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Remedial Measures

I How do we know that the regression function is a good
explainer of the observed data?
- Plotting
- Tests

I What if it is not? What can we do about it?
- Transformation of variables(next lecture)



Graphical Diagnostics for the Predictor Variable

I Dot Plot
- Useful for visualizing distribution of inputs

I Sequence Plot
- Useful for visualizing dependencies between error terms

I Box Plot - Useful for visualizing distribution of inputs

Toluca manufacturing example again: production time vs. lot size



Dot Plot

Figure:

I How many observations per input value?

I Range of inputs?



Sequence Plot

Figure:

I If observations are made over time, is there a correlation
between input and position in observation sequence?



Box Plot

Figure:

I Shows
- Median
- 1st and 3rd quartiles
- Maximum and minimum



Residuals

I Remember, the definition of residuals:

ei = Yi − Ŷi

I And the difference between that and the unknown true error

ε = Yi − E (Yi )

I In a normal regression model the εi ’s are assumed to be iid
N(0, σ2) random variables. The observed residuals ei should
reflect these properties.



Remember: residual properties

I Mean

ēi =
P

ei

n = 0

I Variance

s2 = (ei−ē)2

n−2 = SSE
n−2 = MSE



Nonindependence of Residuals

I The residuals ei are not independent random variables - The
fitted values Ŷi are based on the same fitted regression line.
- The residuals are subject to two constraints

1. - Sum of the ei ’s equals 0
2. - Sum of the products Xiei ’s equals 0

I When the sample size is large in comparison to the number of
parameters in the regression model, the dependency effect
among the residuals ei can reasonably safely be ignored.



Definition: semistudentized residuals

I It may be useful sometimes to look at a standardized set of
residuals, for instance in outlier detection.

I Like usual, since the standard deviation of εi is σ(itself
estimated by square root of MSE) a natural form of
standardization to consider is

e∗i = ei√
MSE

I This is called a semistudentized residual.



Departures from Model...

To be studied by residuals

I Regression function not linear

I Error terms do not have constant variance

I Error terms are not independent

I Model fits all but one or a few outlier observations

I Error terms are not normally distributed

I One or more predictor variables have been omitted from the
model



Diagnostics for Residuals

I Plot of residuals against predictor variable

I Plot of absolute or squared residuals against predictor variable

I Plot of residuals against fitted values

I Plot of residuals against time or other sequence

I Plot of residuals against omitted predictor variables

I Box plot of residuals

I Normal probability plot of residuals



Diagnostic Residual Plots

Figure: Toluca example: labor time vs. lot size



Scatter and Residual Plot

Figure: Transit example : ridership increase vs. num. maps distributed



Prototype Residual Plots

Figure: Indicate residual plots



Nonconstancy of Error Variance



Presence of Outliers

Outliers can strongly effect the fitted values of the regression line.



Outlier effect on residuals



Nonindependence of Error Terms

Sequential observations can exhibit observable trends in error
distribution.



Non-normality of Error Terms

I Distribution plots

I Comparison of Frequencies

I Normal probability plot
-Q-Q plot with numerical quantiles on the horizontal axis

Figure: Examples of non-normality in distribution of error terms



Normal probability plot

I For a N(0,MSE 1/2) random variable, a good approximation
of the expected value of the k-th smallest observation in a
random sample of size n is√

MSE [z(k−.375
n+.25 )]

I A normal probability plot consists of plotting the expected
value of the k-th smallest observation against the observed
k-th smallest observation



Omission of Important Predictor Variables

I Example
- Qualitative variable
- Type of machine

I Partitioning data can reveal
dependence on omitted
variable(s)

I Works for quantitative
variables as well

I Can suggest that inclusion
of other inputs is important

Figure:



Tests Involving Residuals

I Tests for randomness

I Tests for constancy of variance

I Tests for outliers

I Tests for normality of error distribution



Correlation Test for Normality of Error Distribution

I A formal test for the
normality of the error terms
can be developed in terms of
the correlation between the
ordered observed errors

I Tables(B.6 in the book)
given critical values for the
null hypothesis (normally
distributed errors) holding.

