

27/06/10 1

Unit Testing

You will be expected to:
� compare and contrast blackbox and
 whitebox testing (at the level of
 what each type of testing provides)
� use blackbox testing with
 equivalence classes to test a
 method
� describe how unit testing is applied
 to a class
� write a suite of tests to apply unit
 testing to a class using Junit
 (putting the above into practice
 with a particular tool)

Reading:

2nd Ed: Sections 10.1 to 10.5

3rd Ed: 3.6T, 5.5T, 7.8T, 8.10T

4th Ed: 3.6T, 5.5T, 7.7T, 8.10T

27/06/10 2

Assignment Part 1

� Due Wednesday, 20:00

 3

Inner Classes

� A trivial class can be defined within another
class � thus �inner� class

� We will be discussing this in detail later in the
term (e.g. GUIs)

� An inner class can use all the methods and
variables of the outer class, even the private
ones

 4

Inner Classes

class MyOuterClass {

 private int x;

 class MyInnerClass {

 void go() {

 x = 42;

 }

 }

}

 5

Inner Classes

class MyOuter {

 private int x;

 class MyInner {

 void go() {

 x = 42;

 }

 }

}

We can use x just as if it
were a variable of the
inner class

 6

Inner Classes

� An instance of the inner class is tied to an
instance of the outer class

 7

class MyOuter {

 private int x;

 MyInner inner = new MyInner();

 public void doStuff(){

 inner.go();}

 class MyInner {

 void go() {

 x = 42;}

 } // end of inner class

 } // end of outer class

 8

Inner Class Visibility

� Unlike a regular (outer) class, an inner class
can be private

� Q: Why can't a regular class be private?

� In that case, the inner class and its methods
cannot be accessed outside of the outer class

� But if the inner class is public, there's nothing
stopping us from doing this...

 9

Outer and Inner
public class Outer {

 public class Inner{

 void innerMethod(){

 System.out.println("Hello from

inside!");

 }

 }

}

 10

Access from outside outer class

public class OITester {

 public static void main(String[] args) {

 Outer out = new Outer();

 // instance of outer class

 Outer.Inner myInner = out.new Inner();

 // instance of inner class

 // (tied to outer class)

 myInner.innerMethod();

 // inner class method

 }

}

 11

Inner Class Visibility

� But even if we declare the inner class to be
private, it can still be accessed by the outer
class in which it is contained

 12

public class Outer {

 Inner in = new Inner();

 public void go(){

 in.innerMethod(); }

 private class Inner{

 private void innerMethod(){

 System.out.println("Hello from

inside!");

 }

 }

}

 13

Inner Class

public class OITest {

public static void main(String[] args) {

Outer out = new Outer();

out.go();

}

}

�Hello from inside!�

 14

Software Testing

27/06/10 15

Some �Famous� Software Problems

Ariane 5, June 4, 1996

Vancouver Stock Exchange
Rounding Problem, 1983

Therac-25, mid-80s

See comp.risks for more each day.

27/06/10 16

Testing
� Terminology:

� test case: a set of inputs and expected outputs that test a single
use of a piece of the system (e.g., a method, a class, a subsystem)

� test: a set of test cases

� test driver: code that sets up any context needed to run a test,
calls the test case(s), and displays the results

� test stub: code that simulates the behaviour of the actual code
that is still to be written

27/06/10 17

Testing Activities

� Unit Testing (for individual classes or small groups of
classes)

� find differences between what an object does, and what it is
supposed to do

� testing one (or a few) class(es) is easier than testing the whole
system

� Enables incremental and parallel testing

� There are other kinds of testing (e.g., �)

� Integration Testing (for a group of classes or subsystems)

� System Testing (check if system does what is intended)

27/06/10 18

� There are two major types of unit testing

Unit Testing Types

Blackbox testing
� focuses on input/outputs only
� cases are derived from class

specification

Whitebox testing
� focuses on the component�s

internal structure
� attempts to test all states and

interactions

� also known as also known as
structural structural
testingtesting

� complementary complementary

to black-box to black-box
testingtesting

� is good for testing
interfaces

� does not effectively
test all cases

27/06/10 19

Blackbox Testing : Input Partition
� In general, we can't fully test an application.

� applications often accept many different inputs

� testing every different combination of inputs is practically
impossible.

� To test a method, divide its inputs into equivalence classes
(here we use the term class as category, not a Java class!)

