()){

 Animal a = it.next();

 if (a instanceof Dog){

 }

 }

return dogList;

}

Check if this Animal is a
Dog (or a subclass of
Dog)

04/07/10 75

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

 ArrayList<Dog> dogList = new ArrayList<Dog>();

 Iterator<Animal> it = animList.iterator();

 while (it.hasNext()){

 Animal a = it.next();

 if (a instanceof Dog){

 it.remove();

 }

 }

}

Call the Iterator remove() method.
Since we are modifying the ArrayList,
we had to use an Iterator and its
remove() method. Could not have
used a for-each loop.

04/07/10 76

Dog Filter
public static ArrayList<Dog> dogFilter(ArrayList<Animal>

animList){

 ArrayList<Dog> dogList = new ArrayList<Dog>();

 Iterator<Animal> it = animList.iterator();

 while (it.hasNext()){

 Animal a = it.next();

 if (a instanceof Dog){

 it.remove();

 Dog d = (Dog) a;

 dogList.add(d);

 }

 }

return dogList;

}

Cast the Animal object to be a Dog, and
add it to the ArrayList<Dog>.

Finally, return the ArrayList<Dog>

04/07/10 77

Dog Filter Example

public static void main(String[] args) {

 ArrayList<Animal> alist = new ArrayList<Animal>();

 alist.add(new Dog());

 alist.add(new Cat());

 alist.add(new Dog());

 ArrayList<Dog> doglist = dogFilter(alist);

 System.out.println(alist.size());

 System.out.println(doglist.size());

}

What gets printed?

04/07/10 78

Dog Filter Example

public static void main(String[] args) {

 ArrayList<Animal> alist = new ArrayList<Animal>();

 alist.add(new Dog());

 alist.add(new Cat());

 alist.add(new Dog());

 ArrayList<Dog> doglist = dogFilter(alist);

 System.out.println(alist.size());

 System.out.println(doglist.size());

}

>
1
2

04/07/10 79

In-Class Exercise II

1. Write a public static method that accepts a collection of type
Collection<String> as an argument and removes all
objects in collection c that satisfy the test: boolean
test(String)

2. Write a generic public static method that removes duplicates from
a collection.

04/07/10 80

Learning Goals Review
� explain the structure of the Java Collections
 framework.

� program to the generic
 Collection interface including
 reading and using the APIs

� program to the generic Iterator
 interface including reading and
 using the APIs

� read and write code that uses a for
 each loop to iterate over a
 collection

� determine when a for-each loop can
 be used and how to avoid
 concurrent modification of a
 collection

