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Least Squares Max(min)imization

I Function to minimize w.r.t. b0, b1

Q =
n∑

i=1

(Yi − (b0 + b1Xi ))2

I Minimize this by maximizing −Q

I Find partials and set both equal to zero

dQ

db0
= 0

dQ

db1
= 0



Normal Equations

I The result of this maximization step are called the normal
equations. b0 and b1 are called point estimators of β0 and β1

respectively. ∑
Yi = nb0 + b1

∑
Xi∑

XiYi = b0

∑
Xi + b1

∑
X 2

i

I This is a system of two equations and two unknowns. The
solution is given by . . .



Solution to Normal Equations

After a lot of algebra one arrives at

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄

X̄ =

∑
Xi

n

Ȳ =

∑
Yi

n



Least Squares Fit



Guess #1



Guess #2



Looking Ahead: Matrix Least Squares


Y1

Y2
...

Yn

 =


X1 1
X2 1
...

Xn 1


[

b1

b0

]

Solution to this equation is solution to least squares linear
regression (and maximum likelihood under normal error
distribution assumption)



Questions to Ask

I Is the relationship really linear?

I What is the distribution of the of “errors”?

I Is the fit good?

I How much of the variability of the response is accounted for
by including the predictor variable?

I Is the chosen predictor variable the best one?



Is This Better?



Goals for First Half of Course

I How to do linear regression
I Self familiarization with software tools

I How to interpret standard linear regression results

I How to derive tests

I How to assess and address deficiencies in regression models



Estimators for β0, β1, σ
2

I We want to establish properties of estimators for β0, β1, and
σ2 so that we can construct hypothesis tests and so forth

I We will start by establishing some properties of the regression
solution.



Properties of Solution

I The i th residual is defined to be

ei = Yi − Ŷi

I The sum of the residuals is zero:∑
i

ei =
∑

(Yi − b0 − b1Xi )

=
∑

Yi − nb0 − b1

∑
Xi

= 0



Properties of Solution

The sum of the observed values Yi equals the sum of the fitted
values Ŷi ∑

i

Yi =
∑

i

Ŷi

=
∑

i

(b1Xi + b0)

=
∑

i

(b1Xi + Ȳ − b1X̄ )

= b1

∑
i

Xi + nȲ − b1nX̄

= b1nX̄ +
∑

i

Yi − b1nX̄



Properties of Solution

The sum of the weighted residuals is zero when the residual in the
i th trial is weighted by the level of the predictor variable in the i th

trial ∑
i

Xiei =
∑

(Xi (Yi − b0 − b1Xi ))

=
∑

i

XiYi − b0

∑
Xi − b1

∑
(X 2

i )

= 0



Properties of Solution

The regression line always goes through the point

X̄ , Ȳ



Estimating Error Term Variance σ2

I Review estimation in non-regression setting.

I Show estimation results for regression setting.



Estimation Review

I An estimator is a rule that tells how to calculate the value of
an estimate based on the measurements contained in a sample

I i.e. the sample mean

Ȳ =
1

n

n∑
i=1

Yi



Point Estimators and Bias

I Point estimator
θ̂ = f ({Y1, . . . ,Yn})

I Unknown quantity / parameter

θ

I Definition: Bias of estimator

B(θ̂) = E{θ̂} − θ



One Sample Example



Distribution of Estimator

I If the estimator is a function of the samples and the
distribution of the samples is known then the distribution of
the estimator can (often) be determined

I Methods
I Distribution (CDF) functions
I Transformations
I Moment generating functions
I Jacobians (change of variable)



Example

I Samples from a Normal(µ, σ2) distribution

Yi ∼ Normal(µ, σ2)

I Estimate the population mean

θ = µ, θ̂ = Ȳ =
1

n

n∑
i=1

Yi



Sampling Distribution of the Estimator

I First moment

E{θ̂} = E{1

n

n∑
i=1

Yi}

=
1

n

n∑
i=1

E{Yi} =
nµ

n
= θ

I This is an example of an unbiased estimator

B(θ̂) = E{θ̂} − θ = 0



Variance of Estimator

I Definition: Variance of estimator

σ2{θ̂} = E{(θ̂ − E{θ̂})2}

I Remember:

σ2{cY } = c2 σ2{Y }

σ2{
n∑

i=1

Yi} =
n∑

i=1

σ2{Yi}

Only if the Yi are independent with finite variance



Example Estimator Variance

I For N(0, 1) mean estimator

σ2{θ̂} = σ2{1

n

n∑
i=1

Yi}

=
1

n2

n∑
i=1

σ2{Yi} =
nσ2

n2
=
σ2

n

I Note assumptions



Central Limit Theorem Review

Central Limit Theorem
Let Y1,Y2, . . . ,Yn be iid random variables with E{Yi} = µ and
σ2{Yi} = σ2 <∞. Define.

Un =
√

n

(
Ȳ − µ
σ

)
where Ȳ =

1

n

n∑
i=1

Yi (1)

Then the distribution function of Un converges to a standard
normal distribution function as n→∞.

