

22/06/10 2

Why do we need contracts?

� Write an implementation for the following methods of the
Account class:

public class Account

{

private int id;

private static int nextAccountId = 0;

private String name;

private double balance;

/**

 * Deposits an amount to the account.
 * @param amount The amount to be deposited.

 */

 public double deposit(double amount)

{

2

22/06/10 3

Why do we need contracts?

//cont'd

/**

 * Withdraws an amount from the account.

 * @param amount The amount to be withdrawn.

 */

public double withdraw(double amount)

{

3

22/06/10 4

Questions?

� Even though the methods are nicely documented with
standard Javadoc comments, the task on the previous
slides probably raised some questions:

�

�

� That's why we need a contract.

� A contract specifies more clearly what a method is
supposed to do and not do.

4

22/06/10 5

Specifying a Class Contract

� We will specify a class contract using class invariants, preconditions and

postconditions.

� Each of these is a statement that we require to be true at some point in the

code.

� A class invariant is attached to a class. Invariants must be true from the

time the call to a constructor ends until the corresponding object is

destroyed.

� A precondition is attached to a method. Preconditions must be true at

the time that the method is called.

� A postcondition is also attached to a method. Postconditions must be

true at the time that the call to the method ends.

� They are all expressed in terms of the public class components

5

 6

� Precondition: Requirement that the caller of a method
must meet

� Publish preconditions so the caller won't call methods
with bad parameters

� Typical use:
� To restrict the parameters of a method
� To require that a method is only called when the object is in an

appropriate state

Preconditions

Continue

d

 7

� If precondition is violated, method is not responsible for
computing the correct result. It is free to do anything

Preconditions (cont.)

 8

� Method may throw exception if precondition violated �
more about that in a few minutes
if (amount < 0) throw new IllegalArgumentException();

balance = balance + amount;

� Method doesn't have to test for precondition. (Test may
be costly)
// if this makes the balance negative, it's the caller's

 fault

balance = balance + amount;

Preconditions

 9

� Condition that is true after a method has completed

� If method call is in accordance with preconditions, it
must ensure that postconditions are valid

� There are two kinds of postconditions:
� The return value is computed correctly
� The object is in a certain state after the method call is completed

� Don't document trivial postconditions that repeat the
@return clause

Postconditions

Continue

d

 10

 amount <= getBalance() // this is the way to state a

 postcondition

 amount <= balance // wrong postcondition formulation

� Contract: If caller fulfills precondition, method must
fulfill postcondition

Postconditions (cont.)

Remember to define @pre,
@post and @invariant in terms
of the public interface

 11

Why might you want to add a precondition to a method
that you provide for other programmers?

 Answer: Then you don't have to worry about checking
for
 invalid values � it becomes the caller's responsibility.

Question

 12

When you implement a method with a precondition and
you notice that the caller did not fulfill the precondition,
do you have to notify the caller?

 Answer: No � you can take any action that is
convenient for you.

Question

22/06/10 13

Account - invariants

� An invariant is used to specify a condition that must be true

about the state of an object from the time it's constructed (when

the call to the constructor ends) until it is destroyed.

� What invariants can we specify on our Account class?

/**

 * @invariant getId()is unique and set when account is created

 * @invariant getName()is set when account is created

 * @invariant the values of getId() and getName() never change

 * @invariant _________________________________

 */

public class Account

{

private int id;

�

}
13

22/06/10 14

deposit � pre/postconditions

What preconditions and postconditions can we specify for the deposit method?

/**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre _________________________

 *

 * @post __

 * @return The current balance of the account

 */

 public double deposit(double amount)

 {

14

22/06/10 15

withdraw � pre/postconditions
(version 1)
Can be specified as the following:
 /**

 * Withdraw money from the account

 * @param amount The amount to be withdrawn

 * @pre

 * @pre

 *

 * @post

 *

 * @return The current balance of the account

 */

 public double withdraw(double amount) {

15

22/06/10 16

withdraw � pre/postconditions
(version 2)

Or maybe you can try to withdraw too much, but get nothing:

 /**
 * Withdraw money from the account
 * @param amount The amount to be withdrawn
 * @pre
 * @post

 * @return The current balance of the account
 */
 public double withdraw(double amount) {

16

22/06/10 17

Responsibilities and Benefits

Method Implementer User of the Method

Precondition Benefit

- assumes that the
precondition is true

- simplifies code

Obligation

- must verify that the
preconditions hold before a
method is called

Postcondition Obligation

- ensure that if the
preconditions of a method are
met, its postconditions are true
when the method terminates

Benefit

- assumes that the
postcondition is true when the
method returns

22/06/10 18

Specifying Class Contracts

� We will specify invariants, preconditions and
postconditions using simple English phrases coupled
together by logical AND, OR, NOT, IF�THEN�
ELSE as necessary.

