CPSC 211
Introduction to Software
Development

Summer 2010
Term 1, Part 2

20/06/10 1

Intro

Course Objectives

u When you complete this course, you will be able to:
»move from personal software development methodologies to professional
standards and practices
o design software following standard principles and formalisms
o create programs that interact with their environment (files etc.) and human users
according to standard professional norms
o develop effective software testing skills
»given an API, write code that conforms to the API to perform a given task
»identify and evaluate trade-offs in design and implementation decisions for
systems of an intermediate size
»read and write programs in Java using advanced features
o collections, exceptions, etc.
»extend your mental model of computation from that developed in CPSC111
 recursion, concurrency, etc.
»work with an existing codebase, including reading and understanding given
code, and augment its functionality [in assignments]

20/06/10 3

Instructor
® Name: Gabriel Murray
m Office: CS/ICICS 123
B Email: gabrielm@cs.ubc.ca
m Office Hours: see web page (or by appointment)

m Research interests: Natural Language

Processing, Artificial Intelligence, Machine

20/06/10

=] earning, Semantic Web, Ontologies, Linguistics

Components & Evaluation

® Your grade in this course will be based on the following activities:
»lab participation (5%)
»in-class exercises/participation (5%)
»four assignments (25%)
»>a midterm examination (20%)
»a final examination (45%)
B To pass this course, you must obtain a 50% overall mark and, in
addition, you must:
»pass the assignments AND

»pass the final examination.

= Students who fail the assignments or the final exam will be
assigned, as final grade in the course, the minimum of 45% and
sthegrade computed using the above formula. The instructors

nnnnnnn tha rinht ta madifu tha ~anrea aradine cnhama b an fima

4

Administration Labs

® Main web sites for the course:

http://www.cs.ubc.ca/~gabrielm/211/ * Mondays & Wednesdays
‘rcon;ains most course material (notes, labs, assignments, . Starting this Wednesday the 23rd
etc. !
® Vista site for the course * Room ICICS 005

»contains bulletin board and grades

u Carefully read the course information at " You registered for a lab section when you
http://www.cs.ubc.ca/~gabrielm/211/courselnformation.html rengtered fOF the course

™ Labs start Wednesday « Do the pre-reading and pre-exercise
before attending the lab

Intro

Lab 1 Assignments

- Introduction to Unix and Eclipse * There are 4 assignments in 6 weeks

* Assignment 1 is being released within the
next day

* Check Vista
* Music library application

20/06/10 7 20/06/10

Exams

» The final exam will be on the last day of
class, normal time and location

» Midterm date to be announced soon

20/06/10 9

Summer Term

¢ Intense six-week course

* When one assignment is due, the next is
immediately released

* Two exams
» Labs twice a week

* We strongly suggest you do not try to
take two summer courses simultaneously

20/06/10 11

Getting Help

* Vista

- Fastest way to get a quick response to a
Java question

 Learning Centre (hours posted soon)

» Email TAs directly (check webpage)

« Email me directly (gabrielm@cs.ubc.ca)
* Labs

20/06/10

Typical Class Structure

* 9:00-9:10 any business, misc.
* 9:10-9:45 lecture

* 9:45-10:15 in-class exercise

* 10:15-10:30 tea break

* 10:30-11:00 lecture

* 11:00-11:30 in-class exercise

20/06/10

Textbook

 Big Java, Cay Horstmann

_ 3rd E
SE
%@ %‘_’D

- 2" E okay

20/06/10

Review: Classes, Objects,
References

B A typical object oriented program consists of
> a set of class definitions
> a set of objects that interact with each other

® Class methods define the object’'s behaviour
(i.e. what an object can do)
B References provide a way to distinguish and
access the objects
»a reference holds the address of an object
B,Computation is performed by applying s
.. methods to objects

Intro. to Software Development

» Thinking back to CPSC 111...