� all values within an equivalence class behave similarly with
respect to specification

� equivalence classes are disjoint

� they should cover the entire input space

27/06/10 20

Blackbox Testing : Input Partition (cont'd)

� Use preconditions, postconditions and class invariants to

determine the equivalence classes for the input partition

� The method preconditions will divide the input into

� Valid space that satisfies the preconditions and

� Invalid space that violates the preconditions

27/06/10 21

Blackbox Testing : Selecting Test Cases

� First, identify the valid input space and divide it into
equivalence classes

� From each equivalence class, select:

� at least one typical value - equivalence partition testing
(sometimes called equivalence class testing)

� some boundary values � boundary testing

27/06/10 22

Boundary test cases

� These test cases are at the boundary of
acceptable inputs

27/06/10 23

Example 1

class Account {
�
/**

 * @pre amount >= 0

 * �

 */

 public void deposit(double amount) { � }

}

� One equivalence class that satisfies the precondition:
amount >= 0

� Select at least one typical member of the class, amount = 200

� Select values at boundaries, only one boundary, amount = 0

� Test cases are then: {amount = 200, amount = 0 }

27/06/10 24

Example 2

class Account {
�
/**

 * @pre true
 * �
 * @throws IllegalValueException when amount < 0
 */
 public void withdraw(double amount) { � }
}

� Two equivalence classes. What are they?

 --

� What test cases would you specify?

--

 25

01: /**

02: A class that describes the effects of an earthquake.

03: */

04: public class Earthquake

05: {

06: /**

07: Constructs an Earthquake object.

08: @param magnitude the magnitude on the Richter scale

09: */

10: public Earthquake(double magnitude)

11: {

12: richter = magnitude;

13: }

14:

15: /**

16: Gets a description of the effect of the earthquake.

17: @return the description of the effect

18: */

19: public String getDescription()

20: {

Continued

An Earthquake Class

 26

21: String r;

22: if (richter >= 8.0)

23: r = "Most structures fall";

24: else if (richter >= 7.0)

25: r = "Many buildings destroyed";

26: else if (richter >= 6.0)

27: r = "Many buildings considerably damaged, some collapse";

28: else if (richter >= 4.5)

29: r = "Damage to poorly constructed buildings";

30: else if (richter >= 3.5)

31: r = "Felt by many people, no destruction";

32: else if (richter >= 0)

33: r = "Generally not felt by people";

34: else

35: r = "Negative numbers are not valid";

36: return r;

37: }

38:

39: private double richter;

40: }

Earthquake

 27

01: import java.util.Scanner;

02:

03: /**

04: This program prints a description of an earthquake of a given

magnitude.

05: */

06: public class EarthquakeRunner

07: {

08: public static void main(String[] args)

09: {

10: Scanner in = new Scanner(System.in);

11:

12: System.out.print("Enter a magnitude on the Richter scale: ");

13: double magnitude = in.nextDouble();

14: Earthquake quake = new Earthquake(magnitude);

15: System.out.println(quake.getDescription());

16: }

17: }

Output:
Enter a magnitude on the Richter scale: 7.1 Many buildings destroyed

EarthquakeRunner.java

 28

How many test cases do you need to cover all branches of
the getDescription method of the Earthquake class?

Test cases

 29

Give a boundary test case for the EarthquakeRunner program. What
output do you expect?

Earthquake

27/06/10 30

Blackbox Testing : Selecting Test Cases

� For multiple inputs:

� partition each input

� take the Cartesian product of all input partitions to produce a set
of equivalence classes for the unit tested

� in some cases, it may be possible to combine some of the classes
resulted from the Cartesian product.

27/06/10 31

Example 3
/**

* @invariant rate >= 0

* @invariant hours >= 0

*/

public class Employee {

private double rate; // dollars per hour
private int hours; // number hrs worked

/**

 * @post if rate < 100.0 AND hours > 40
 * THEN return 40*rate + (hours-40)*1.5*rate
 * ELSE return hours * rate
 */

 public double getPay() { � }
�

}

27/06/10 32

Example 3�

� What is the input to getPay()?

� What are the equivalence classes?

� What are the test cases?

 33

01: /**

02: A tax return of a taxpayer in 1992.

03: */

04: public class TaxReturn

05: {

06: /**

07: Constructs a TaxReturn object for a given income and

08: marital status.

