. CHAPTER V

The Multivariate Normal Distribution

1. Preliminaries from Linear Algebra

In Chapter I we studied how to handle {linear transformations of) ran-
dom vectors, that is, vectors whose components are random variables.
Since the normal distribution is (one of) the most important distribu-
tion(s) and since there are special properties, methods, and devices per-
taining to this distribution, we devote this chapter to the study of the
multivariate normal distribution or, equivalently, to the study of nor-
mal random vectors. We show, for example, that the sample mean and
the sample variance in a (one-dimensional) sample are independent, a
property that, in fact, characterizes this distribution and is essential, for
example, in the so called ¢-test, which is used to test hypotheses about
the mean in the (univariate) normal distribution when the variance is un-
known. In fact, along the way we will encounter three different ways to
show this independence. Another interesting fact that will be established
is that if the components of a normal random vector are uncorrelated,
then they are in fact independent. One section is devoted to quadratic
forms of normal random vectors, which are of great importance in many
branches of statistics. The main result states that one can split the sum
of the squares of the observations into a number of quadratic forms, each
of them pertaining to some cause of variation in an experiment in such
a way that these quadratic forms are independent, and {essentially) x?2-
distributed random variables. This can be used to test whether or not
a certain cause of variation influences the outcome of the experiment.
For more on the statistical aspects, we refer to the literature cited in
Appendix 1.

We begin, however, by recalling some basic facts from linear algebra.
Vectors are always column vectors {recall Remark 1.1.2). For conve-
nience, however, we sometimes write x = (z1,23,...,2,). A square
matrix A = {ayj, 4,7 = 1,2, ..., n} is symmetric if a;; = ay and all
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elements are real. All eigenvalues of a real, symmetric matrix are real.

In this chapter all matrices are real. ¢
A square matrix C is orthogonal if C'C = 1, where 1 is the identity

: matrix. Note that since, trivially, C™1C = CC~! = 1, it follows that ¢
c'=c' (1.1) ¢

Moreover, det C = %1.

Remark 1.1. Orthogonality means that the rows (and columns) of an i

orthogonal matrix, considered as vectors, are orthonormal, that is, they 1
have length 1 and are orthogonal; the scalar products between them are [
0. a : £
Let x be an n-vector, let C be an orthogonal n x n matrix, and set
y = Cx; y is also an n-vector. A consequence of the orthogonality is : §
that x and y have the same length. Indeed, o d
; 0
I ¥y = (Cx)'Cx = x'C'Cx = x'x. (1.2) J lé
:;% Now, let A be a symmetric matrix. A fundamental result is that there :
_ exists an orthogonal matrix C such that
B W
C'AC =D, (1.3) V.
. where D is a diagonal matrix, the elements of the diagonal being the
4 3 eigenvalues, Ay, Ag,. .., An, of A. It also follows that T
8 det A =detD = [] Ae. (1.4)
k=1 " t1
T _ c
| A quadratic form @ = Q(x) based on the symmetric matrix A is defined ‘
L by
l Q(x) = x'Ax (: Z Zczij:c,-mj), x €R". (1.5)
: i=} j=1 w
: @Q is positive-definite if ()(x) > 0 for all x # 0 and nonnegative- deﬁmte B
(positive-semidefinite) if Q{x) > 0 for all x.
One can show that @ is positive- (nonnegative-) definite iff all elgen- E
values are positive (nonnegative). Another useful criterion is to check - '
all subdeterminants of A, that is, det Ay, where Ay = {ai;, J = . R
1,2,...,k}and £ = 1,2,...,n. Then Q is p051t1ve- (nonnegatlve) m
deﬂmte 1ﬂ' det Ay >0 (> O) for all k=1, 2, iy de
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© A matrix is positive- (nonnegative-) definite .iff the corresponding
quadra,tlc form is positive- (nonnegative-) definite.

~ Now, let A be a square matrix whose inverse exists. The algebraic
complement, A,;, of the element a;; is defined as the matrix that rema.ms
after deleting the ith row and the jth column of A. For the element a;;

of the inverse A1 of A, we have

det A j;

= (—1)Hi
( ) det A

(1.6)
In particular, if A is symmetric, it follows that A;; = Al;, from which
we conclude that det A;; = det Aj; and hence that at-_jl = aj‘,-l {(and that
A~ is symmetric).

Finally, we need to define the square root of a nonnegative-definite
symmetric matrix. For a diagonal matrix, D, it is easy to see that the
diagonal matrix whose diagonal elements are the square roots of those
of D has the property that the square equals D). For the general case we
know, from (1.3), that there exists an orthogonal matrix C, such that
C'AC = D, that is, such that

A = CDC/, (1.7)

where D is the diagonal matrix whose diagonal elements are the eigen-
values of A; dy; = A, i =1, 2,

Let us denote the square root of D, as described above, by D. We
thus have d; = +v i, i = 1,2, ..., n and D2 = D. Set B cDC'.

Then
2 BB = CcDC'cDC’ =CcDDC'=CDC' = A, (1.8)

that is, B is the (unique) nonnegative-definite square root of A. A
common notation is A/2.
If, in addition, A has an inverse, one can show that

(AT = (A, (1.9)
which is denoted by A~1/2,
Exercise 1.1. Verify formula (1.9).

Exercise 1.2. Show that det A~/ = (det A)™'/%, a

Remark 1.2. The reader who is less used to working with vectors and
matrices might like to spell out certain formulas explicitly as sums or
double sums, and so forth. |
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2. The Covariance Matrix

Let X be a random n-vector whose components have finite variance.

Definition 2.1. The mean vector of X is p = F X, the components of
whichare p; = F X;,i1=1,2,...,n
The covariance matrizof Xis A = E(X—p)(X—p), whose elements
are /\,‘j:E(X,'—[J,i)(XJ'—,U.j), hLwi=1,2,...,n (i
Thus, Aii = V&I‘X,;, 1= 1, 2, ; 1y and )\,;j = COV(Xi,Xj) = Aji,
1,7=1,2,...,n (and 1 # 7, or else Cov(X;, X;) = Var X;). In particu-
lar, every covariance matrix is symmetric.

Theorem 2.1. FEvery covariance matriz is nonnegative-definite.

Proor: The proof is immediate from the fact that, for any y € R,
Qy)=y'Ay =y E(X - p)(X — p)'y = Var(y/(X — p)) 0. O

Remark 2.1. If det A > 0, the probability distribution of X is truly »-
dimensional in the sense that it cannot be concentrated on a subspace of
lower dimension. If det A = 0, it can be concentrated on such a subspace;
we call it the singular case. 0

Next we consider linear transformations.