20/06/10

Review: Example

blic class Account =
publ Y public class AccountTest
private Customer owner; {
private double balance; Account janeAcc =
public Account() { balance = 0; } new Account();
Fubl}ic void setOwner(Customer ¢) cystomer jane =

new Customer();

public class Customer jane.setName(“Jane
Black™)

janeAcc.setOwner(jane);
janeAcc.deposit(100.00);

private String name;
public Customer() { ... }
public setName(Stringn) { ... }

Find the classes. objects
and references shown
on this page

20/06/10

-~

Review: Example

ublic class Account =
4 public class AccountTest

private Customer owner; {

private double balance; Account janeAcc =
public Account() { balance =0; } new Account();
Fubl}ic void setOwner(Customer ¢) cystomer jane =

new Customer();

jane.setName(“Jane

]) Black™)

private String name; janeAcc.setOwner(jane);
public Customer() { ... } janeA I a0
public setName(String n) { ... } W ot ore the methods?
""" Which are the
constructors? What are

public class Customer

20/06/10

-

the instance fields?

Intro

Object reference

Customer

name = “Jane Black”
jane2

20/06/10

Object reference

* A variable like jane does not contain the
object

» Rather, it refers to the object's memory
location

* You can have two object variables refer to
the same object, e.g.

Customer jane2 = jane;

20/06/10

Review: Memory Diagrams

® Show how objects and references are stored in the
computer

B Show the relationship between them.

B Are informal and used for pedagogy

u jgggample: A memory diagram for Jane, and her ?&%ggpt:

Custom(\ Account

String — owner
object I name
for “Jane 100.00 | balance

JBlagk” 20

Review Question 1

How many b’s will this code print to the screen?

for (int i = 1; i <= 5; i++)
for (int j = 0; j < 4; j=3+2)
System.out.println ("b") ;

20/06/10

Review Question 1

How many b’s will this code print to the screen?

for (int i = 1; i <= 5; i++)
for (int j = 0; j < 4; j=3+2)
System.out.println ("b") ;

Recall that these are the same:
i++;
i=i+1;

20/06/10

21

23

Review Question 1

How many b’s will this code print to the screen?

for (int i = 1;(i <= 5; (i++)
for (intyj = 0;43 < 4;,/,/v\f]\=§'-'0-/2)
System.out. printl/l,n’/("b") ;

What are each of these
components of the for-loop doing?

20/06/10

Review Question 2

What does the following code print to the
screen?

int a = 4;

if (a < 4)
if (a < 1)
System.out.println ("good") ;
else

System.out.println ("bad") ;

20/06/10

Review Question 2

What does the following code print to the

screen?

int a = 4;

if (a < 4)
if (a < 1)

System.out.println ("good") ;

else
System.out.println ("bad") ;

The last else belongs to the last if

20/06/10

Intro

Review Question 4

Consider the Counter class on the public class Counter

right. What is printed out by the

following code? private static int count

Counter cl

Counter c2 new Counter(); count++;

cl.addOne () ; }

c2.subtractOne(); public void subtractOne ()
c2.addOne () ; count--;

cl.addOne () ; '

System.out.println(}

cl.getCount());
System.Out.println(return count;
c2.getCount ()); }
}

What is we remove “static” from the
Lslgelgration of count?

Intro

{

new Counter(); public void addOne ()

public int getCount ()

{

{

25

27

{

0;

Review Question 3

Assume that Cat and Dog are subclasses of Mammal.
Which of the following statements are valid?

a) Cat montana = new Cat();

b) Cat tuxedo = new Mammal () ;

c) Cat silas = new Dog();

d) Mammal animal = new Cat();

e) Mammal fluffyAnimal = new Dog() ;
f) animal = montana;

2”gr(’)mmontana = fluffyAnimal;

Intro

static

* Remember that a static instance field
does not belong to any particular object

* If a static instance field is declared in a
class definition, all objects of that class
share one copy of the instance field

* In contrast, when we remove static then
each object has its own copy

20/06/10 28

In-Class Exercise |

® Write a static method sumaArray that takes
an array of ints as its only parameter and
returns the sum of the values in the array.

® For example, if sampleArray was defined
as

int[] sampleArray = {2, 3, 2};

and passed as a parameter, the method
would return 7.

20/06/10 29

Intro

Tea break!