� Contracts should be specified only in terms of the
public interface of the class whenever possible so as to
avoid exposing non-public elements of the class.

So, in specifying a postcondition for the deposit
method, for example, we use getBalance()
(which is public) rather than balance (which is
private).

18

22/06/10 19

Specifying Class Contracts
(cont�d)

� Suppose we are documenting a method m()

and that foo() is some other method whose

value we wish to use in specifying a pre- or

post-condition.

We use @pre.foo() to refer to the value

returned by foo() before m() is called and

foo() to refer to its value after m() is called.

19

22/06/10 20

Formal Languages for Class
Contracts

� There is a more formal way to define these
conditions using Object Constraint Language
(OCL). We won't use OCL in this course but if
you're interested, see:
http://www.omg.org/docs/formal/06-05-01.pdf

� There are also tools that will instrument Java code
so that OCL constraints can be checked at
runtime. See, for example,
http://sourceforge.net/projects/dresden-ocl/

20

22/06/10 21

Java Assertions

� We can use assertions to easily verify that preconditions are
true.

� Assert statements are Java constructs that assert that a given
condition is true. If the condition is not true, the program is
terminated with an AssertionError.

/**
 * �
 *@pre
 */
public double deposit(double amount)
{

21

22/06/10 22

Java Assertions

� By default, assert statements are not checked. To
enable assertion checking, run your program with the
�enableassertions flag:

java �enableassertions myJavaProgram

� It's good practice:
� to use assert statements to check preconditions

� to enable assert statements during testing and debugging

� to disable assert statements for the final production version

22

 23

assert condition;

Example:

assert amount >= 0;

Purpose:

To assert that a condition is fulfilled. If assertion checking
is enabled and the condition is false, an assertion error is
thrown.

Assertions

22/06/10 24

@invariant, @pre and @post

� Class contracts are the important part of the class
documentation and should be included in the class
javadoc

� The @invariant, @pre and @post tags are not
standard Javadoc tags (yet).

� For instructions on how to use these tags in your
programs, please see the tutorial on the course web
site.

� The complete definition of the class Account
(containing contracts and code) will be posted on the
course web site.

24

22/06/10 25

More Exercises

� Review Exercises:

� 3rd Ed, Chapter 8

� Questions : R8.13, R8.15, R8.16, R8.17, R8.19, R8.20,

R8.21, R8.22, R8.23

� Programming Exercises: P8.1, P8.2, P8.3

� 2nd Ed, Chapter 9

� Questions : R9.13, R9.15, R9.16, R9.17, R9.19, R9.20,

R9.21, R9.22, R9.23

� Programming Exercises: P9.1, P9.2, P9.3

CPSC 211, Winter 2008,
Term 1

25

22/06/10 26

You will be expected to:

� implement a class given a contract specified
by invariants, preconditions and
postconditions

� write client code that adheres to the
contract specified for a class using
invariants, preconditions and postconditions

� describe the benefits of programming by
contract for client and developer

� use assertions appropriately in code

Learning Goals Review

22/06/10 27

Tea break!

22/06/10 28

Class Design

Handling Errors

Reading:

2nd Ed: Chapter 15

3rd, 4th Ed: Chapter 11

Exercises

2nd Ed: P15.5, P15.6

 (Hint: look at
documentation for
Scanner class!)

3rd Ed: P11.9, P11.11

4th Ed: P11.12, P11.14

You will be expected to:

� incorporate exception handling
into the
 design of a method's contract
� trace code that makes use of
exception
 handling
� write code to throw, catch or
propagate an
 exception
� write code that uses a finally block
� write code to define a new
exception class
� compare and contrast checked
and
 unchecked exceptions

� understand the consequence of using

 checked vs. unchecked exceptions

22/06/10 29

Exceptions � Why do we need

them?
� Remember the Account class? We added the

following precondition to the deposit method:

amount >= 0

� What if the client fails to check the

precondition? The customers won't be happy

to find out that sloppy programming has

resulted in losing money because of a simple

mistake!
22/06/10 30

Exceptions � Why we need

them?
� Rather than using a precondition, we can have the method:

� return a special value (e.g., true/false) to indicate whether or not the

operation was successful

problem:

� print an error message

problem:

� terminate the program

problem:

22/06/10 31

Exceptions � Why we need

them?
� Rather than using a precondition or one of the

other methods suggested on the previous slide, we

can have the method throw an exception if the

amount is negative.