Alternatively

P(a ≤ Un ≤ b)→
∫ b

a

(
1√
2π

)
e
−u2

2 du (2)



Distribution of sample mean estimator



Bias Variance Trade-off

I The mean squared error of an estimator

MSE (θ̂) = E{[θ̂ − θ]2}

I Can be re-expressed

MSE (θ̂) = σ2{θ̂}+ B(θ̂)2



MSE = VAR + BIAS2

Proof

MSE (θ̂) = E{(θ̂ − θ)2}
= E{([θ̂ − E{θ̂}] + [E{θ̂} − θ])2}
= E{[θ̂ − E{θ̂}]2}+ 2E{[E{θ̂} − θ][θ̂ − E{θ̂}]}+

E{[E{θ̂} − θ]2}
= σ2{θ̂}+ 2E{[E{θ̂}[θ̂ − E{θ̂}]− θ[θ̂ − E{θ̂}]}+ B(θ̂)2

= σ2{θ̂}+ 2(0 + 0) + B(θ̂)2

= σ2{θ̂}+ B(θ̂)2



Trade-off

I Think of variance as confidence and bias as correctness.
I Intuitions (largely) apply

I Sometimes choosing a biased estimator can result in an
overall lower MSE if it exhibits lower variance.

I Bayesian methods (later in the course) specifically introduce
bias.



Estimating Error Term Variance σ2

I Regression model

I Variance of each observation Yi is σ2 (the same as for the
error term εi )

I Each Yi comes from a different probability distribution with
different means that depend on the level Xi

I The deviation of an observation Yi must be calculated around
its own estimated mean.



s2 estimator for σ2

s2 = MSE =
SSE

n − 2
=

∑
(Yi − Ŷi )

2

n − 2
=

∑
e2
i

n − 2

I MSE is an unbiased estimator of σ2

E{MSE} = σ2

I The sum of squares SSE has n-2 “degrees of freedom”
associated with it.

I Cochran’s theorem (later in the course) tells us where degree’s
of freedom come from and how to calculate them.



Normal Error Regression Model

I No matter how the error terms εi are distributed, the least
squares method provides unbiased point estimators of β0 and
β1

I that also have minimum variance among all unbiased linear
estimators

I To set up interval estimates and make tests we need to
specify the distribution of the εi

I We will assume that the εi are normally distributed.



Normal Error Regression Model

Yi = β0 + β1Xi + εi

I Yi value of the response variable in the i th trial

I β0 and β1 are parameters

I Xi is a known constant, the value of the predictor variable in
the i th trial

I εi ∼iid N(0, σ2)
note this is different, now we know the distribution

I i = 1, . . . , n



Notational Convention

I When you see εi ∼iid N(0, σ2)

I It is read as εi is distributed identically and independently
according to a normal distribution with mean 0 and variance
σ2

I Examples
I θ ∼ Poisson(λ)
I z ∼ G (θ)



Maximum Likelihood Principle

The method of maximum likelihood chooses as estimates those
values of the parameters that are most consistent with the sample
data.



Likelihood Function

If
Xi ∼ F (Θ), i = 1 . . . n

then the likelihood function is

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)



Example, N(10, 3) Density, Single Obs.



Example, N(10, 3) Density, Single Obs. Again



Example, N(10, 3) Density, Multiple Obs.



Maximum Likelihood Estimation

I The likelihood function can be maximized w.r.t. the
parameter(s) Θ, doing this one can arrive at estimators for
parameters as well.

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)

I To do this, find solutions to (analytically or by following
gradient)

dL({Xi}ni=1,Θ)

dΘ
= 0



Important Trick

Never (almost) maximize the likelihood function, maximize the log
likelihood function instead.

log(L({Xi}ni=1,Θ)) = log(
n∏

i=1

F (Xi ; Θ))

=
n∑

i=1

log(F (Xi ; Θ))

Quite often the log of the density is easier to work with
mathematically.



ML Normal Regression

Likelihood function

L(β0, β1, σ
2) =

n∏
i=1

1

(2πσ2)1/2
e−

1
2σ2 (Yi−β0−β1Xi )

2

=
1

(2πσ2)n/2
e−

1
2σ2

Pn
i=1(Yi−β0−β1Xi )

2

which if you maximize (how?) w.r.t. to the parameters you get. . .



Maximum Likelihood Estimator(s)

I β0

b0 same as in least squares case

I β1

b1 same as in least squares case

I σ2

σ̂2 =

∑
i (Yi − Ŷi )

2

n

I Note that ML estimator is biased as s2 is unbiased and

s2 = MSE =
n

n − 2
σ̂2



Comments

I Least squares minimizes the squared error between the
prediction and the true output

I The normal distribution is fully characterized by its first two
central moments (mean and variance)

I Food for thought:
I What does the bias in the ML estimator of the error variance

mean? And where does it come from?


