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Inference in the Normal Error Regression Model

Yi = β0 + β1Xi + εi

I Yi value of the response variable in the i th trial

I β0 and β1 are parameters

I Xi is a known constant, the value of the predictor variable in
the i th trial

I εi ∼iid N(0, σ2)

I i = 1, . . . , n



Inference concerning β1

Tests concerning β1 (the slope) are often of interest, particularly

H0 : β1 = 0

Ha : β1 6= 0

the null hypothesis model

Yi = β0 + (0)Xi + εi

implies that there is no relationship between Y and X.

Note the means of all the Yi ’s are equal at all levels of Xi .



Quick Review : Hypothesis Testing

I Elements of a statistical test

I Null hypothesis, H0

I Alternative hypothesis, Ha

I Test statistic
I Rejection region



Quick Review : Hypothesis Testing - Errors

I Errors

I A type I error is made if H0 is rejected when H0 is true. The
probability of a type I error is denoted by α. The value of α is
called the level of the test.

I A type II error is made if H0 is accepted when Ha is true. The
probability of a type II error is denoted by β.



P-value

The p-value, or attained significance level, is the smallest level of
significance α for which the observed data indicate that the null
hypothesis should be rejected.



Null Hypothesis

If the null hypothesis is that β1 = 0 then b1 should fall in the
range around zero. The further it is from 0 the less likely the null
hypothesis is to hold.



Alternative Hypothesis : Least Squares Fit

If we find that our estimated value of b1 deviates from 0 then we
have to determine whether or not that deviation would be
surprising given the model and the sampling distribution of the
estimator. If it is sufficiently (where we define what sufficient is by
a confidence level) different then we reject the null hypothesis.



Testing This Hypothesis

I Only have a finite sample

I Different finite set of samples (from the same population /
source) will (almost always) produce different point estimates
of β0 and β1 (b0, b1) given the same estimation procedure

I Key point: b0 and b1 are random variables whose sampling
distributions can be statistically characterized

I Hypothesis tests about β0 and β1 can be constructed using
these distributions.

I The same techniques for deriving the sampling distribution of
b = [b0, b1] are used in multiple regression.



Sampling Dist. Of b1

I The point estimator for b1 is

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

I The sampling distribution for b1 is the distribution of b1 that
arises from the variability of b1 when the predictor variables
Xi are held fixed and the errors are repeatedly sampled

I Note that the sampling distribution we derive for b1 will be
highly dependent on our modeling assumptions.



Sampling Dist. Of b1 In Normal Regr. Model

I For a normal error regression model the sampling distribution
of b1 is normal, with mean and variance given by

E{b1} = β1

σ2{b1} =
σ2∑

(Xi − X̄ )2

I To show this we need to go through a number of algebraic
steps.



First step

To show ∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi

we observe∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi −

∑
(Xi − X̄ )Ȳ

=
∑

(Xi − X̄ )Yi − Ȳ
∑

(Xi − X̄ )

=
∑

(Xi − X̄ )Yi − Ȳ
∑

(Xi ) + Ȳ n

∑
Xi

n

=
∑

(Xi − X̄ )Yi

This will be useful because the sampling distribution of the
estimators will be expressed in terms of the distribution of the Yi ’s
which are assumed to be equal to the regression function plus a
random error term.



b1 as convex combination of Yi ’s

b1 can be expressed as a linear combination of the Y ′i s

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

=

∑
(Xi − X̄ )Yi∑
(Xi − X̄ )2

from previous slide

=
∑

kiYi

where

ki =
(Xi − X̄ )∑
(Xi − X̄ )2

Now the estimator is simply a convex combination of the Yi ’s
which makes computing its analytic sampling distribution simple.



Properties of the k ′i s

It can be shown (using simple algebraic operations) that∑
ki = 0∑

kiXi = 1∑
k2
i =

1∑
(Xi − X̄ )2

(possible homework). We will use these properties to prove various
properties of the sampling distributions of b1 and b0.



Normality of b′1s Sampling Distribution

I Reminder: useful fact:
I A linear combination of independent normal random variables

is normally distributed
I More formally: when Y1, . . . ,Yn are independent normal

random variables, the linear combination
a1Y1 + a2Y2 + . . .+ anYn is normally distributed, with mean∑

aiE{Yi} and variance
∑

a2
i σ

2{Yi}



Normality of b′1s Sampling Distribution

Since b1 is a linear combination of the Y ′i s and each
Yi = β1Xi + β0 + ei is (conditioned on Xi , β1, and β0) an
independent normal random variable, then then distribution of b1

under sampling of the errors is normal as well

b1 =
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2

From previous slide

E{b1} =
∑

kiE{Yi}, σ2{b1} =
∑

k2
i σ

2{Yi}

This means b1 ∼ N(E{b1}, σ2{b1}).