Benefits:

� We can force the client to acknowledge the problem.

� We allow the client to decide how to handle the

problem.

22/06/10 32

What's a Java Exception?

� An exception is an object with a specific interface, that

can be thrown.

� All exception classes are subclasses of the class

Throwable defined in the Java library.

� Here are some of the methods of this class:
Throwable();

Throwable(String message);

String getMessage();

void printStackTrace();

� Exceptions encapsulate information about the kind of

problem that has occurred (the message) and the

sequence of method calls that led to the problem (the

stack trace).

22/06/10 33

What's an exception?

� There are two types of exception: checked and

unchecked.

� Unchecked exceptions are subclasses of Java�s

RuntimeException class, while all others are checked

exceptions.

� There is also an Error class that represents abnormal

conditions that a program would normally not be

expected to handle. Errors are treated like unchecked

exceptions.
22/06/10 34

Java Exception Hierarchy

� Numerous exceptions and errors are defined in various java packages.
i.e.,

� FileNotFoundException in java.io

� IOException in java.io

� NullPointerException in java.lang

� etc.

� Programmers can define their own exceptions as subclasses of
Exception or its subclasses.

Object

Throwable

Exception Error

RunTimeExcepti

on

checked

exceptio
ns

unchecked

IOException

 35

� Two types of exceptions:

� Checked
o The compiler checks that you don't ignore them

o Due to external circumstances that the programmer cannot prevent

o Majority occur when dealing with input and output

o For example, IOException

� Unchecked:

o Extend the class RuntimeException or Error

o They are the programmer's fault

o Examples of runtime exceptions:

NumberFormatException

IllegalArgumentException

NullPointerException

o Example of error:

OutOfMemoryError

Checked and Unchecked Exceptions

 36

Hierarchy of Exception Classes

22/06/10 37

Defining an Exception Class

� Returning to our Account example, suppose we decide to throw

an exception when the amount is negative.

� First we must decide which exception class to use. We could

use the class Exception in the Java library but we can capture

more information by defining our own exception class.

� Let's define a class named IllegalValueException to represent

the type of exception that will be thrown when we attempt to

pass a negative amount.

� This will be a checked exception (more about this later).
22/06/10 38

Defining an exception class

public class IllegalValueException extends Exception

{

public IllegalValueException()

{

}

public IllegalValueException(String msg)

{

super(msg);

}

}

22/06/10 39

Throwing an Exception
 /**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre true

 * @post IF amount >= 0

 * THEN getBalance() = @pre.getBalance() + amount

 * ELSE getBalance() = @pre.getBalance()

 * @throws IllegalValueException if amount is negative

 */

 public void deposit(double amount)

 throws IllegalValueException {

 if (amount < 0)

 throw new IllegalValueException("Error: Neg. amount");

 balance = balance + amount;

}

 40

throw exceptionObject;

Example:

throw new IllegalArgumentException();

Purpose:

To throw an exception and transfer control to a handler
for this exception type.

 Throwing Exceptionsing an

22/06/10 41

Handling Exceptions

� Recall that IllegalValueException is a

checked exception. This has consequences

for a client calling our deposit method. The

client code must do one of the following:

� catch the exception

� propagate (i.e., pass on) the exception to its caller (i.e.,

the method that called it)

 42

� Statements in try block are executed

� If no exceptions occur, catch clauses are skipped

� If exception of matching type occurs, execution jumps to
catch clause

� If exception of another type occurs, it is thrown until it is
caught by another try block

Catching Exceptions

 43

try

{

 statement

 statement

 . . .

}

catch (ExceptionClass exceptionObject)

{

 statement

 statement

 . . .

}

catch (ExceptionClass exceptionObject)

{

 statement

 statement

 . . .

}

. . .

Try-Catch Syntax

22/06/10 44

Client Catching an Exception
public static void main(String[] args) {

 Account instructorAccount =
 new Account (�instructor�, 100.0);

try {
instructorAccount.deposit(100);
System.out.println("Balance: " +

instructorAccount.getBalance());
}
catch(IllegalValueException e) {

System.out.println(e.getMessage());
}

}

� What happens when deposit is called?