Theorem 2.2. Let X be a random n-vector with mean vector y and
covariance matrix A. Further, let B be an m X n matriz, let b be a
constant m-vector, and set Y = BX 4+ b. Then

EY=Bp+b and CovyY = BAB'.

Proor: We have
EY=BEX+b=Bu+b
and
CovY =E(Y -EY)Y - EY) = EB(X — p)(X — p#)'B’
=BE{(X - n)(X—n)'}B'=BAB'. o

Remark 2.2. Note that for n = 1 the theorem reduces to the well-known
facts EY = aEX + b and VarY = a® Var X (where ¥ = aX +8)..

Remark 2.3. We will permit ourselves, at times, to be somewhat care-

less about specifying dimensions of matrices and vectors. It wilk always

be tacitly understood that the dimensions are compatible Wlth the a.nth- _
ol

metic of the situation at hand.
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.- A First Definition

‘We will provide three definitions of the multivariate normal distribution,
“.Jn this section we give the first one, which states that a random vector i is
normal iff every linear combination bination of its components is normal. In the
foﬂowmg section we prov1de a definition based on the characteristic func-
tion, and in Section 5 we give a definition based on the density function.
We also prove that the first two definitions are always equivalent (i.e.,
when the covariance matrix is nonnegative-definite) and that the three
of them are equivalent in the nonsingular case (i.c., when the covariance
matrix is positive-definite).

Definition I. The random n-vector X is normal iff, for every n-vector

g,_the\(gg@nensmn})_ random variable a’X is normal. The notation
X € N(p,A) s used to denote that X has a (multivariate} normal

distribution with mean vector p and covariance matrix A. G
b=

- b i

Remark 3.1. The actual distribution of a’X depends, of course, on

a. The rc\lggew{;e normal distribution (IV(0,0)) is also included as a

possible distribution_of a'

Remark 3.2. Note that no assumption whatsoever is made about inde-
pendence between the components of X. o

Surprisingly enough, this somewhat abstract definition is extremely
applicable and useful. Moreover, several proofs, which otherwise become
complicated, become very “simple” (and beautiful). The following are
three properties that are immediate consequences of this definition:

(a) Every component of X is normal.
(b) X3 + X2+ ...+ X, is normal.
(¢) Every marginal distribution is normal.

Indeed, to see that X is normal for £ = 1, 2, ..., n, we choose a,
such that ax = 1 and a; = 0 otherwise.

To see that the sum of all components is normal, we simply choose
ar = 1 for all k.

As for (c) we argue as follows: To show that (X, Xy,,..., X5, ) is
normal for some k£ = (1,)2, ..., n—1 amounts to checking that all linear
combinations of these components are normal. However, since we know
that X is normal, we know that a’X is normal for every a, in particular
for all a, such that a; = 0 for j # i, i3, ..., ik, which establishes the
desired conclusion.

We also observe that from a first course in probability theory we
know that any linear combination of independent normal random vari-
ables is normal (via the convolution formula and/or the moment generat-
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ing function—recall Theorem I111.3.2), that is, the condition in Definition
I is satisfied. It follows, in particular, that

(d) if X has independent components, then X is normal.
Another important result is as follows:

Theorem 3.1. Suppose that X € N(u,A) and set Y = BX +b. Then
Y € N(Bup + b, BAB').

Proor: The first part of the proof merely amounts to establishing the
fact that a linear combination of the components of Y is a (some other)
linear combination of the components of X. Namely, we wish fo show
that a'Y is normal for every a. However,

a'Y =a'BX +a'b=(B'a)yX+a'b=cX+d, (3.1)

where ¢ = B’a and d = a’b. Since ¢’X is normal according to Definition
I (and d is a constant), it follows that a"Y is normal. The correctness of
the parameters follows from Theorem 2.2. O

Exercise 3.1. Let X1, X», X3, and X4 be independent, N(0, 1)-distributed
random variables. Set ¥ = X; +2X, +3X3 +4X, and V2 = 4X, + 33X, +
2X3 + X4. Determine the distribution of Y.

Exercise 3.2. Let X € N((;) , (_:12 ﬂ?

Yy = 2X; — 3X,. Determine the distribution of Y. 0

)) Set Y1 = X¢ 4+ X5 and

A word of caution is appropriate at this point. We noted above
that all marginal distributions of a normal random vector X are normal.
The joint normality of all components of X was essential here. In the
following example we define two random variables that are normal but
not jointly normal. This shows that a general converse does not hold;
there exist normal random variables that are not jointly normal.

Example 3.1. Let X € N(0,1) and let Z be independent of X and such
that P(Z=1)=P(Z=-1)=1%. SetY = Z - X. Then
PY<z)=3P(X <z)+ iP(-X <x)
= Fo(e) + 31 - 8(-2)) = &(e),

that is, Y € N(0,1). Thus, X and Y are both (standard) normal. How-
ever, since ,

PX+Y=0)=PZ=-1)=,
it follows that X + Y cannot be normal and hence that (X,Y)’ is not.
normal. g

For a further example, see Problem 10.6.

&
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t. The Characteristic Function: Another Definition
The characteristic function of 2 random vector X is (Definition 111.4.2)
ox(t) = Eet'X. (4.1)

Now, suppose that X € N(u,A). We observe that Z = t'X in (4.1) has
a one-dimensional normal distribution by Definition I. The parameters
atem = EZ =ty and g2 = Var Z = t'At. Since

wx(t) = pz(1) = exp{zm — i0%, (4.2)

we have established the following result:

Theorem 4.1. For X € N{u, A), we have

ex(t) = exp{it'p — Ft'At}. a
2

It turns out that we can, in fact, establish a converse to this result
and thereby obtain another, equivalent, definition of the multivariate
normal distribution. We therefore “temporarily forget” the above and
begin by proving the following fact:

Lemma 4.1. For any nonnegative-definite symmetric matric A, the
function e e

@*(t) = exp{it'p — Jt'At}

is the characteristic function of a random vector X with EX = p and
CovX = A.

ProoF: Let Y be a random vector whose components Y1, Yz, ..., ¥
are independent, N (0, 1)-distributed random variables, and set

Since CovY = I, it follows from Theorem 2.2 that
EX=p and CovX=A. (4.4)
Furthermore, an easy computation shows that

oy (t) = Eexp{it'Y} = exp{—3t't}.
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It finally follows that
ex(t) = Eexp{it’X} = Eexp{it'(AY2Y + u)}
= exp{it’'p} - Eexp{it'AV/?Y}
= exp{it'n} - Eexp{i(A'/?t)'Y}
exp{it'u} - oy (A'/%t)
exp{it'p} - exp{_%(Al/Zt)f(Al/‘zt)}
= exp{it'p ~ $t'At},

as desired. a
Note that at this point we do not (yet) know that X is normal.