To use this we must know E{b1} and σ2{b1}.



b1 is an unbiased estimator

This can be seen using two of the properties

E{b1} = E{
∑

kiYi}

=
∑

kiE{Yi}

=
∑

ki (β0 + β1Xi )

= β0

∑
ki + β1

∑
kiXi

= β0(0) + β1(1)

= β1

So now we know the mean of the sampling distribution of b1 and
conveniently (importantly) it’s centered on the true value of the
unknown quantity β1 (the slope of the linear relationship).



Variance of b1

Since the Yi are independent random variables with variance σ2

and the k ′i s are constants we get

σ2{b1} = σ2{
∑

kiYi} =
∑

k2
i σ

2{Yi}

=
∑

k2
i σ

2 = σ2
∑

k2
i

= σ2 1∑
(Xi − X̄ )2

and now we know the variance of the sampling distribution of b1.
This means that we can write

b1 ∼ N(β1,
σ2∑

(Xi − X̄ )2
)

How does this behave as a function of σ2 and the spread of the
Xi ’s? Is this intuitive? Note: this assumes that we know σ2. Can
we?



Estimated variance of b1

I When we don’t know σ2 then one thing that we can do is to
replace it with the MSE estimate of the same

I Let

s2 = MSE =
SSE

n − 2

where
SSE =

∑
e2
i

and
ei = Yi − Ŷi

plugging in we get

σ2{b1} =
σ2∑

(Xi − X̄ )2

s2{b1} =
s2∑

(Xi − X̄ )2



Recap

I We now have an expression for the sampling distribution of b1

when σ2 is known

b1 ∼ N (β1,
σ2∑

(Xi − X̄ )2
) (1)

I When σ2 is unknown we have an unbiased point estimator of
σ2

s2{b1} =
s2∑

(Xi − X̄ )2

I As n→∞ (i.e. the number of observations grows large)
s2{b1} → σ2{b1} and we can use Eqn. 1.

I Questions
I When is n big enough?
I What if n isn’t big enough?



Sampling Distribution of (b1 − β1)/s{b1}?
I b1 is normally distributed so (b1 − β1)/(

√
σ2{b1}) is a

standard normal variable. Why?

I We don’t know σ2{b1} because we don’t know σ2 so it must
be estimated from data. We have already denoted it’s
estimate s2{b1}

I If using the estimate s2{b1} we will show that

b1 − β1

s{b1}
∼ t(n − 2)

where

s{b1} =
√

s2{b1}



Where does this come from?

I For now we need to rely upon the following theorem:

Cochran’s Theorem
For the normal error regression model

SSE

σ2
=

∑
(Yi − Ŷi )

2

σ2
∼ χ2(n − 2)

and is independent of b0 and b1

I Intuitively this follows the standard result for the sum of
squared normal random variables

I Here there are two linear constraints imposed by the
regression parameter estimation that each reduce the number
of degrees of freedom by one.

I We will revisit this subject soon.



Another useful fact : Student-t distribution

A definition:

Let z and χ2(ν) be independent random variables (standard
normal and χ2 respectively). The following random variable is
defined to be a t-distributed random variable:

t(ν) =
z√
χ2(ν)

ν

This version of the t distribution has one parameter, the degrees of
freedom ν



Distribution of the studentized statistic

b1 − β1

s{b1}
∼ t(n − 2)

Is a so-called ”studentized” statistic.

To derive the distribution of this statistic, first we do the following
rewrite

b1 − β1

s{b1}
=

b1−β1

σ{b1}
s{b1}
σ{b1}

where

s{b1}
σ{b1}

=

√
s2{b1}
σ2{b1}



Studentized statistic cont.

And note the following

s2{b1}
σ2{b1}

=

MSEP
(Xi−X̄ )2

σ2P
(Xi−X̄ )2

=
MSE

σ2
=

SSE

σ2(n − 2)

where we know (by the given simple version of Cochran’s theorem)
that the distribution of the last term is χ2 and indep. of b1 and b0

SSE

σ2(n − 2)
∼ χ2(n − 2)

n − 2



Studentized statistic final

But by the given definition of the t distribution we have our result

b1 − β1

s{b1}
∼ t(n − 2)

because putting everything together we can see that

b1 − β1

s{b1}
∼ z√

χ2(n−2)
n−2



Confidence Intervals and Hypothesis Tests

Now that we know the sampling distribution of b1 (t with n-2
degrees of freedom) we can construct confidence intervals and
hypothesis tests easily

Things to think about

I What does the t-distribution look like?

I Why is the estimator distributed according to a t-distribution
rather than a normal distribution?

I When performing tests why does this matter?

I When is it safe to cheat and use a normal approximation?


