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Remember

I We know that the point estimator of b1 is

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

I Last class we derived the sampling distribution of b1, it being
N(β1, σ

2{b1})(when σ2 known) with

σ2{b1} =
σ2∑

(Xi − X̄ )2

I And we suggested that an estimate of σ2{b1} could be arrived
at by substituting the MSE for σ2 when σ2 is unknown.

s2{b1} =
MSE∑

(Xi − X̄ )2
=

SSE
n−2∑

(Xi − X̄ )2



Sampling Distribution of (b1 − β1)/s{b1}
I Since b1 is normally distribute, (b1 − β1)/σ{b1} is a standard

normal variable N(0, 1)

I We don’t know σ2{b1} so it must be estimated from data.
We have already denoted it’s estimate s2{b1}

I Using this estimate we showed that

b1 − β1

s{b1}
∼ t(n − 2)

where

s{b1} =
√

s2{b1}

It is from this fact that our confidence intervals and tests will
derive.



Confidence Intervals and Hypothesis Tests

Now that we know the sampling distribution of b1 (t with n-2
degrees of freedom) we can construct confidence intervals and
hypothesis tests easily



Confidence Interval for β1

Since the “studentized” statistic follows a t distribution we can
make the following probability statement

P(t(α/2; n − 2) ≤ b1 − β1

s{b1}
≤ t(1− α/2; n − 2)) = 1− α

matlab: tpdf, tcdf, tinv



Remember

I Density: f (y) = dF (y)
dy

I Distribution (CDF): F (y) = P(Y ≤ y) =
∫ y
−∞ f (t)dt

I Inverse CDF: F−1(p) = y s.t.
∫ y
−∞ f (t)dt = p



Book tables and Matlab commands

Appendix B (or elsewhere in other books), a table of percentiles of
the t distribution is given. In this table one number appears for
each of a number of degrees of freedom ν and a parameter, call it
A.

Each entry is some value of t(A; ν) where P{t(ν) ≤ t(A; ν)} = A

In words t(A; ν) is the point on the horizontal axis of the
Student-t distribution where A percent of the mass under the
curve is located to the left. This is precisely the quantity returned
by tinv(A, ν) in Matlab.

How can this be used to produce a confidence interval?



Interval arriving from picking α

I Note that by symmetry

t(α/2; n − 2) = −t(1− α/2; n − 2)

I Remember

P(t(α/2; n − 2) ≤ b1 − β1

s{b1}
≤ t(1− α/2; n − 2)) = 1− α

I Rearranging terms and using this symmetry we have

P(b1 − t(1− α/2; n − 2)s{b1} ≤ β1 ≤ b1 + t(1− α/2; n − 2)s{b1})
= 1− α

I And now we can use a table to look up and produce
confidence intervals



Using tables for Computing Intervals

I The tables in the book (table B.2 in the appendix) for
t(1− α/2; ν) where P{t(ν) ≤ t(1− α/2; ν)} = A

I Provides the inverse CDF of the t-distribution

I This can be arrived at computationally as well
Matlab: tinv(1− α/2, ν)



1− α confidence limits for β1

I The 1− α confidence limits for β1 are

b1 ± t(1− α/2; n − 2)s{b1}

I Note that this quantity can be used to calculate confidence
intervals given n and α.

I Fixing α can guide the choice of sample size if a particular
confidence interval is desired

I Give a sample size, vice versa.

I Also useful for hypothesis testing



Tests Concerning β1

I Example 1
I Two-sided test

I H0 : β1 = 0
I Ha : β1 6= 0
I Test statistic

t∗ =
b1 − 0

s{b1}



Tests Concerning β1

I We have an estimate of the sampling distribution of b1 from
the data.

I If the null hypothesis holds then the b1 estimate coming from
the data should be within the 95% confidence interval of the
sampling distribution centered at 0 (in this case)

t∗ =
b1 − 0

s{b1}

I Variability in b1 is assumed to arise from sampling noise.



Decision rules

if |t∗| ≤ t(1− α/2; n − 2), conclude H0

if |t∗| > t(1− α/2; n − 2), conclude Hα

Absolute values make the test two-sided



Intuition

p-value is value of α that moves the green line to the blue line



Calculating the p-value

I The p-value, or attained significance level, is the smallest level
of significance α for which the observed data indicate that the
null hypothesis should be rejected.

I This can be looked up using the CDF of the test statistic.

I In Matlab
Two-sided p-value
2 ∗ (1− tcdf (|t∗|, ν))



Inferences Concerning β0

I Largely, inference procedures regarding β0 can be performed
in the same way as those for β1

I Remember the point estimator b0 for β0

b0 = Ȳ − b1X̄



Sampling distribution of b0

I The sampling distribution of b0 refers to the different values
of b0 that would be obtained with repeated sampling when
the levels of the predictor variable X are held constant from
sample to sample.

I For the normal regression model the sampling distribution of
b0 is normal



Sampling distribution of b0

I When error variance is known

E{b0} = β0

σ2{b0} = σ2(
1

n
+

X̄ 2∑
(Xi − X̄ )2

)

I When error variance is unknown

s2{b0} = MSE (
1

n
+

X̄ 2∑
(Xi − X̄ )2

)



Confidence interval for β0

The 1− α confidence limits for β0 are obtained in the same
manner as those for β1

b0 ± t(1− α/2; n − 2)s{b0}



Considerations on Inferences on β0 and β1

I Effects of departures from normality
I The estimators of β0 and β1 have the property of asymptotic

normality - their distributions approach normality as the
sample size increases (under general conditions)

I Spacing of the X levels
I The variances of b0 and b1 (for a given n and σ2) depend

strongly on the spacing of X



Sampling distribution of point estimator of mean response

I Let Xh be the level of X for which we would like an estimate
of the mean response
Needs to be one of the observed X’s

I The mean response when X = Xh is denoted by E{Yh}
I The point estimator of E{Yh} is

Ŷh = b0 + b1Xh

We are interested in the sampling distribution of this quantity



Sampling Distribution of Ŷh

I We have
Ŷh = b0 + b1Xh

I Since this quantity is itself a linear combination of the Y ′i s it’s
sampling distribution is itself normal.