The next step is to show that if X has a characteristic function given
as in the lemma then X is normal in the sense of Definition I. Thus, let
X be given as described and let a be an arbitrary n-vector. Then

parx(u) = Eexp{iua'X} = px(va)
= exp{i(va)'p — L(ua) A(ua)}
= exp{ium — %ugoj} ,
where m = a’y and o? = a’Aa > 0, which proves that a’X ¢ N(m,o?)

and hence that X is normal in the sense of Definition 1. This motivates
the following alternative definition.

Definition II. A random vector X is normal iff its characteristic function

18
ex(t) = exp{it’p — Lt'At},

for some vector ¢ and nonnegative-definite matrix A. O
We have also established the following fact:
Theorem 4.2. Definitions I and IT are equivalent. 0

Remark 4.1. The definition and expression for the moment generating
function are the obvious ones:

Px(t)= Eet* = exp{t'p + 1t'At}. o

Exercise 4.1. Suppose that X = (X1, X3)’ has characteristic function

wx (t) = exp{ity + 2ity — 12 + 24,2, — 63 }.

Determine the distribution of X.
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Exercise 4.2. Suppose that X = (X3, X»)' has characteristic function

o(t, u) = exp{it — 26* —u* —tu}.
*  Find the distribution of X; + X».

Exercise 4.3. Suppose that X and Y have a (joint) moment generating

function given by
P(t, u) = exp{t® + 2tu + 4u’}.

Compute P(2X <Y +2). 3]

5. The Density: A Third Defimtion
B it

Let X € N(u,A). I det A = 0, the distribution is singular, as men-

tioned before, and no density exists. If, however, det A > 0, the ere

exists a density function that, morcover, is uniquely defermined by the
determine® by s

parameters g and A.
" Tn order to detérmine the density, it is therefore sufficient to find it

for a normal distribution constructed in some convenient way. To this
end, let Y and X be defined as in the proof of Lemma 4.1, that is, Y has
independent, standard normal components an -m Then
X € N(p,A) by Theorem 3.1, as desired.

Now, since the density of Y is known, it is easy to compute the
density of X with the aid of the transformation theorem. Namely,

fx(y)

- =1 2
H Frilyx) = H P 4
k=1 1 V2T

= (AL o (L) ewy, yern,
27 2w 7 ’

Further, since det A > 0, we know that the inverse A~Y exists, that
Y = ATVHX ~ ), . (5.1)

and hence that the Jacobian is det A~1/2 = (det A)”” ? (Exercise 1.2).
The following result emerges.
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Theorem 5.1. For X € N(u,A) with det A > 0, we have B U
1y\n/2 ] 1 — f:
X)=|— ——expi—5(x —pu) A (x~ . a
9= (532) " S exp{—dx - A7~ )} )
Exercise 5.1. We have tacitly used the fact that if X is a random vector and ;
Y = BX then i) .
ay)
| | a(x) {=detB. i
Prove that this is correct. O D
We are now ready to make a third, and last, definition. E
X Definition IIL. A random vector X with £X = g and CovX = A,
such that det A > 0, is N (g, A)-distrib_u_tgg iff the density is
o ST W
—=—eXp1—y({x—pu)A T (x— , XeR™\ 0O !
m p 2 ) ( M ! p
e e - fl]
Theorem 5.2. Definitions I, II, and III are equivalent (in the nonsingu-
lar case).
Proor: The equivalence of Definitions I and II has been established 6.
in Section 4 (in the general case). The equivalence of Definitions II
and III (in the singular case) follows from the uniqueness theorem for L
characteristic functions. 0 a
tl
Now let us see how the density function can be computed explicitly. ]
Let Ay; be the algebraic complement of A;; = Cov(X;, X ;) and set AA;; = o
(~1)"*7det Ay; (= Ajs, since A is symmetric). Since the elements of A"
are %"—, t,7=1,2,...,n, where A = det A, it follows that A
1yn/2 1 JAVP p.
x)=(57)" xee{-3 33 e~ w)es - )} (52
2n \/K 2 i=1 j=1 A ; j
In particular, the following holds for the case n = 2: Set i = F X; and
ol = Var Xy, k = 1,2, and o013 = Cov(Xy, X3), and let p = o5 /0109
be the correlation coefficient, where |p| < 1 (since det A > 0). Then
A= 0'%‘7%(1 - 0%, A = 03, Dyp = af, Dig = Dy = —P0102, a.nd
hence ° '
2 o 1 SR
o 1% )
A= ( 1 P 122) and A_-l: _ crlp 0']:10'2 .
pPo10z O I-p T ooz o /o
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follows that

thxz’(ml’ 3:2)

) :
= e el Ly (Bt y? — gplor=plfazia) 4 (zamim)2))
d
Exercise 5.2. Let the (joint) moment generating function of X be
W(t,u) = exp{t® + 3tu+4u’}.
] * Determine the density function of X.

Exercise 5.3. Suppose that X € N{0, A), where
-1

0
1

] ’ - Pl
Put Y3 = X3 4+ Xs, Y2 = X3 + X3, and ¥ = X; + X,. Determine the density
function of Y. i

6.| Conditional Distributions l

Let X € N(p,A), and suppose that det A > 0. The density thus exists
as given in Section 5. Conditional densities are defined (Chapter II) as
the ratio of the relevant joint and marginal densities. One can show
that all marginal distributions of a nonsingular normal distribution are
nonsingular and hence possess densities.

A=

[ e ]
[ I T

=]

Let us consider the case n = 2 in some detail. Suppose that (X,Y)' €
N(p,A), where EX = pg, EY = py, VarX = o2, VarY¥ = o2, and
px,y = p, where |p] < 1. Then

frix=<(¥) = %ﬂ

T— iy T—pe ) y)
s oty (5520 - 2 4 (052)))

2w,

mexp{— = )2}

1

- s el (5
= ! ex {——1——(
V2ro, /1~ p? Pl —p) V¥

(I“ﬂ:)(y_”y) + (y;;ry )2)}

Tz Ty

Pt —p)'}- (61)
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This density js easily recognized as the : density of a normal distribution I
with mean p, + p7*(z = p1;) and variance g(1 — p?). It follows, in
particular, that c
L
o.
EY | X =2)=py + p—z — ), '
Oz (62) v
Var(Y | X =z) = cr;(l - ). ;
As a special feature we observe that the regression function is linear (and %
coinciding with the regression line) and that the conditional variance
equals the residual variance. For the former statement we refer back to ;
Remark 11.5.4 and for the latter to Theorem II.5.3. Further, recall that :
the residual variance is independent of z.
Example 6.1. Suppose the density of (X,Y)" is given by
)
f(z,9) = g-exp{-3(z’ — 20y + 24%)}. L
1

Determine the conditional distributions, particularly the conditional ex-
pectations and the conditional variances. 1

SOLUTION: The function 2% —22y+2y? = (z—y)?+4? is positive-definite.
We thus identify the joint distribution as normal. An inspection of the
density shows that

- ]

EX=EY =0 and A~'= (_i é) (6.3) 5

which implies that A
(};) € N(0,A), where A= (i }) . (6.4)

It follows that Var X =2, Var¥ = 1, Cov(X,Y) = 1, and hence XY =
1-

Ve _ j
A comparison with (6.2) shows that .