09: @param anIncome the taxpayer income

10: @param aStatus either SINGLE or MARRIED

11: */

12: public TaxReturn(double anIncome, int aStatus)

13: {

14: income = anIncome;

15: status = aStatus;

16: }

17:

18: public double getTax()

19: {

20: double tax = 0;

21:

22: if (status == SINGLE)

23: {

Continued

Tax Return example

 34

24: if (income <= SINGLE_BRACKET1)

25: tax = RATE1 * income;

26: else if (income <= SINGLE_BRACKET2)

27: tax = RATE1 * SINGLE_BRACKET1

28: + RATE2 * (income - SINGLE_BRACKET1);

29: else

30: tax = RATE1 * SINGLE_BRACKET1

31: + RATE2 * (SINGLE_BRACKET2 - SINGLE_BRACKET1)

32: + RATE3 * (income - SINGLE_BRACKET2);

33: }

34: else

35: {

36: if (income <= MARRIED_BRACKET1)

37: tax = RATE1 * income;

38: else if (income <= MARRIED_BRACKET2)

39: tax = RATE1 * MARRIED_BRACKET1

40: + RATE2 * (income - MARRIED_BRACKET1);

41: else

42: tax = RATE1 * MARRIED_BRACKET1

43: + RATE2 * (MARRIED_BRACKET2 - MARRIED_BRACKET1)

44: + RATE3 * (income - MARRIED_BRACKET2);

45: }

46:

Continued

Tax Return

 35

47: return tax;

48: }

49:

50: public static final int SINGLE = 1;

51: public static final int MARRIED = 2;

52:

53: private static final double RATE1 = 0.15;

54: private static final double RATE2 = 0.28;

55: private static final double RATE3 = 0.31;

56:

57: private static final double SINGLE_BRACKET1 = 21450;

58: private static final double SINGLE_BRACKET2 = 51900;

59:

60: private static final double MARRIED_BRACKET1 = 35800;

61: private static final double MARRIED_BRACKET2 = 86500;

62:

63: private double income;

64: private int status;

65: }

Tax Return

 36

01: import java.util.Scanner;

02:

03: /**

04: This program calculates a simple tax return.

05: */

06: public class TaxCalculator

07: {

08: public static void main(String[] args)

09: {

10: Scanner in = new Scanner(System.in);

11:

12: System.out.print("Please enter your income: ");

13: double income = in.nextDouble();

14:

15: System.out.print("Are you married? (Y/N) ");

16: String input = in.next();

17: int status;

18: if (input.equalsIgnoreCase("Y"))

19: status = TaxReturn.MARRIED;

20: else

21: status = TaxReturn.SINGLE;

22:

Continued

Tax Calculator

 37

Output:
Please enter your income: 50000

Are you married? (Y/N) N

Tax: 11211.5

23: TaxReturn aTaxReturn = new TaxReturn(income, status);

24:

25: System.out.println("Tax: "

26: + aTaxReturn.getTax());

27: }

28: }

Tax Calculator (cont.)

 38

Tax Example

� With two possibilities for filing status, and 3
brackets for each status, what are the
equivalence classes?

� What are the test cases?

27/06/10 39

Example 4

/**

 * @invariant xUnits >= 0 && yUnits >= 0

 * @invariant cost = 4 * yUnits + 3 * xUnits;

 */

class Order {

private int xUnits;
private int yUnits;
private int cost;

 /**

 * Determines if a discount applies to an order.

 * @post returns true if ((cost >= 60) && (xUnits >= 9))

 * @post returns false if ((cost < 60) || (xUnits < 9))

 */

 boolean isEligibleForDiscount() { � }

}

27/06/10 40

Example 4 �

� What are the equivalence classes?

� What are the test cases?

27/06/10 41

Unit Testing a Class

� Consider unit testing the Account class using black-box

testing techniques

� For each method in Account we need to

� need to consider the implicit argument as well

� determine appropriate set of test cases using equivalence
partitioning with boundary condition testing

� create a test driver that

� initializes Account objects to an appropriate state

� runs the test cases (which includes checking the results)

27/06/10 42

Unit Testing a Class �

� May need to be careful in the order in which test
cases are run, because one method may call another
in its implementation.

� Need to rerun the unit test cases each time the code
of the Account class is changed (regression

testing).

