Regression Estimation - Least Squares and Maximum Likelihood

Dr. Frank Wood

Least Squares Max(min)imization

- Function to minimize w.r.t. b_{0}, b_{1}

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}
$$

- Minimize this by maximizing $-Q$
- Find partials and set both equal to zero

$$
\begin{aligned}
& \frac{d Q}{d b_{0}}=0 \\
& \frac{d Q}{d b_{1}}=0
\end{aligned}
$$

Normal Equations

- The result of this maximization step are called the normal equations. b_{0} and b_{1} are called point estimators of β_{0} and β_{1} respectively.

$$
\begin{aligned}
\sum Y_{i} & =n b_{0}+b_{1} \sum X_{i} \\
\sum X_{i} Y_{i} & =b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2}
\end{aligned}
$$

- This is a system of two equations and two unknowns. The solution is given by ...

Solution to Normal Equations

After a lot of algebra one arrives at

$$
\begin{aligned}
b_{1} & =\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
b_{0} & =\bar{Y}-b_{1} \bar{X} \\
\bar{X} & =\frac{\sum X_{i}}{n} \\
\bar{Y} & =\frac{\sum Y_{i}}{n}
\end{aligned}
$$

Least Squares Fit

Guess \#1

Guess \#2

Looking Ahead: Matrix Least Squares

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{cc}
X_{1} & 1 \\
X_{2} & 1 \\
\vdots & \\
X_{n} & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{0}
\end{array}\right]
$$

Solution to this equation is solution to least squares linear regression (and maximum likelihood under normal error distribution assumption)

Questions to Ask

- Is the relationship really linear?
- What is the distribution of the of "errors"?
- Is the fit good?
- How much of the variability of the response is accounted for by including the predictor variable?
- Is the chosen predictor variable the best one?

Is This Better?

Goals for First Half of Course

- How to do linear regression
- Self familiarization with software tools
- How to interpret standard linear regression results
- How to derive tests
- How to assess and address deficiencies in regression models

Estimators for $\beta_{0}, \beta_{1}, \sigma^{2}$

- We want to establish properties of estimators for β_{0}, β_{1}, and σ^{2} so that we can construct hypothesis tests and so forth
- We will start by establishing some properties of the regression solution.

Properties of Solution

- The $i^{\text {th }}$ residual is defined to be

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

- The sum of the residuals is zero:

$$
\begin{aligned}
\sum_{i} e_{i} & =\sum\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& =\sum Y_{i}-n b_{0}-b_{1} \sum X_{i} \\
& =0
\end{aligned}
$$

Properties of Solution

The sum of the observed values Y_{i} equals the sum of the fitted values \widehat{Y}_{i}

$$
\begin{aligned}
\sum_{i} Y_{i} & =\sum_{i} \hat{Y}_{i} \\
& =\sum_{i}\left(b_{1} X_{i}+b_{0}\right) \\
& =\sum_{i}\left(b_{1} X_{i}+\bar{Y}-b_{1} \bar{X}\right) \\
& =b_{1} \sum_{i} X_{i}+n \bar{Y}-b_{1} n \bar{X} \\
& =b_{1} n \bar{X}+\sum_{i} Y_{i}-b_{1} n \bar{X}
\end{aligned}
$$

Properties of Solution

The sum of the weighted residuals is zero when the residual in the $i^{t h}$ trial is weighted by the level of the predictor variable in the $i^{\text {th }}$ trial

$$
\begin{aligned}
\sum_{i} X_{i} e_{i} & =\sum\left(X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)\right) \\
& =\sum_{i} X_{i} Y_{i}-b_{0} \sum X_{i}-b_{1} \sum\left(X_{i}^{2}\right) \\
& =0
\end{aligned}
$$

Properties of Solution

The regression line always goes through the point

$$
\bar{X}, \bar{Y}
$$

Estimating Error Term Variance σ^{2}

- Review estimation in non-regression setting.
- Show estimation results for regression setting.

Estimation Review

- An estimator is a rule that tells how to calculate the value of an estimate based on the measurements contained in a sample
- i.e. the sample mean

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Point Estimators and Bias

- Point estimator

$$
\hat{\theta}=f\left(\left\{Y_{1}, \ldots, Y_{n}\right\}\right)
$$

- Unknown quantity / parameter
- Definition: Bias of estimator

$$
B(\hat{\theta})=E\{\hat{\theta}\}-\theta
$$

One Sample Example

Distribution of Estimator

- If the estimator is a function of the samples and the distribution of the samples is known then the distribution of the estimator can (often) be determined
- Methods
- Distribution (CDF) functions
- Transformations
- Moment generating functions
- Jacobians (change of variable)

Example

- Samples from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution

$$
Y_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

- Estimate the population mean

$$
\theta=\mu, \quad \hat{\theta}=\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Sampling Distribution of the Estimator

- First moment

$$
\begin{aligned}
E\{\hat{\theta}\} & =E\left\{\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left\{Y_{i}\right\}=\frac{n \mu}{n}=\theta
\end{aligned}
$$

- This is an example of an unbiased estimator

$$
B(\hat{\theta})=E\{\hat{\theta}\}-\theta=0
$$

Variance of Estimator

- Definition: Variance of estimator

$$
\sigma^{2}\{\hat{\theta}\}=E\left\{(\hat{\theta}-E\{\hat{\theta}\})^{2}\right\}
$$

- Remember:

$$
\begin{aligned}
\sigma^{2}\{c Y\} & =c^{2} \sigma^{2}\{Y\} \\
\sigma^{2}\left\{\sum_{i=1}^{n} Y_{i}\right\} & =\sum_{i=1}^{n} \sigma^{2}\left\{Y_{i}\right\}
\end{aligned}
$$