EY|X=2)=% and Va(Y |X=2)=1,

EX|Y=y)=y and Var(X|Y =y)=1

The conditional distributions are the normal distributions with corre-
sponding parameters. o D,;
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‘Remark 6.1. Instead of having to remember formula (6.2), it is often
as simple to perform the computations leading to (6.1) directly in each
case. Indeed, in higher dimensions this is necessary. As an illustration,
let us compute fy|x=z(¥)-
Following (6.4) or by using the fact that fx (z) = ffooo Ffx,v(z,y)dy,
we have
& exp{—3(2* — 2zy + 24*)}

fYIX:a:(y): 1 z2
maeel-r T

= -——exp{—l('ﬁ"i —2zy+ 29"}
\/ﬁ\/; 2\2

1 1(1;—%)2},

which is the density of the N (%, })-distribution.

Exercise 6.1. Compute fx|y=y(2) similarly.

Example 6.2. Suppose X € N(u,A), where =1 and

1 (1)

Find the conditional distribution of X1 + X3 given that X; - X =0.

SOLUTION: We introduce the random variables Y1 = X1 + X;and Yy =
X, — X, to reduce the problem to the standard case; we are then faced
with the problem of finding the conditional distribution of ¥; given that

Y. =0
Since we can write Y = BX, where

11
2= (i )

it follows that Y € N(Bu,BAB’), that is, that
2 7 1 .
ven(). (1

(-p(Ang -G 2h).

and hence that

1
fx(y)= /30 exp
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Further, since Y; € N{0,3), we have

- 1 93
fYQ(yQ)“-' \/2_7r\/§exp{ 5% }-
Fina,ﬂy,
1 3y, —2)° ~2)
_ w0 mexp{__ v )
fy1|Y2=0(yl) = 0 — -
sz() meXP{“g- }
1 _oy2
= —exp{ — %(MT)},
\/2_71- 230 K}
which we identify as the density of the N(2, 23—0)-d.istribution. O

Remark 6.2. It follows from the general formula (6.1) that the final
exponent must be a square. This provides an extra check of one’s com-
putations. Also, the variance appears twice (in the last example it is —-

and must be the same in both places. El

Let us conclude by briefly considering the general case n > 2. Thus,
X € N(p,A) with det A > 0. Let X1 = (X i1, Kigy oy Xi =
X, X55,.-,X;,,) be subvectors of X, that is, vectors whose compo-
nenis consist of £ an mments of X, respectively, where
1<k<nand I <m < n. cmponents _Xa

tg e different. By definition we then have o2 v
o

4, (,%)
fizISEl:xl 2)— ok (Xl)

(6.5)

Given the formula for normal densities (Theorem 5.1) and the fact that
the coordinates of X; are constants, the ratio in (6.5) must be the density

of some normal distribution. The conclusion is that conditional distribu-
CONGLLOTGL GISITIOU-

tions of mullivariate normal distributions are normal,

Exercise 6.2. Let X € N(0, A), where

1 2 -1
A= 2 6 0
-1 0 4

Set Y1 = X, + X3, ¥z = 2X; — X, and ¥3 = 2X3 — X3. Find the conditional
distribution of Yz given that ¥; = 0 and Y2 = 1.

Exe
nori
the

hawi

whe
two
Y|

A
foll

are
the

for




V.7. Independence

Exercise 6.3. We have just seen that conditional distributions of multivariate
pormal distributions are normal. The purpose of this exercise is to show that
the converse does not necessarily hold. To this end, suppose that X and Y
have a joint density given by

fry(z,y) =c-exp{—(1 +2*)(1+ ")}, —oco<z,y< 00,

where ¢ is chosen such that [[ f(z,y)dzdy = 1. This is (obviously?) not a
two-dimensional normal distribution. Show that the conditional distributions
Y | X =z and X |Y =y are normal (all the same). a

7. Independence

A very special property of the multivariate normal distribution is the
following:

Theorem 7.1. Let X be a normal random vector. The components of
X are independent iff they are uncorrelated.

ProOOF: We need to show only that uncorrelated components are inde-
pendent, the converse always being true.

Thus, by assumption, Cov(X;, X;) =0, i # j. This implies that the
_covariance matrix is diagonal, the diagonal elements being o, 0%, ...,
o2. If some o} = 0, then that component is degenerate and hence in-
dependent of the others. We therefore may assume that all variances
are positive in the following. It then follows that the inverse A1 of
the covariance matrix exists; it is a diagonal matrix with diagonal ele-
ments 1/02, 1/0%, ..., 1/o2. The corresponding density function there-
fore equals

0= () e (3 5 )

! (2 — pe)’?
_g\/gakexp{— 20’;2C }’

which proves the desired independence. 0

Example 7.1. Let X; and X, be independent, N (0;1)-distributed ran-
dom variables. Show that X7 + X3 and X; — X are independent.

SoLuTION: It is easily checked that Cov(X; + X2, X1 — X3) = 0, which
implies that X; + X2 and Xy — X, are uncorrelated. By Theorem 7.1
they are also independent. O
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Remark 7.1. We have already encountered Example 7.1 in Chapter
[; see Example 1.2.4. There independence was proved with the aid of
transformation (Theorem 1.2.1) and factorization. The solution here il-
lustrates the power of Theorem 7.1. O

Exercise 7.1. Let X and Y be Jointly normal with correlation coefficient p
and suppose that Var X = Var Y. Show that X and Y — pX are independent.

Exercise 7.2, Let X and Y be jointly normal with EX = EY = 0, Var X =

VarY =1, and correlation coefficient p. Find 8 such that X cosf+Y'sin# and
X cosé - Y'sin@ are independent.