 43

� Save test cases

� Use saved test cases in subsequent versions

� A test suite is a set of tests for repeated testing

� Cycling = bug that is fixed but reappears in later versions

� Regression testing: repeating previous tests to ensure that known
failures of prior versions do not appear in new versions

Regression Testing

27/06/10 44

JUnit

� A framework for implementing unit testing in Java.

� Provides a uniform and hierarchical test design.

� Can even write tests before you develop the code for the
classes.

� The specifics of how to create JUnit tests will be
covered in the lab.

� Eclipse provides good support for JUnit
� tests are run in a JUnit mode without the need of a main()

� test results are displayed in a special JUnit view.

 45

� Unit test frameworks simplify the task of writing classes that
contain many test cases

� JUnit: http://junit.org
Built into some IDEs like BlueJ and Eclipse

� Philosophy: whenever you implement a class, also make a
companion test class. Run all tests whenever you change your
code

Unit Testing Frameworks

 46

Unit Testing Frameworks

 47

Provide a JUnit test class with one test case for the Earthquake
class in Chapter 5.

Answer: Here is one possible answer, using the JUnit 4 style.
public class EarthquakeTest

{

 @Test public void testLevel4()

 {

 Earthquake quake = new Earthquake(4);

 Assert.assertEquals("Felt by many people, no

 destruction", quake.getDescription());

 }

}

Junit Test Example

27/06/10 48

In-Class Exercise

Consider the following method that determines if a year is a leap year:
class Year {

…
/**
 * Determine by the Gregorian calendar if the given

 * year is a leap year.
 * @pre year >= 1582
 */
public static boolean isLeap(int aYear) { … }

}

� A year is a leap year if and only if:

� (aYear % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0))

� What test cases would you chose to test isLeap()?

27/06/10 49

Write Tests First

� Some people advise writing your test code
first

� see Extreme Programming (XP)

� What benefits would this have?

27/06/10 50

Learning Goals Review
You will be expected to:

� compare and contrast blackbox and
 whitebox testing (at the level of
 what each type of testing provides)
� use blackbox testing with
 equivalence classes to test a
 method
� describe how unit testing is applied
 to a class
� write a suite of tests to apply unit
 testing to a class using Junit
 (putting the above into practice
 with a particular tool)

27/06/10 51

Tea break!

27/06/10 52

Class Design II: Class Diagrams

Reading:

 2nd Ed:

 Chapter 9: 9.1, 9.2

Chapter 17: 17.2, 17.3, 17.4

 3rd and 4th Eds:

 Chapter 8: 8.1, 8.2

Chapter 12: 12.2, 12.3, 12.4

Some ideas in this section come from:

�Practical Object-Oriented Development
with UML and Java�

R. Lee, W. Tepfenhart, Prentice
Hall, 2002.

�Object-Oriented Software Development
Using Java�,

Xiaoping Jia, Addison Wesley,
2002

You should be able to:

� interpret UML class diagrams to identify
 relationships between classes

� draw a UML class diagram to represent the
 design of a software system

� describe the basic design principles of low
 coupling and high cohesion

� design a software system (expressed in UML)
 from a given specification that adheres to
 basic design principles (low coupling and
 high cohesion)

� identify elements of a given design that
 violate the basic design principles of low
 coupling, high cohesion

27/06/10 53

Where are we?

� We have seen
� how to design a single class

� define attributes, methods, invariants, pre/post-conditions

� how to implement a class robustly using

� exceptions

� unit testing

� Now we are going to discuss
� how to identify the classes we need in order to provide a solution to a problem

� what relationships exist between these classes

� good design principles

27/06/10 54

Where are we?

� The overall roadmap of the course�

Topic

� Design and implementation of a single class

Now Design of multiple classes

Collections

Implementation techniques
 GUI
 Threads
 Streams

27/06/10 55

Software Design

� Difficult, interesting, and important phase of software
development

� Based on the requirements we have defined for a given
problem, we need to identify and define:

� classes and their relationships

� the attributes of each class

� the behaviour of each class

� the interactions between classes

� We focus on the functionality and static relationships, not on
implementation details

27/06/10 56

Representing Design: UML

� To represent the structure of a software system we need to
show:
� its classes

� the relationships between the classes

� UML (Unified Modelling Language) is graphical modelling
language that is used to describe these.

� UML allows a user to describe different views (aspects) of
a software system
� static view of the components, how components are deployed to different

machines, etc.