22/06/10 45

What happens when this code

executes?
public static void main(String[] args) {

 Account instructorAccount =
 new Account (�instructor�, 100.0);

try {
instructorAccount.deposit(-100);
System.out.println("Balance: " +

instructorAccount.getBalance());
}
catch(IllegalValueException e) {

System.out.println(e.getMessage());
}

}

22/06/10 46

Client Propagating an Exception
public void depositToAccount(Account anAccount,

double amount) throws IllegalValueException

{

anAccount.deposit(amount);

System.out.println("Balance: " +

anAccount.getBalance());

}

� The method that calls deposit must either:

� catch the exception

� propagate the exception to its caller

� If it propagates the exception then its caller must

either catch or propagate the exception and so

on�

22/06/10 47

Tracing an example call

� Trace the following code:

public static void main(String[] args) {
Account anAccount = new Account (�test�, 200);

 try {
 depositToAccount(anAccount, 100.0);
 }
 catch(IllegalValueException e) {
 System.out.println(e.getMessage());
 }
}

22/06/10 48

Tracing an example call

� Trace the following code:

public static void main(String[] args) {

 Account anAccount = new Account (�test�, 200);

 try {

 depositToAccount(anAccount, -100.0);

 }

 catch(IllegalValueException e) {

 System.out.println(e.getMessage());

 }

}

22/06/10 49

Exception Propagation

� If the exception is propagated as far as main() and main()

doesn't catch the exception, the program is terminated.

� The error message associated with the exception is printed

on the screen along with the stack trace.

� Checked exceptions should be caught and handled

somewhere in your code.

� Allowing your program to terminate when an exception is

thrown is sloppy (and could lead to disaster in real code!)

22/06/10 50

Unchecked Exceptions
� If a method throws an unchecked exception, the rules

are different:

� it is not necessary to declare that the method throws the exception

� there is no requirement on the calling method to handle the exception
(i.e., doesn�t have to catch or propagate the exception)

� If we don't handle unchecked exceptions in our code
(and we usually don't), the program will terminate when
an unchecked exception is thrown (e.g.,
ArrayIndexOutOfBoundsException, NullPointerException).

22/06/10 51

Checked or unchecked?

� When we define our own exception class, should it be checked

or unchecked?

� It depends.

� In general, we make it a checked exception because we

usually want to force the client to deal with it.

� The exception (excuse the pun) is when we want to respond to

common problems that are the result of sloppy programming

(e.g., index out of bounds exception for an array), in which

case we'd probably use an unchecked exception.
22/06/10 52

The finally clause

� A finally clause can follow the catch clauses of a try block

(or even a try block with no catch clauses):

 try {
 // code that may throw checked exceptions

 }

 catch(SomeException e) {

�

 }

 finally {

 �

 }

� The finally clause is executed whether or not an exception

is thrown, and (if thrown) whether or not it was caught.

� It is often used to ensure that resources are released.

 53

FileReader reader = new FileReader(filename);

try

{

 Scanner in = new Scanner(reader);

 readData(in);

}

finally

{

 reader.close(); // if an exception occurs, finally

 clause is also

 // executed before exception is passed

 to its handler

}

The finally Clause

22/06/10 54

Example
public class ExamMarker {

//...

/**

 * Calculates the given mark as a percentage of max mark

 * @param mark the given mark

 * @param max the maximum mark for the exam

 * @return the mark as a percentage of max

 */

public int percentage(double mark, double max)

 throws IllegalMarkException, IllegalMaxException {

 if (max == 0)

 throw new IllegalMaxException("Max is 0");

 if(mark < 0 || mark > max)

throw new IllegalMarkException("Incorrect
 Mark Submitted");

 return (int)(mark / max * 100);

}

22/06/10 55

public static void main(String[] args)
{

ExamMarker marker = new ExamMarker();
Scanner input = new Scanner(System.in);
double mark, max;
int percent;

System.out.println("Enter a mark for this exam and the
 max mark: ");

// cont'd

22/06/10 56

while(input.hasNext())
{
mark = input.nextDouble();
max = input.nextDouble();

 try
 {
percent = marker.percentage(mark, max);
System.out.println("The exam mark is: "
 + percent + "%");
}
catch(IllegalMaxException e)
{
System.out.println("Exam Marker Error: "
 + e.getMessage());
}
catch(IllegalMarkException e)
{
System.out.println("Exam Marker Error: "
 + e.getMessage());
}
}

}

22/06/10 57

public class ExamMarkerException extends Exception

{

 public ExamMarkerException(){ }

 public ExamMarkerException(String msg)

 {

super(msg);

 }

}

22/06/10 58

public class IllegalMarkException extends ExamMarkerException

{

public IllegalMarkException(){ }

public IllegalMarkException(String msg)

{

 super(msg);

}

}

public class IllegalMaxException extends ExamMarkerException

{

public IllegalMaxException(){}

public IllegalMaxException(String msg)

{

 super(msg);

}

}

22/06/10 59

In-Class Exercise II

� What will be output if we enter the following data on the

keyboard?