Exercise 7.3. Generalize the results of Example 7.1 and Exercise 7.1 to the
case of nonequal variances. O

Remark 7.2. In Example 3.1 we stressed the importance of the assump-
tion that the distribution was Jointly normal. The example is also sujted
to illustrate the importance of that assumption with respect to Theorem
7.1. Namely, since EX = EY = 0and EXY = EX’Z = EX?-EZ —
0, it follows that X and Y are uncorrelated. However, since |X| = |Y],
it is clear that X and Y are not independent,. 0

We conclude by stating the following generalization of Theorem 7.1,
the proof of which we leave as an exercise:

Theorem 7.2. Suppose that X ¢ N (2, A), where A can be partitioned
as follows:

Ay 0 0 o0
¢ Ay 0 o

0 o . 0

0 0 0 A,
(possibly after reordering the components), where Ay, Ag, ..., Ay are
matrices along the diagonal of A. Then X can be portitioned into vectors
XM x@ X i Cov(XD) = Ay, i = 1,2, ..., &, in such a
way that these random vectors are independent. ' O

Example 7.2. Suppose that X ¢ ¥ (8,A), where

1 0 0
A=]0 2 4
0 4 9

Then X; and (X5, X3)' are independent.
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V.8. Linear Transformations
Linear Transformations

" *A major consequence of Theorem 7.1 is that it is possible to make linear
transformations of normal vectors in such a way that the new vector has
independent components. In particular, any orthogonal transformation

.of a normal vector whose components are independent and have common
variance produces a new normal random vector with independent com-
ponents. As a major application, we outline in Exercise 8.2 how these
relatively simple facts can be used to prove the rather delicate result that
states that the sample mean and the sample variance in a normal sample
are independent. For further details concerning applications in statistics
we refer to Appendix 1, where some references are given.

We first recall from Section 3 that a linear transformation of a normal
random vector is normal. Now suppose that X € N(p,A). Since A is
nonnegative-definite, there exists (formula (1.3)) an orthogonal matrix
C, such that C'AC = D, and a diagonal matrix whose diagonal elements
are the eigenvalues Ay, Az, ..., Ap of A,

Set Y = C'X. It follows from Theorem 3.1 that Y € N(C'p,D).
The components of Y are thus uncorrelated and, in view of Theorem
7.1, independent, which establishes the following result:

Theorem 8.1. Let X € N(u,A), and set Y = C'X, where the or-
thogonal matriz C is such that C'AC =D. Then Y € N(C'u,D); the
components of Y are independent; and Var¥y = A, k= 1,2,..., 1,
where Ay, A2, ..., Ap are the eigenvalues of A. O

Remark 8.1. In particular, it may occur that some eigenvalues equal
zero, in which case the corresponding component is degenerate.

Remark 8.2. As a special corollary it follows that the statement “X €
N(0,I)" is equivalent to the statement “X;, X, ..., X, are indepen-
dent, standard normal random variables.”

Remark 8.3. The primary use of Theorem 8.1 is in proofs and for
theoretical arguments. In practice it may be cumbersome to apply the
theorem when n is large, since the computation of the eigenvalues of A
amounts to solving an algebraic equation of degree n. a

Another situation of considerable importance in statistics is orthog-
onal transformations of independent, normal random variables with the
same variance, the point being that the transformed random variables
also are independent. That this is indeed the case may easily be proved
with the aid of Theorem 8.1. Namely, let X € N(u,0%I), where o2 > 0,
and set Y = CX, where C is an orthogonal matrix. Then CovY¥ =
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Co?IC' = o021, which, in view of Theorem 7.1, yields the following re-
sult:

Theorem 8.2, Let X ¢ N{p, o), where g > 0, let C be an arbitrary
orthogonal mairiz, and set Y = CX. Then Y € N{Cp, o?1); in partic-

ular, Y1, Y,, ..., Y, are independent normal random variables with the
same variance, o2, a

As a first application we reexamine Example 7.1.

Example 8.1. Thus, X and Y are independent, N (0, 1)-distributed
random variables, and we wish to show that X +Y and X — Y are
independent.

It is clearly equivalent to prove that U = (X + Y)/v/2 and V =
(X = Y)/v/2 are independent. Now, (X,Y) € N(0,Y) and

1 1
(g):B(l‘}f), where B:(-“iZT _f),
V2 V2

that is, B is orthogonal. The conclusion follows immediately from The-
orem 8.2,

Example 8.2. Let X3, X,, ..., X, be independent, N (0, 1)-distributed
random variables, and let a1, @3, ..., @y, be arbitrary constants, such
that 37 ;a2 # 0. Find the conditional distribution of 3¢, X? given
that 370 ap X, = 0.

SOLUTION: We first observe that Dok=1 X € X*(n) (recall Exercise
I1.3.6 for the case n = 2). In order to determine the desired condi-
tional distribution, we define an orthogonal matrix C, whose first row
consists of the elements a/a, ay/a, . . ., an/a, where ¢ = V¥ b1 @3
note that > . {ax/a)? = 1. From linear algebra we know that the ma-
trix C can be completed in such a way that it becomes an orthogonal
matrix. Next we set Y = CX, note that Y ¢ N(0,1) by Theorem 8.2,
and observe that, in particular, a¥; = Z:zl ayXg. Moreover, since C
is orthogonal, we have T V=X i (formula (1.2)). It follows
that the desired conditional distribution is the same as the conditional
distribution of 77, Y2 given that ¥; = 0, that is, as the distribution of
D k=2 Y, which is x2(n — 1). O

Exercise 8.1, Stud)lr the case n = 2 and ¢; = @z = 1 in detail. Try also to
reach the conclusion via the random variables I/ and V in Example 8.1. al

The aim of the following exercise is to outline a proof of the fact

that the arithmetic mean and the sample variance of a normal sample

are independent. This independence Is, for example, exploited in order
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‘to verify that the ¢-statistic, which is used for testing the mean in a
ormal population when the variance is unknown, actually follows a i-
- distribution. Note that Theorem 7.2 wilt be useful in part (b).

" Exercise 8.2. Let X1, X2, ..., Xn be independent, N(0, 1)-distributed ran-
dom variables. Set Xn = > 31, Xrand s7 = 255 > 1, (X — X )%

(a) Determine the distribution of (Xn,X1 — Xn, X2 — Xn,. ., Xn — Xn)
(b) Show that X, and (X1 — X., X2 —Xn,...,Xn — Xn) are independent.

(¢) Show that X, and s2 are independent.