� We will focus on one type of UML diagram which is called
a Class Diagram and describes the static, structure
(logical view) of the system

27/06/10 57

Class Diagram

� Describes the static structure of a system

� its classes

� relationships between classes

� Example of a class:

Department

- name: string

�

+ addSale(s : Item) : void

�

27/06/10 58

Relationship 1: Association

� Association:
� A structural relationship that describes a connection between objects: each object

of one type contains reference(s) to objects of the other type.

� Example: Unidirectional association
� employee stores a reference of a department

+ getDept() : Department

Department

- name: string

�

+ addSale(s: Item) : void

�

Employee

- name: string
- empId: integer

�

1 *

27/06/10 59

Relationship 1: Association

� �Associations are stronger than dependencies
and typically indicate that one class retains a
relationship to another class over an extended
period of time. The lifelines of two objects
linked by associations are probably not tied
together (meaning one can be destroyed
without necessarily destroying the other).�

� UML 2.0 In a Nutshell

27/06/10 60

Relationship 1: Association

� Typically read as a �has a� relationship

� Associations have explicit notation to indicate
navigability

� The arrows indicate whether you can navigate
from one class to the other

� Relationship indicated by solid line, open
arrow (no arrow if bidirectional...)

� Line may be adorned with a phrase or
symbols to add information

27/06/10 61

Bidirectional Association

� 1 and * in the previous examples are called multiplicities
� indicate the number of objects of this side that are associated by each object of the other side

� * means any number

� Indicates that both classes reference each other

� Shown with a line without arrows

� Example:

Department

- name: string

�

+ addEmployee(Employee) :
void

�

Employee

- name: string
- empId: integer

�

1 *

+ getDept() : Department

. . .

27/06/10 62

Relationship 2: Aggregation

� Aggregation:

� A special form of association that specifies a whole-part relationship between the

aggregate (the whole) and a component (the part)

� Example:

Inventory

�

+ addItem() : void

�

Item

- name : String

- description : String

�

+ getName() : String

�

27/06/10 63

Relationship 2: Aggregation

� �Aggregation is a stronger version of
association. Unlike association, aggregation
typically implies ownership and may imply a
relationship between lifelines.�

� UML 2.0 In a Nutshell

� Typically read as a �owns a� relationship

� Aggregation indicated by diamond shape next
to owning class and solid line to owned class

27/06/10 64

Relationship 3: Composition
� Composition:

� a form of aggregation, where the composite (whole) strongly owns the parts

� when the whole is deleted (dies) the parts are also deleted (die)

� A part is in exactly one whole (implicit multiplicity of 1)

� Example:

ChessBoard

�

+ movePiece() : void

�

ChessSquare

- colour : String

�

+ getColour() : String

�

1611

27/06/10 65

Relationship 3: Composition

� �Composition represents a very strong
relationship between classes, to the point of
containment. Composition is used to capture a
whole-part relationship. The �part� piece of the
relationship can be involved in only one
composition relationship at any given time.�

� UML 2.0 In a Nutshell

� Typically read as a �is part of� relationship

� Indicated by filled diamond next to owner
class and solid line to owned class

27/06/10 66

Relationship 4: Dependency

� Dependency:
� A relationship describing that a change to the target element may require a change

in the source element.

� Example:

Player

- name : String

�

+ move() : boolean

�

Joystick

- position : int

�

+ changePos() : void

�

<<use>>

27/06/10 67

Relationship 4: Dependency

� �The weakest relationship between classes is
a dependency relationship. Dependency
between classes means that one class uses,
or has knowledge of, another class. It is
typically a transient relationship, meaning a
dependent class briefly interacts with the
target class but typically doesn't retain a
relationship with it for any real length of time.�

� UML 2.0 In a Nutshell

27/06/10 68

Relationship 4: Dependency

� Typically read as a �uses a� relationship

� Indicated by a dashed line with an arrow
pointing from the dependent class to the class
that is used.