20/06/10 31

In-Class Exercise |

Recall that the for-each loop (or enhanced
for loop) is useful when you just want to
iterate through a sequence of elements.

for (Type variable: collection)

statement

20/06/10

Intro

=

30

Class Design |
Class Attributes and Methods

You will be expected to:

. determine some appropriate
attributes for a class givena general
description of the class

. determine some appropriate
methods for a class given a general
description of the class

. assess whether a given class
description is cohesive and robust

20/06/10

Reading:
2 edition
Chapter: 9,
Sections: 9.1-9.4, 9.6-9.9

31 edition
Chapter: 8,
Sections: 8.1-8.4, 8.6-8.9

Some ideas come from:

W “Practical Object-Oriented Development
with UML and Java” R Lee, W.
Tepfenhart, Prentice Hall, 2002. 5,
“Object-Oriented Software Development
Using Java”, Xiaoping Jia, Addison
Wesley, 2002

Design

What is design? What makes something a design
problem? It's where you stand with a foot in two worlds ---
the world of technology and the world of people and
human purposes --- and you try to bring the two together.

- Mitchell Kapor, A Software Design Manifesto (1991)

A concrete
example...

Technology?

Human purpose?

20/06/10

Many different aspects of design

Software program

Architecture
] . vanced Searcn
iGoogle ! P
Google Search J[_I'm Feeling Lucky Lanaveae Tocls
Search: ® theweb O pages from Canada
Google.ca offered In:Francais

20/06/10 35

Human-computer interface

Design

A software example...

20/06/10

Software design

Based on a description of
what the system should do
(requirements), we need to
identify and define:

* classes

« attributes of each class

* behaviour of each class

* relations between classes

Software program

During design, focus is on how the system will work, not
on implementation (precise) details

D&%ign is guided by principles and heuristics, not definitive rules

* What a music system for a phone should be able to do...

Example: A music system for a
phone

* Let’s identify some classes...

* Objective: identify and name all data that a class needs to

20/06/10

Designing for one class:
Identifying attributes

support the behaviour of objects of that class

Goal: each class should have high cohesion

* each class must represent a single concept

* all data and operations must be highly related to each other
Initial heuristic: consult the requirements (problem

description), looking for adjectives and possessive phrases
related to objects of the class of interest to discover what

information the objects of the class will need

Review: eliminate any false attributes
* attributes whose value depends on the context
0 e.g., Consider a Person class. Such a class is unlikely to have an

employee_id attribute because a person may have zero, one, or more

2006 jobs
'« attributes that are unrelated to the rest
o either these attributes do not belong or the class should be split

Class design (aka low-level design)

* Our focus now is on how to design a single class. We'll
assume that we know which class(es) we need; designing
classes and their relationships will be a topic later this term

* For each class we are designing, we need to define
* the data (attributes or fields) associated with the class’ concept
* the behaviour (responsibilities, public services) associated with the class’
concept; this includes:
o public methods
o the class invariants
* We will ignore for now...
* private methods

* the data structures used to implement collections of data
37 20/06/10 38

Designing for one class:
Designing each attribute
* For each attribute, must distinguish:
* Kind of attribute
o instance attribute : value of attribute depends on the
object
o class attribute: one value per class
* Visibility
o private, protected, package, public
* Kind of value (type)
o primitive values (int, double)
o references to objects
* Whether it is a constant attribute
39 200610 0 in Java will be declared as final static 40

Designing for one class:
Identifying class behaviour

* Objective: identify and name all operations a class needs
to provide/support

* Initial heuristic: Consult the requirements (problem
description), look for verbs related to objects of the class
of interest to discover the likely responsibilities of the class

* Review: check for problem specific methods needed to

maintain the state (attributes) of the object

perform calculations the class is responsible for

monitor what objects of the class are responsible for detecting and

responding to

respond to queries that return information without modifying an object of

the class

~0dtiis often helpful to identify and go over some user 41
scenarios to ensure as complete behaviour as possible is
desianed

Designing for one class:
Additional class design guidelines

* Ensure each class has
* a“good”---useful for clients---set of constructors

.

appropriate accessors for certain attributes (getter methods)

appropriate mutators for some attributes (setter methods)

.

a destructor if necessary (in Java this is done by defining the finalize()
method in the class; use very sparingly, if at all)

equality method — equals()
string representation method (good for debugging) — toString()
* May need to define methods for

* cloning : for creating copies — clone() or copy constructor

.