Exercise 8.3. Suppose that X € N{u,o?I), where o > 0. Show that if B
is any matrix such that BB’ = 1), a diagonal matrix, then the components of
Y = BX are independent, normal random variables; this generalizes Theorem
8.2. As an application, reconsider Example 8.1. 0

Theorem 8.3. (Daly’s theorem) Let X € N(u,0%l) and set X, =
Ly %=1 X&. Suppose that g(x) is translation invariant, that is, for all
x € R", we have g(x + a - 1) = g(x) for all a. Then X, and g(X) are
independent.

Proor: Throughout the proof we assume, without restriction, that g =
0 and o2 = 1. The translation invariance of g implies that g is, in fact,
living in the (n—1)-dimensional hyperplane z; + 23 +...+ 2, = constant,
on which X, is constant. We therefore make a change of variable similar
to that of Example 8.2. Namely, define an orthogonal matrix C, such
that the first row has all elements equal to 1/4/na, and set Y = CX.
Then, by construction, we have ¥; = /n- X, and, by Theorem 8.2, that
Y € N(0,1). The translation invariance implies, in view of the above,
that g depends only on Y3, Y3, ..., Y, and hence, by Theorem 7.2, is
independent of ¥7. |

Example 8.3. Since the sample variance s2 as defined in Exercise 8.2 is
translation invariant, the conclusion of that exercise follows from Daly’s
theorem. (Note, however, that Daly’s theorem can be viewed as an
extension of Exercise 8.2.)

Example 8.4. The range R, = X(n) — X(l) (which was defined in
Section IV.2) is obviously translation invariant. It follows that X, and
R, are independent (in normal samples). a

There also exist useful linear transformations that are not orthogo-
nal. One important example, in the two-dimensional case, is the follow-
ing, a special case of which was considered in Exercise 7.1.
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Suppose that X € N(u,A), where

n= ('ul) and A= ( of ‘06102)
J15) po102 o2
with |p| < 1. Define Y through the relations

Xy =+ oYy,

X = pa + poeYh + o2y/1 ~ p*Y.
This means that X and Y are connected via X = u + BY, where

B (0'1 0 )
poy o3y/1-p*/)"

Inversion of B yields

= 0
B— = _ I 1 ) (8.2)
a13/1=p%  o24/1—p2

which is not orthogonal. However, a simple computation shows that Y €

N(0,I), that is, Y7 and Y are independent, standard normal random
variables.

Example 8.5. If X; and X, are independent and N (0, 1)-distributed,
then X7 and X? are independent, x2(1)-distributed random variables,
from which it follows that XZ + X2 € x2(2) (Exercise I11.3.6(b)). Now,
assume that X is normal with EX; = F X, =0, Var X; = Var X, = 1,
and px, x, = p with |p| < 1. Find the distribution of X} —2p X7 X3 + X2.

To solve this problem, we first observe that for p = 0 it reduces to
Exercise I11.3.6(b) (why?). In the general case,

X2 —20X:1Xo + X3 = (X1 - pXKo)? 4 (1~ )X, (8.3)

From above (or Exercise 7.1) we know that X; — pX; and X, are inde-
pendent, in fact,

Xi=pXa) _ (1 —p\ (Xa 1—p% 0
(*x%)=6 1)) eve (57 D)
It follows that
X1 - pXa\?
X2 - 20X Xy + X2 =(1— pz){ (w-lm_-’fn—;?-) + Xg}
. V1—p

€ (1—p?)-x*(2), and since x2(2) = Exp(2) we conclude, from the scaling
property of the exponential distribution, that X? — 2pX, X» + X2 €
Exp(2(1 - p?).

(8.1)

We shall return to this example in a more general setting in Section -
9; see also Problem 10.24. G
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V.9. Quadratic Forms and Cochran’s Theorem

9. Quadratic Forms and Cochran’s Theorem

Quadratic forms of normal random vectors are of great importance in
many branches of statistics, such as least-square methods, the analysis
of variance, regression analysis, and experimental design. The general
idea is to split the sum of the squares of the observations into a number
of quadratic forms, where each corresponds to some cause of variation.
In an agricultural experiment, for example, the yield of crop varies. The
reason for this may be differences in fertilization, watering, climate, and
other factors in the various areas where the experiment is performed.
For future purposes one would like to investigate, if possible, how much
(or if at all) the various treatments influence the variability of the re-
sult. The splitting of the sum of squares mentioned above separates the
causes of variability in such a way that each quadratic form corresponds
to one cause, with a final form—the residual form—that measures the
random errors involved in the experiment. The conclusion of Cochran’s
theorem (Theorem 9.2) is that, under the assumption of normality, the
various quadratic forms are independent and x?-distributed (except for
a constant factor). This can then be used for testing hypotheses con-
cerning the influence of the different treatments. Once again, we remind
the reader that some books on statistics for further study are mentioned
in Appendix 1. '

We begin by investigating a particular quadratic form, after which
we prove the important Cochran’s theorem.

Let X € N(u,A), where A is nonsingular, and consider the quadratic
form (X — )’ A~}(X — p), which appears in the exponent of the normal
density. In the special case g = 0 and A = I it reduces to XX, which is
x%(n)-distributed (n is the dimension of X). The following result shows
that this is also true in the general case.

Theorem 9.1. Suppose that X € N(pu,A) with det A > 0. Then
(X — p) AT (X - p) € X*(n),

where n 1s the dimension of X.
Proor: Set Y = A~Y2(X — p). Then

EY=0 and Cov¥ =A"'"PAATYE=1,
that is, Y € N(0,I), and it follows that

(X - p)A 7 (X —p)
= (AT (X - )Y (ATVA(X - p)) = Y'Y € x*(n),

as was shown above,
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Remark 9.1. Let » = 2. With the usual notation the theorem amounts

to the fact that

1 {(Xl ~ #1)* _gp(Kr = m)(Xa - #2) (K2 = po)?