27/06/10 69

Relationship 5: Generalization

� Generalization:
� An inheritance relationship, where a subclass is a specialized form of the

superclass

� Example:

Student

- major: String
- year: int

+ enrollInCourse() : boolean
+ toString() : String

Person

- name : String
- age : int
- SIN : int

+ toString() : String

27/06/10 70

Relationship 5: Generalization

� �A generalization relationship conveys that the
target of the relationship is a general, or less
specific, version of the source class�

� UML 2.0 In a Nutshell

� Typically read as a �is a� relationship

� Indicated by a solid line with a closed arrow,
pointing from the specific class to the general
class

27/06/10 71

Relationship 5: Generalization

� Note: UML allows for multiple inheritance, but
Java does not

� If we want to simulate multiple inheritance, we
can use interfaces

27/06/10 72

Heuristics for Finding Classes

� We usually start with the problem description and map each
relevant word as follows:

nouns � classes or attributes

is/are � inheritance

has/have � aggregation or association

other verbs � methods

must � constraint

adjective � attribute, relation

� This is called Abbott�s heuristics for natural language
analysis

� This is not always very accurate but it provides a good start

�

27/06/10 73

Simple Design Example

� Problem Description:
We want to simulate a simple betting game. In this game,
a player with money to gamble makes a bet and then rolls
a single die. If a 1 is rolled, the player wins an amount
equal to the bet, otherwise (s)he loses the bet.

� Let us try to identify the classes and their behaviour�..
� Nouns:

� game, player, money, bet, die, amount, bet

� Verbs :
� gamble, makes (a bet), rolls, wins, loses

27/06/10 74

Putting it Together

Game DiePlayer

 75

Example

class Car extends Vehicle

{

 . . .

 private Tire[] tires;

}

 76

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

UML Relationship Symbols

 77

� Task: print out an invoice

� Invoice: describes the charges for a set of products in certain
quantities

� Omit complexities
� Dates, taxes, and invoice and customer numbers

� Print invoice
� Billing address, all line items, amount due

� Line item
� Description, unit price, quantity ordered, total price

� For simplicity, do not provide a user interface

� Test program: adds line items to the invoice and then prints it

Printing an Invoice � Requirements

 78

I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Sample Invoice

 79

� Discover classes

� Nouns are possible classes

Invoice

Address

LineItem

Product

Description

Price

Quantity

Total

Amount Due

Printing an Invoice

 80

� Analyze classes

Invoice

Address

LineItem // Records the product and the quantity

Product

Description // Field of the Product class

Price // Field of the Product class

Quantity // Not an attribute of a Product

Total // Computed � not stored anywhere

Amount Due // Computed � not stored anywhere

� Classes after a process of elimination

Invoice

Address

LineItem

Product

Printing an Invoice

 81

Printing an Invoice � UML Diagrams

 82

� Invoice aggregates Address and LineItem

� Every invoice has one billing address

� An invoice can have many line items:

public class Invoice

{

 . . .

 private Address billingAddress;

 private ArrayList<LineItem> items;

}

Implementation

 83

 ch12/invoice/InvoicePrinter.java

01: /**

02: This program demonstrates the invoice classes by printing

03: a sample invoice.

04: */

05: public class InvoicePrinter

06: {

07: public static void main(String[] args)

08: {

09: Address samsAddress

10: = new Address("Sam's Small Appliances",

11: "100 Main Street", "Anytown", "CA", "98765");

12:

13: Invoice samsInvoice = new Invoice(samsAddress);

14: samsInvoice.add(new Product("Toaster", 29.95), 3);

15: samsInvoice.add(new Product("Hair dryer", 24.95), 1);

16: samsInvoice.add(new Product("Car vacuum", 19.99), 2);

17:

18: System.out.println(samsInvoice.format());

19: }

20: }

21:

22:

23:

 84

ch12/invoice/Invoice.java

01: import java.util.ArrayList;

02:

03: /**

04: Describes an invoice for a set of purchased products.

05: */

06: public class Invoice

07: {

08: /**

09: Constructs an invoice.

10: @param anAddress the billing address

11: */

12: public Invoice(Address anAddress)

13: {

14: items = new ArrayList<LineItem>();

15: billingAddress = anAddress;

16: }

17:

18: /**

19: Adds a charge for a product to this invoice.

20: @param aProduct the product that the customer ordered

21: @param quantity the quantity of the product

22: */

Continued

 85

ch12/invoice/Invoice.java (cont.)

23: public void add(Product aProduct, int quantity)

24: {

25: LineItem anItem = new LineItem(aProduct, quantity);

26: items.add(anItem);

27: }

28:

29: /**

30: Formats the invoice.

31: @return the formatted invoice

32: */

33: public String format()

34: {

35: String r = " I N V O I C E\n\n"

36: + billingAddress.format()

37: + String.format("\n\n%-30s%8s%5s%8s\n",

38: "Description", "Price", "Qty", "Total");

39:

40: for (LineItem i : items)

41: {

42: r = r + i.format() + "\n";

43: }

44:

Continued

 86

ch12/invoice/Invoice.java (cont.)