I The mean of the sampling distribution is

E{Ŷh} = E{b0}+ E{b1}Xh = β0 + β1Xh

Biased or unbiased?



Sampling Distribution of Ŷh

I To derive the sampling distribution variance of the mean
response we first show that b1 and (1/n)

∑
Yi are

uncorrelated and, hence, for the normal error regression model
independent

I We start with the definitions

Ȳ =
∑

(
1

n
)Yi

b1 =
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2



Sampling Distribution of Ŷh

I We want to show that mean response and the estimate b1 are
uncorrelated

Cov(Ȳ , b1) = σ2{Ȳ , b1} = 0

I To do this we need the following result (A.32)

σ2{
n∑

i=1

aiYi ,

n∑
i=1

ciYi} =
n∑

i=1

aiciσ
2{Yi}

when the Yi are independent



Sampling Distribution of Ŷh

Using this fact we have

σ2{
n∑

i=1

1

n
Yi ,

n∑
i=1

kiYi} =
n∑

i=1

1

n
kiσ

2{Yi}

=
n∑

i=1

1

n
kiσ

2

=
σ2

n

n∑
i=1

ki

= 0

So the Ȳ and b1 are uncorrelated



Sampling Distribution of Ŷh

I This means that we can write down the variance

σ2{Ŷh} = σ2{Ȳ + b1(Xh − X̄ )}

alternative and equivalent form of regression function

I But we know that the mean of Y and b1 are uncorrelated so

σ2{Ŷh} = σ2{Ȳ }+ σ2{b1}(Xh − X̄ )2



Sampling Distribution of Ŷh

I We know (from last lecture)

σ2{b1} =
σ2∑

(Xi − X̄ )2

s2{b1} =
MSE∑

(Xi − X̄ )2

I And we can find

σ2{Ȳ } =
1

n2

∑
σ2{Yi} =

nσ2

n2
=
σ2

n



Sampling Distribution of Ŷh

I So, plugging in, we get

σ2{Ŷh} =
σ2

n
+

σ2∑
(Xi − X̄ )2

(Xh − X̄ )2

I Or

σ2{Ŷh} = σ2

(
1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

)



Sampling Distribution of Ŷh

Since we often won’t know σ2 we can, as usual, plug in
S2 = SSE/(n − 2), our estimate for it to get our estimate of this
sampling distribution variance

s2{Ŷh} = S2

(
1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

)



No surprise. . .

I The sampling distribution of our point estimator for the
output is distributed as a t-distribution with two degrees of
freedom

Ŷh − E{Yh}
s{Ŷh}

∼ t(n − 2)

I This means that we can construct confidence intervals in the
same manner as before.



Confidence Intervals for E{Yh}
I The 1− α confidence intervals for E{Yh} are

Ŷh ± t(1− α/2; n − 2)s{Ŷh}

I From this hypothesis tests can be constructed as usual.



Comments

I The variance of the estimator Ŷh is smallest near the mean of
X. Designing studies such that the mean of X is near Xh will
improve inference precision

I When Xh is zero the variance of the estimator Ŷh reduces to
the variance of the estimator b0 for β0



Prediction interval for new input Xh

I Roughly the same idea as for E{Yh} where Xh is a known
input point included in the estimation of b1, b0, and s2

I If all regression parameters are known then the 1− α
prediction interval for a new observation Yh is

E{Yh} ± z(1− α/2)σ



Prediction interval for new input Xh

I If the regression parameters are unknown the 1− α prediction
interval for a new observation Yh(new) is given by the following
theorem

Yh(new) − Ŷh

s{pred}
∼ t(n − 2)

for the normal error regression model. s{pred} to be defined
shortly.

It follows directly that the 1− α prediction limits for Yh(new)

are
Ŷh ± t(1− α/2; n − 2)s{pred}

I This is very nearly the same as prediction for a known value of
X but includes a correction for the fact that there is additional
variability arising from the fact that the new input location
was not used in the original estimates of b1, b0, and s2



Prediction interval for new input Xh

Because Yh(new) is independent of Ŷh we can directly write

σ2{pred} = σ2{Yh(new)−Ŷh} = σ2{Yh(new)}+σ2{Ŷh} = σ2+σ2{Ŷh}

where from before we have that

σ2{Ŷh} = σ2

(
1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

)
so

σ2{pred} = σ2

[
1 +

1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

]
but as before we don’t know σ2 so we will replace it...



Prediction interval for new input Xh

The value of s2{pred} is given by

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

]
Note that this quantity is slightly larger than s2{Ŷh}.

It has two components

I The variance of the distribution of y at X = Xh, namely σ2

I The variance of the sampling distribution of Ŷh, namely
s2{Ŷh}.



Summary

After this lecture you should be able to confidently do estimation,
prediction, and hypothesis testing about the slope, intercept, and
predicted values at any input point, old or new in the normal error
linear regression setting.