2
2). O
1—p? ot 0109 ol }Ex (2)

As an introduction to Cochran’s theorem, we study the following situ-
ation. Suppose that X;, X3, ..., X, is a sample of X ¢ N(0,0%). Set
Xn = %>y Xk, and consider the following identity:

DXE=Y (X -X) +n-X2 (9.1)
k=1 k=1

The first term in the right-hand side equals (7 — 1)s2, where s is the
sample variance. It is a ¢ - x*(n — 1)-distributed quadratic form. The
second term is o? - x%(1)-distributed. The terms are independent. The
left-hand side is o2 - x®(n)-distributed. We thus have split the latter
into a sum of two independent quadratic forms that both follow some
x®-distribution (except for the factor o?). '

sSimilar representations of 37_; X7 as a sum of nonnegative-definite
quadratic forms play a fundamental role in statistics, as pointed out
before. The problem is to assert that the various terms in the right-hand
side of (9.1) are independent and x2-distributed. Cochran’s theorem
provides a solution to this problem. :

As a preliminary we need the following lemma;

Lemma 9.1. Let z1, 3, ..., %, be real numbers. Suppose that Szl
can be splil into a sumn of nonnegative-definite quadratic forms, that is,

Yol =i +Qet.. +Q,
i=1

where Q; = x'A;x and (RankQ; =) Rank A; = r, i = 1,2, ...,k If
Ele T; = n, then there exists an orthogonal matriz C such that, with
X = Cy, we have

=y +9 +..+92,
2
Qz = y!"1+1 + y12”1+2 + b + ygl-'-rgﬂ

.2 2 2
Q3 = Yr frgp1 + Yryprgps T oo+ Yratratry

Qk = yi—rk-i-]_ + yi_,«k_[_z + ... + yi,

re
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~Remark 9.2. Note that different quadratic forms contain different -
- variables and that the number of terms in each Q; equals the rank, r;,
of Q;. a

We confine ourselves to proving the lemma for the case n = 2. The
general case is obtained by induction.

PROOF FOR 7 == 2: We thus have

n

Q e Z m? = X’A}X + XIAZX (:' Ql + Q2) ) (92)

=1

where A; and A; are nonnegative-definite matrices with ranks 71 and 73,
respectively, and r; + 72 = n. By assumption, there exists an orthogonal
matrix C such that

C,Alc = D,

where D is a diagonal matrix, the diagonal elements of which are the
eigenvalues of Ay; Ay, Ay, ..., A, Since Rank A = 7y, then ry A-values
are positive and n—r; A-values equal zero. Suppose, without restriction,
that A; > 0fori=1,2,..., ry and that Aritl = Apgz =...= A, =0,
and set x = Cy. Then (recall (1.2) for the first equality)

K3

Q=) 4 =§1:Af-y?+y’C'Asz,

i=1 i=1
or, equivalently,
D=2yt Y yP=y'C'AsCy. (9.3)
i=1 i=ry+1

Since the rank of the right-hand side of (9.3) equals 74 (= n — ), it

follows that Ay = As = ... = A, =1, which shows that
™ "
Q1= ny and @, = Z y? . (9.4)
i=1 i=rq+1
This proves the lemma for the case n = 2. O

Theorem 9.2. (Cochran’s theorem) Let Xy, X3, ..., X, be indepen-
dent, N(0,0?)-distributed random variables, and suppose that

DXt Qat ...+ Qy,
=1
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where @1, {2, ..., Qr are nonnegative-definiie quadratic forms in the
random variables X, X3, ..., Xy, that is,

Q: =X'A;X, i=12,...,k.
Set Rank A; =r;,1=1,2, ..., k. If
rmtr+..+re=mn,

then
(a) @1, @2, ..., Qr are independent; and
(b) Qi€ o®x*(ry), i=1,2,..., k.

Proor: It follows from Lemma 9.1 that there exists an orthogonal ma-
trix C such that the transformation X = CY yields

Q=Y +Y +...+Y],
Q=Y +tYont ¥,

Qr = Y’n?——rk-l-l + Yn2—rk+2 +...+ Yﬂ?.

Since, by Theorem 8.2, Y3, Y, ..., Y, are independent, N (0, c%)-distri-
buted random variables, and since every Y? occurs in exactly one §;,
the conclusion follows. O

Remark 9.3. It suffices to assume that Rank A; < r;fori=1,2,..., &,
with 1 + ro + ...+ 71 = n, in order for Theorem 9.2 to hold. This follows
from a result in linear algebra, namely that if A, B, and C are matrices
such that A+ B = C, then Rank C < Rank A +Rank B. An application
of this result yields

k k
nSZRankAigznmn, (9.5)
i=1 i=1 :

which, in view of the assumption, forces Rank A; to be equal to r; for
all <. O

Example 9.1. We have already proved (twice) in Section 8 that the
sample mean and the sample variance are independent in a normal sam-
ple. By using the partition (9.1) and Cochran’s theorem (and Remark
9.2) we may obtain a third proof of that fact. o.
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In applications the quadratic forms can frequently be written as
Q=Li+Li+..+ 1L, (9.6)

where L1, La, ..., L, are linear forms in X3, X, ..., X,. It may there-
fore be useful to know some method for determining the rank of a
quadratic form of this kind.

Theorem 9.3. Suppose that the nonnegative-definite form Q@ = Q(x) is
of the form (9.6), where

Li:aixa i=132?"'5p5

and set L = (L1, Lg,...,L,). If there exist exacily m linear relations
diL=0,7=1,2,..., m, then Rank Q = p— m.

Proor: Put L = Ax, where A is a p X n matrix. Then Rank A = p—m.
However, since
Q=LTL=x'A'"Ax,

it follows (from linear algebra) that Rank A’A = Rank A. ]

Example 9.1. (Continued) Again let X € N(0,0°I), and consider the
partition (9.1). Then Q1 = Y p_,(Xx — X,,)? is of the kind deseribed in
Theorem 9.3, since 3., _ (X — X,) = 0. 0

10. Problems

1. Suppose X and ¥ have a two-dimensional normal distribution with
means 0, variances 1, and correlation coefficient p, |p] < 1. Let
(R, Q) be the polar coordinates. Determine the distribution of ©.

2. The random variables X, and X, are independent and N (0, 1)-distri-
buted. Set

Xi-Xx3 . 2X; - X,

Y —_

Y, =

T VXIvXE

Show that ¥; and Y; are independent, N(0,1)-distributed random
variables.

3. The random vector (X,Y) has a two-dimensional normal distribu-
tion with Var X = VarY. Show that X +Y and X —Y are indepen-
dent random variables,
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4. Suppose X and Y have a joint normal distribution with EX =

EY =0, Var X = ¢}, VarY = 0'32,, and correlation coefficient p.
Compute £ XY and Var XY.

Remark. One may use the fact that X and a suitable linear com-
bination of X and Y are independent.

. The random variables X and Y are independent and N(0, 1)-distri-

buted. Determine
(a) E(X [ X >Y), and-
bEX+Y | X>Y).

. We know from Section 7 that if X and Y are jointly normally dis-

tributed then they are independent iff they are uncorrelated. Now,
let X € N(0,1) and ¢ > 0. Define Y as follows:

Y—{ X, for |X|<e,
=X, for {X|>e

(a) Show that ¥ € N(0,1).

(b) Show that X and ¥ are not jointly normal.

Let g(¢) = Cov(X,Y).

{c) Show that g(0) = —1 and that g(¢) — 1 as ¢ — oo. Show that
there exists cg, such that g(co) = 0 (i.e., such that X and Y are
uncorrelated ).