45: r = r + String.format("\nAMOUNT DUE: $%8.2f",

getAmountDue());

46:

47: return r;

48: }

49:

50: /**

51: Computes the total amount due.

52: @return the amount due

53: */

54: public double getAmountDue()

55: {

56: double amountDue = 0;

57: for (LineItem i : items)

58: {

59: amountDue = amountDue + i.getTotalPrice();

60: }

61: return amountDue;

62: }

63:

64: private Address billingAddress;

65: private ArrayList<LineItem> items;

66: }

 87

 ch12/invoice/LineItem.java

01: /**

02: Describes a quantity of an article to purchase.

03: */

04: public class LineItem

05: {

06: /**

07: Constructs an item from the product and quantity.

08: @param aProduct the product

09: @param aQuantity the item quantity

10: */

11: public LineItem(Product aProduct, int aQuantity)

12: {

13: theProduct = aProduct;

14: quantity = aQuantity;

15: }

16:

17: /**

18: Computes the total cost of this line item.

19: @return the total price

20: */

Continued

 88

ch12/invoice/LineItem.java (cont.)

21: public double getTotalPrice()

22: {

23: return theProduct.getPrice() * quantity;

24: }

25:

26: /**

27: Formats this item.

28: @return a formatted string of this item

29: */

30: public String format()

31: {

32: return String.format("%-30s%8.2f%5d%8.2f",

33: theProduct.getDescription(), theProduct.getPrice(),

34: quantity, getTotalPrice());

35: }

36:

37: private int quantity;

38: private Product theProduct;

39: }

 89

ch12/invoice/Product.java

01: /**

02: Describes a product with a description and a price.

03: */

04: public class Product

05: {

06: /**

07: Constructs a product from a description and a price.

08: @param aDescription the product description

09: @param aPrice the product price

10: */

11: public Product(String aDescription, double aPrice)

12: {

13: description = aDescription;

14: price = aPrice;

15: }

16:

17: /**

18: Gets the product description.

19: @return the description

20: */

Continued

 90

ch12/invoice/Product.java (cont.)

21: public String getDescription()

22: {

23: return description;

24: }

25:

26: /**

27: Gets the product price.

28: @return the unit price

29: */

30: public double getPrice()

31: {

32: return price;

33: }

34:

35: private String description;

36: private double price;

37: }

38:

 91

 ch12/invoice/Address.java

01: /**

02: Describes a mailing address.

03: */

04: public class Address

05: {

06: /**

07: Constructs a mailing address.

08: @param aName the recipient name

09: @param aStreet the street

10: @param aCity the city

11: @param aState the two-letter state code

12: @param aZip the ZIP postal code

13: */

14: public Address(String aName, String aStreet,

15: String aCity, String aState, String aZip)

16: {

17: name = aName;

18: street = aStreet;

19: city = aCity;

20: state = aState;

21: zip = aZip;

22: }

Continued

 92

ch12/invoice/Address.java (cont.)

23:

24: /**

25: Formats the address.

26: @return the address as a string with three lines

27: */

28: public String format()

29: {

30: return name + "\n" + street + "\n"

31: + city + ", " + state + " " + zip;

32: }

33:

34: private String name;

35: private String street;

36: private String city;

37: private String state;

38: private String zip;

39: }

40:

 93

Which class is responsible for computing the amount due? What are its
collaborators for this task?

 Answer: The Invoice class is responsible for computing the
 amount due. It collaborates with the LineItem class.

Question

27/06/10 94

In-Class Exercise II

� Given project description, use heuristics to
identify classes and their relationships:

� We want to create a graphical user interface
(GUI) simulating an ATM machine. The GUI
has a keypad. The ATM is linked with a
bank. A bank has multiple customers. Each
customer can have two accounts (savings
and checking). The ATM can serve one
customer at a time, and the customer can
select one account at a time.

27/06/10 95

Learning Goals Review
You will be expected to:

� compare and contrast blackbox and
 whitebox testing (at the level of
 what each type of testing provides)
� use blackbox testing with
 equivalence classes to test a
 method
� describe how unit testing is applied
 to a class
� write a suite of tests to apply unit
 testing to a class using Junit
 (putting the above into practice
 with a particular tool)