* hash code: returns an integer code that “represents” the object -
hashCode()

* 2Weill talk more about cloning, hashCode, etc. later in term. See 23
“Effective Java” book by Joshua Bloch if interested in class design.

Designing for one class:
Designing each method

* For each method, need to distinguish:
* Kind
o instance methods are associated with an object
o class methods are applied to a class and are independent of any
object
* declared as static and can only access static attributes (not
instance attributes)

* Visibility
o private, protected, package, public
* Signature (= method name + parameter types)
o (a class cannot have two methods with the same signature)

* Notes...

* final methods cannot be overridden in any subclass
20/06/1pverloaded method = method name with more than one signature

Designing for one class:

Additional class design guidelines...

Minimize side effects

* A side effect of a method is any modification that is
observable outside the method

* Some side effects are necessary; some are acceptable;
others are wrong

* Some guidelines:

Accessor methods should not have any side effects

Mutator methods should change only the implicit argument

.

Avoid designing methods that change their explicit arguments, if it is
possible

Avoid designing methods that change another object ~bad:couples

ie.in class A t: Account w/ System
1.€. 1In class Account: and PrintStream

0 bad design: method printBalance that prints balance on System.out

2000610, good design: method getBalance that returns balance

42

44

.

Bank account example

Problem Description

¢ The bank wants a software system to maintain customer accounts. Each account
belongs to a single customer and is identified by a unique id assigned by the bank.
The owner and the id of an account can never change. A customer is identified by
their name and can open an account, deposit and withdraw money into it and
check the account balance, which must never be negative.

Suppose we design a class Account to represents a single account.
What would be the attributes (data components) for the Account class?

Would be correct to add the customer address and phone number as

2ogemponents to Account class? 4

Representing class design: UML

A

x&lass diagrams in this course

When designing software, we need to focus on how the
design works, not all of the details of expressing the
design in a programming language

Software developers sometimes use UML (Unified
Modelling Language) to express a design

UML’s graphical modelling notation lets developers focus
on
* classes and their important attributes and methods
relationships between classes

nd to see that information in a condensed form
UML has many different diagram types, we’ll consider only

47

Bank account example

* What should be the operations?

20/06/10

Representing a class in UML
class diagram

* Use a rectangle with 3 compartments showing
* the class name

* the class data components (or attributes or data fields)
* the class methods

* Example:

Account
- owner: Customer
- balance: double

+ Account(s : Item) : void

+ setOwner(c : Customer) :
20/06/10 void

46

48

Representing class relationships

* Relationships are shown by arrows
* We'll consider just two types of relationship (for
now):
* Association : one class contains one or more
references to another class

* Inheritance : one class extends another class

Association Example Inherit ple

Account Customer ?

20/06/10 SavingsAccount

In-Class Exercise |l

 Given the following project description,
identify the classes, attributes and
methods

20/06/10

49

Is this enough?

* We have seen how to
* identify attributes for a class
* identify methods (the behavior) of a class
* We need a way to specify the behavior of each method
* specification must be independent of programming language
* must balance between
o the important aspects that need to be captured by any implementation
o give an implementor the freedom to decide on the rest

* Next class we'll discuss class contracts help specify
method behaviour

20/06/10 50

CPSC 211,
2008 Winter Term 1
Section 102

Review learning goals

You will be expected to:

Reading:
. determine some appropriate 27 edition
attributes for a class given a general Chapter: 9,
description of the class Sections: 9.1-9.4, 9.6-9.9
. determi it 3 edition
etermine some appropriate Chapter: 8,

methods for a class given a general

description of the class Sections: 8.1-8.4, 8.6-8.9

. assess whether a given class Some ideas come from:
description is cohesive and robust " “Practical Object-Oriented Development
with UML and Java” R Lee, W.
20/06/10 Tepfenhart, Prentice Hall, 2002. 5,

“Object-Oriented Software Development
Using Java”, Xiaoping Jia, Addison
Wesley, 2002

