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Nonparametric Regression Curves

I So far: parametric regression approaches
I Linear
I Linear with transformed inputs and outputs
I etc.

I Other approaches
I Method of moving averages : interpolate between mean

outputs at adjacent inputs
I Lowess : “locally weighted scatterplot smoothing”



Lowess Method

I Intuition
I Fit low-order polynomial (linear) regression models to points in

a neighborhood
I The neighborhood size is a parameter Determining the

neighborhood is done via a nearest neighbors algorithm

Produce predictions by weighting the regressors by how far the
set of points used to produce the regressor is from the input
point for which a prediction is wanted

I While somewhat ad-hoc, it is a method of producing a
nonlinear regression function for data that might seem
otherwise difficult to regress



Lowess Method Example



Bonferroni Joint Confidence Intervals

I Calculation of Bonferroni joint confidence intervals is a
general technique

I We highlight its application in the regression setting
I Joint confidence intervals for β0 and β1

I Intuition
I Set each statement confidence level to greater than 1− α so

that the family coefficient is at least 1− α



Ordinary Confidence Intervals

I Start with ordinary confidence intervals for β0 and β1

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

I And ask what the probability that one or both of these
intervals is incorrect

Remember

s2{b0} = MSE

[
1

n
+

X̄ 2∑
(Xi − X̄ )2

]
s2{b1} =

MSE∑
(Xi − X̄ )2



General Procedure

I Let A1 denote the event that the first confidence interval does
not cover β0, i.e. P(A1) = α

I Let A2 denote the event that the second confidence interval
does not cover β1, i.e. P(A2) = α

I We want to know the probability that both estimates fall in
their respective confidence intervals, i.e. P(Ā1 ∩ Ā2)

I How do we get there from what we know?



Venn Diagram



Bonferroni inequality

I We can see that
P(Ā1 ∩ Ā2) = 1− P(A2)− P(A1) + P(A1 ∩ A2)

I Size of set is equal to area is equal to probability in a Venn
diagram.

I It also is clear that P(A1 ∩ A2) ≥ 0

I So, P(Ā1 ∩ Ā2) ≥ 1− P(A2)− P(A1) which is the Bonferroni
inequality.

I In words, in our example
I P(A1) = α is the probability that β0 is not in A1

I P(A2) = α is the probability that β1 is not in A2

I P(Ā1 ∩ Ā2) is the probability that β0 is in A1 and β1 is in A2

I So P(Ā1 ∩ Ā2) ≥ 1− 2α



Using the Bonferroni inequality

I Forward (less interesting) :
I If we know that β0 and β1 are lie within intervals with 95%

confidence, the Bonferroni inequality guarantees us a family
confidence coefficient (i.e. the probability that both random
variables lie within their intervals simultaneously) of at least
90% (if both intervals are correct). This is

P(Ā1 ∩ Ā2) ≥ 1− 2α

I Backward (more useful):
I If we know what to specify a family confidence interval of

90%, the Bonferroni procedure instructs us how to adjust the
value of α for each interval to achieve the overall family
confidence desired



Using the Bonferroni inequality cont.

I To achieve a 1− α family confidence interval for β0 and β1

(for example) using the Bonferroni procedure we know that
both individual intervals most shrink.

I Returning to our confidence intervals for β0 and β1 from
before

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

I To achieve a 1− α family confidence interval these intervals
must widen to

b0 ± t(1− α/4; n − 2)s{b0}
b1 ± t(1− α/4; n − 2)s{b1}

I Then
P(Ā1 ∩ Ā2) ≥ 1−P(A2)−P(A1) = 1−α/4−α/4 = 1−α/2



Using the Bonferroni inequality cont.

I The Bonferroni procedure is very general. To make joint
confidence statements about multiple simultaneous
predictions remember that

Ŷh ± t(1− α/2; n − 2)s{pred}

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄ )2∑
i (Xi − X̄ )2

]
I If one is interested in a 1− α confidence statement about g

predictions then Bonferroni says that the confidence interval
for each individual prediction must get wider (for each h in
the g predictions)

Ŷh ± t(1− α/2g ; n − 2)s{pred}

Note: if a sufficiently large number of simultaneous predictions are
made, the width of the individual confidence intervals may become
so wide that they are no longer useful.



A few notes on regression through the origin

I Sometimes it is known that the regression function is linear
and that it must go through the origin.

I The normal error model for this case is Yi = β1Xi + εi
I The least squares and maximum likelihood estimators for β1

coincide as before, the estimator is b1 =
P

XiYiP
X 2

i

I In regression through the origin there is only one free
parameter (β1) so the number of degrees of freedom of the
MSE

s2 = MSE =

∑
e2
i

n − 1
=

∑
(Yi − Ŷi )

2

n − 1

is increased by one.

I This is because this is a “reduced” model in the general linear
test sense and because the number of parameters estimated
from the data is less by one.

I Care must be taken in interval estimation for parameters in
this model to account for this difference.