20.0 50.0

40.0 30.0

� Give an example of data that we could enter on the

keyboard to cause an IllegalMaxException to be thrown. 22/06/10 60

Question

� What if we replace the two catch blocks in

main() with the following?

catch(ExamMarkerException e)

{

System.out.println("Exam Marker Error: "

 + e.getMessage());

}

� How will the output change?

22/06/10 61

Comments

� Note that methods can throw more than one type

of exception.

� If we call a method that throws more than one

type of exception we can have more than one

catch block to handle each type of exception.

� Catch blocks must be ordered from the most

specific type of exception (the one lowest in the

inheritance hierarchy) to the least specific (the

one highest in the hierarchy). 22/06/10 62

Designing Exceptions
� Need to distinguish boundary cases that can be handled by the method from

exceptional cases which should throw exceptions

� Define individual exception for each type of error

� can group them into hierarchies � allows more flexibility in handling them

� Exceptions thrown by a method are shown in the method�s comment using the
@throws tag.

� Too many exceptions may make the method difficult to use.

� Exceptions and Postconditions:

� The postcondition should distinguish the case where an
exception is thrown from the case when it is not

� i.e., if withdraw(amount) throws an exception when the
amount is negative, its postcondition would be:

� IF amount>=0 THEN getBalance() = @pre.getBalance() �
amount

 ELSE getBalance() = @pre.getBalance()

22/06/10 63

APPENDIX

Account Example

with

Class Contracts

22/06/10 64

Example: Class Account

/**
 * A simple bank account for which the balance can never be
 * less than zero
 *
 * @invariant getBalance() >= 0
 * @invariant getId() is unique and set when account is created
 * @invariant getName() is set when account is created
 * @invariant the values of getId() and getName() never change
 */

public class Account
{
 private int id;
 private static int nextAccountId = 0;
 private String name;
 private double balance;

should the class have
methods:
setId ? YES
 NO
setName ? YES
NO 64

22/06/10 65

 /**

 * Initializes an account

 * @param accountName Customer name for account

 * @param initialBalance Initial balance deposited in account

 *

 * @pre true

 * @post getName() = accountName

 * @post getId() = a new number not returned by other accounts

 * @post (initialBalance>=0 AND getBalance() = initialBalance)

 * OR getBalance() = 0

 *

 */

 public Account(String accountName, double initialBalance) {
 id = nextAccountId++;
 name = accountName;
 if (initialBalance >= 0)
 balance = initialBalance;
 else
 balance = 0;

 } 65

22/06/10 66

 /**

 * Accessor method to return the account id

 * @pre true

 * @return the account id

 */

 public int getId() {

 return id;

 }

 /**

 * Accessor method to return the customer name

 * @pre true

 * @return the customer name

 */

 public String getName() {

 return name;

 }

66

22/06/10 67

 /**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre amount >= 0

 * @post getBalance() = @pre.getBalance() + amount

 * @return The current balance of the account

 */

 public double deposit(double amount)

 {

 assert amount >= 0;

 balance = balance + amount;

 return balance;

 }

67

22/06/10 68

 /**

 * Withdraw money from the account

 * @param amount The amount to be withdrawn

 *

 * @pre amount >= 0

 * @post IF (@pre.getBalance()-amount >= 0)
 * THEN getBalance() = @pre.getBalance() - amount
 * ELSE getBalance() = @pre.getBalance()

 * @return The current balance of the account

 */

 public double withdraw(double amount) {

 assert amount >= 0;

if (balance - amount >= 0)

 balance = balance - amount;

 return balance;

 }

68

22/06/10 69

 /**

 * Returns the string representation of an account

 *

 * @pre true

 * @return the account represented as a string

 */

 public String toString()

 {

 return "[id = " + id + ", name = " + name +

 ", balance = " + balance + "]";

 }

}

69

22/06/10 70

You will be expected to:

� incorporate exception handling into the
 design of a method's contract
� trace code that makes use of exception
 handling
� write code to throw, catch or propagate an
 exception
� write code that uses a finally block
� write code to define a new exception class
� compare and contrast checked and
 unchecked exceptions

� understand the consequence of using

 checked vs. unchecked exceptions

Learning Goals Review