Figure:



Correlation Test for Normality of Error Distribution

For one way to run this correlation test let

{eσ(1), . . . , eσ(n)}
be the permutation of the observed errors such that eσ(j) ≤ eσ(j)∀j
and σ : Z→ Z is a permutation. Let

{r1, . . . , rk , . . . , rn}

be the expected value of the kth residual under the normality
assumption, i.e.

rk ≈
√

MSE [z(
k − .375

n + .25
)]

Then compute the (sample) correlation between these sets of
random variables. The sample correlation can be found by
replacing the covariance and variance functions with their sample
estimates in

ρ(Y ,Z ) =
σ{Y ,Z}
σ{Y }σ{Z}



Tests for Constancy of Error Variance

I Brown-Forsythe test does not depend normality of error terms.
The Brown-Forsythe test is applicable to simple linear
regression when

I The variance of the error terms either increases or decreases
with X (“megaphone” residual plot)

I Sample size is large enough to ignore dependencies between
the residuals

I The Brown-Forsythe test is essentially a t-test for testing
whether the means of two normally distributed populations
are the same where the populations are the absolute
deviations between the prediction and the observed output
space in two non-overlapping partitions of the input space.



Brown-Forsythe Test

I Divide X into X1 (the low values of X) and X2 (the high
values of X)

I Let ei1 be the error terms for X1 and vice versa

I let n = n1 + n2

I The Brown-Forsythe test uses the absolute deviations of the
residuals around their group median

d1i = |e1i − ẽ1|



Brown-Forsythe Test

I The test statistic for comparing the means of the absolute
deviations of the residuals around the group medians is

t∗BF = d̄1−d̄2

s
q

1
n1

+ 1
n2

where

s2 =
P

(di1−d̄1)2+
P

(di1−d̄1)2

n−2



Brown-Forsythe Test

I If n1 and n2 are not extremely small

t∗BF ∼ t(n − 2)

approximately

I From this confidence intervals and tests can be constructed.



F test for lack of fit

I Formal test for determining whether a specific type of
regression function adequately fits the data.

I Assumptions (usual):
- observations Y |X are

1. i.i.d.
2. normally distributed
3. same variance σ2

I Requires: repeat observations at one or more X levels (called
replicates)



Example

I 12 similar branches of a bank offered gifts for setting up
money market accounts

I Minimum initial deposits were specific to qualify for the gift

I Value of gift was proportional to the specified minimum
deposit

I Interested in: relationship between specified minimum deposit
and number of new accounts opened



F Test Example Data and ANOVA Table

Figure:



Fit

Figure:



Data Arranged To Highlight Replicates

Figure:

I The observed value of the response variable for the i-th
replicate for the j-th level of X is Yij

I The mean of the Y observations at the level X = Xj is Ȳj



Full Model vs. Regression Model

I The full model is

Yij = µj + εij Full model

where
- µj are parameters j = 1, ..., c
- εij are iid N(0, σ2)

I Since the error terms have expectation zero

E (Yij) = µj



Full Model

I In the full model there is a different mean (a free parameter)
for each Xi

I In the regression model the mean responses are constrained to
lie on a line

E (Y ) = β0 + β1X



Fitting the Full Model

I The estimators of µj are simply

µ̂j = Ȳj

I The error sum of squares of the full model therefore is

SSE (F ) =
∑ ∑

(Yij − Ȳj)
2 == SSPE



Degrees of Freedom

I Ordinary total sum of squares had n-1 degrees of freedom.

I Each of the j terms is a ordinary total sum of squares
- Each then has nj − 1 degrees of freedom

I The number of degrees of freedom of SSPE is the sum of the
component degrees of freedom

dfF =
∑

j

(nj − 1) =
∑

j

nj − c = n − c



General Linear Test

I Remember: the general linear test proposes a reduced model
null hypotheses
- this will be our normal regression model

I The full model will be as described (one independent mean for
each level of X)

H0 : E (Y ) = β0 + β1X
Ha : E (Y ) 6= β0 + β1X



SSE For Reduced Model

The SSE for the reduced model is as before
- remember

SSE (R) =
∑

i

∑
j

[Yij − (b0 + b1Xj)]2

=
∑

i

∑
j

(Yij − Ŷij)
2

- and has n-2 degrees of freedom dfR = n − 2



SSE(R)

Figure:



F Test Statistic

From the general linear test approach

F ∗ = SSE(R)−SSE(F )
dfR−dfF

÷ SSE(F )
dfF

F ∗ = SSE−SSPE
(n−2)−(n−c) ÷

SSPE
n−c

where a little algebra takes us to the next slide



F Test Rule

I From the F test we know that large values of F ∗ lead us to
reject the null hypothesis:
If F ∗ ≤ F (1− α; c − 2, n − c), conclude H0

If F ∗ > F (1− α; c − 2, n − c), conclude Ha

I For this example we have



Example Conclusion

I If we set the significance level to α = .01

I And look up the value of the F inv-cdf F (.99, 4, 5) = 11.4

I We can conclude that the null hypothesis should be rejected.