(d) Show that X and Y are not independent (when ¢ = ¢p).

. Let the random variables X and Y be independent and N(0,0?)-

distributed.
(a) Show that & € C(0,1).
{b) Show that X +Y and X — Y are independent.

¢) Determine the distribution of £=X (see also Problem 1.31(b)).
XFY

. Suppose that the moment generating function of (X,Y) is

¥x v(t,u) = exp{2t + 3u + * + atu + 2u*}.

(a) Determine a so that X + 2Y and 2X — Y become independent.
(b) Compute P(X +2Y < 2X —Y) with a as in (a).

. Let X have a three-dimensional normal distribution. Show that if

X; and X3 4+ X3 are independent, X, and X; + X3 are independent,
and X3 and X + X, are independent, then X, X,, and X3 are
independent.




11.

12.

13.

14.

15.

. Let X; and X, be independent, N(0,1)-distributed random vari-
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ables. Set ¥; = X7 — 3X3 +2 and Y2 = 2X; — X3 — 1. Determine
the distribution of

(a) Y, and

b)Y |Ys =y

Let X have a three-dimensional normal distribution with mean vec-
tor and covariance matrix

3 2 | 3
un= 4 and A=1[1 4 -21,
-3 3 -2 8

respectively. Set Y7 = Xi + X3 and Y2 = 2X;. Determine the
distribution of

(a) Y, and

(b) Y1 | ¥z = 10.

Let X;' X, and X3 be independent, N(1,1)-distributed random
variables, Set U = 2X; — Xs + Xz and V = X + 2X5 + 3Xs.
Determine the conditional distribution of V' given that U/ = 3.

Let Y4, Yz, and Y3 be independent, N (0, 1)-distributed random vari-
ables, and set

X1=% -Y;,
X, = 2Y) + Y, — 215,
X3 = —2Y1 -[‘ 3Y3

Determine the conditional distribution of X; given that X3+ X3 = .

The random variables X7, X3, and X3 are independent and N (0, 1)-
distributed. Consider the random variables

Y; = X2 + X5,
=X +X3a
Y3:X1+X2.

Determine the conditional density of ¥; given that Yz = ¥3 = 0.

The random vector X has a three-dimensional normal distribution
with mean vector g = 0 and covariance matrix

3 -2 1
A=1-2 2 0
1 0 1

Find the distribution of X; + X3 given that X, = 0.
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16. Let X have a three-dimensional normal distribution with mean vec-
tor and covariance matrix

1 2 1 1
p=11 and A=1]1 3 -114,
1 1 -1 2

respectively. Set Y] = X; + X, + X3 and Y3 = X; 4+ X3. Determine
(a) the conditional distribution of Y1 given that ¥, = 0,
(b) E(Y2 | ¥1 = 0).

17. Let Xi, X5, and X3 have a joint moment generating function as
follows:

!
]
!

Yt b2, %) = exp{2t; — f3 + 12 + 2t3 + 313 + 2111y — 2115},

Determine the conditional distribution of X 1 + Xa given that X; + :
Xy =1. “

18. Let X € N(0, A), where

—

A= -

s Wl

1
2
b -
|
Determine the conditional distribution of (X1, X1+ X3) given that
X1+ X+ X3 =0.
19. Suppose (X,Y, Z) is normal with density

C. exp{—%(4a:2 +3y® +52% + 2zy + 6zz + 4zy)},

where C' is some constant (what is the value of the constant?). De-
termine the conditional distribution of X given that X + Z = 1-and
Y+Z=0.

20. The moment generating function of (X,Y,Z) is

¢(s,t,u):exp{i;l+t2+2u2 — 343t

Determine the conditional distribution of X given that X + Z = 0
andY + Z=1.
21. Let X and Y be jointly normal with means 0, variances 1, and cor-

relation coefficient p. Compute the moment generating function of
X-Y for




24,

25.

26,

27,

28.

22.

23.
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(a) p=0, and

(b) general p.

Suppose Xy, X,, and Xj are independent and N (0, 1)-distributed.
Compute the moment generating function of ¥ = X, X, + X1 X3 +
X2 X,

If X and Y are independent, N (0,1)-distributed random variables,
then X? +Y? € x%(2) (recall Exercise IIL.3.6). Now, let X and ¥
be jointly normal with means 0, variances 1, and correlation coeff-
cient p. In this case X2 + Y2 has a noncentral x*(2)-distribution.
Determine the moment generating function of that distribution.
Let (X,Y)’ have a two-dimensional normal distribution with means
0, variances 1, and correlation coefficient 2, |pl < 1. Determine the
distribution of (X?—2pXY +¥2)/ (1-p?) by computing its moment
generating function.

Remark. Recall Example 8.5 and Remark 9.1.

Let Xy, X3, ..., X, be independent, N(0, 1)-distributed random va-
riables, and set X = s Ef;ll X, 2 < k < n. Show that

" k-1 = .2
= —_—
Q 3:2 p (Xe — X&)

is x*-distributed. What is the number of degrees of freedom?

Let Xy, X5, and X; be independent and N (0,1)-distributed. Set
Y = 8X? +5X7 + 5X2 + 4X, X, — 4X, X3 + 8X, Xa. Show that ¥
is x*-distributed, and determine the number of degrees of freedom.
Let X;, X3, and X3 be independent, N(1,1)-distributed random
variables. Set U/ = X, +X2+Xzand V = X, +2X3+4+3X3. Determine
the constants ¢ and b so that E(U - a - bV)? is minimized.

Let X and Y be independent, N (0, 1)-distributed random variables.
Then X +Y and X — Y are independent; see Example 7.1. The
purpose of this problem is to point out a (partial) converse. Suppose
that X and Y are independent random variables with common dis-
tribution function F(z). Suppose, further, that F(z) is symmetric
and that 02 = ' X? < c0. Let ¢(t) be the characteristic function of
X (and Y). Show that if X + Y and X - ¥ are independent then

we have .
e(t) = (p(3))".

Use this relation to show that o(t) = e~ /2 Finally, conclude that
F(z) is the distribution function of a normal distribution (N(0,0?)).




CHAPTER V. The Multivariate Normal Distribution

Remark 1. The assumptions that the distribution is symmetric and
the variance is finite are not necessary. However, without them the
problem becomes much more difficult. |
Remark 2. Results of this kind are called characterization theorems.
Another characterization of the normal distribution is provided by
the following famous theorem due to the Swedish probabilist Harald
Cramér (1893-1985): If X and Y are independent random variables
such that X + Y has a normal distribution then X and Y are both
normal.