Only if the Y_{i} are independent with finite variance

Example Estimator Variance

- For $N(0,1)$ mean estimator

$$
\begin{aligned}
\sigma^{2}\{\hat{\theta}\} & =\sigma^{2}\left\{\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right\} \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}\left\{Y_{i}\right\}=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

- Note assumptions

Central Limit Theorem Review

Central Limit Theorem

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid random variables with $E\left\{Y_{i}\right\}=\mu$ and $\sigma^{2}\left\{Y_{i}\right\}=\sigma^{2}<\infty$. Define.

$$
\begin{equation*}
U_{n}=\sqrt{n}\left(\frac{\bar{Y}-\mu}{\sigma}\right) \text { where } \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \tag{1}
\end{equation*}
$$

Then the distribution function of U_{n} converges to a standard normal distribution function as $n \rightarrow \infty$.

Alternatively

$$
\begin{equation*}
P\left(a \leq U_{n} \leq b\right) \rightarrow \int_{a}^{b}\left(\frac{1}{\sqrt{2 \pi}}\right) e^{\frac{-u^{2}}{2}} d u \tag{2}
\end{equation*}
$$

Distribution of sample mean estimator

Bias Variance Trade-off

- The mean squared error of an estimator

$$
\operatorname{MSE}(\hat{\theta})=E\left\{[\hat{\theta}-\theta]^{2}\right\}
$$

- Can be re-expressed

$$
\operatorname{MSE}(\hat{\theta})=\sigma^{2}\{\hat{\theta}\}+B(\hat{\theta})^{2}
$$

$\mathrm{MSE}=\mathrm{VAR}+\mathrm{BIAS}^{2}$

Proof

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta})= & E\left\{(\hat{\theta}-\theta)^{2}\right\} \\
= & E\left\{([\hat{\theta}-E\{\hat{\theta}\}]+[E\{\hat{\theta}\}-\theta])^{2}\right\} \\
= & E\left\{[\hat{\theta}-E\{\hat{\theta}\}]^{2}\right\}+2 E\{[E\{\hat{\theta}\}-\theta][\hat{\theta}-E\{\hat{\theta}\}]\}+ \\
& E\left\{[E\{\hat{\theta}\}-\theta]^{2}\right\} \\
= & \sigma^{2}\{\hat{\theta}\}+2 E\left\{[E\{\hat{\theta}\}[\hat{\theta}-E\{\hat{\theta}\}]-\theta[\hat{\theta}-E\{\hat{\theta}\}]\}+B(\hat{\theta})^{2}\right. \\
= & \sigma^{2}\{\hat{\theta}\}+2(0+0)+B(\hat{\theta})^{2} \\
= & \sigma^{2}\{\hat{\theta}\}+B(\hat{\theta})^{2}
\end{aligned}
$$

Trade-off

- Think of variance as confidence and bias as correctness.
- Intuitions (largely) apply
- Sometimes choosing a biased estimator can result in an overall lower MSE if it exhibits lower variance.
- Bayesian methods (later in the course) specifically introduce bias.

Estimating Error Term Variance σ^{2}

- Regression model
- Variance of each observation Y_{i} is σ^{2} (the same as for the error term ϵ_{i})
- Each Y_{i} comes from a different probability distribution with different means that depend on the level X_{i}
- The deviation of an observation Y_{i} must be calculated around its own estimated mean.

s^{2} estimator for σ^{2}

$$
s^{2}=M S E=\frac{S S E}{n-2}=\frac{\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}=\frac{\sum e_{i}^{2}}{n-2}
$$

- MSE is an unbiased estimator of σ^{2}

$$
E\{M S E\}=\sigma^{2}
$$

- The sum of squares SSE has n-2 "degrees of freedom" associated with it.
- Cochran's theorem (later in the course) tells us where degree's of freedom come from and how to calculate them.

Normal Error Regression Model

- No matter how the error terms ϵ_{i} are distributed, the least squares method provides unbiased point estimators of β_{0} and β_{1}
- that also have minimum variance among all unbiased linear estimators
- To set up interval estimates and make tests we need to specify the distribution of the ϵ_{i}
- We will assume that the ϵ_{i} are normally distributed.

Normal Error Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} value of the response variable in the $i^{\text {th }}$ trial
- β_{0} and β_{1} are parameters
- X_{i} is a known constant, the value of the predictor variable in the $i^{t h}$ trial
- $\epsilon_{i} \sim_{i i d} N\left(0, \sigma^{2}\right)$ note this is different, now we know the distribution
- $i=1, \ldots, n$

Notational Convention

- When you see $\epsilon_{i} \sim_{\text {iid }} N\left(0, \sigma^{2}\right)$
- It is read as ϵ_{i} is distributed identically and independently according to a normal distribution with mean 0 and variance σ^{2}
- Examples
- $\theta \sim \operatorname{Poisson}(\lambda)$
- $z \sim G(\theta)$

Maximum Likelihood Principle

The method of maximum likelihood chooses as estimates those values of the parameters that are most consistent with the sample data.

Likelihood Function

If

$$
X_{i} \sim F(\Theta), i=1 \ldots n
$$

then the likelihood function is

$$
\mathcal{L}\left(\left\{X_{i}\right\}_{i=1}^{n}, \Theta\right)=\prod_{i=1}^{n} F\left(X_{i} ; \Theta\right)
$$

Example, $N(10,3)$ Density, Single Obs.

Example, $N(10,3)$ Density, Single Obs. Again

Example, $N(10,3)$ Density, Multiple Obs.

Maximum Likelihood Estimation

- The likelihood function can be maximized w.r.t. the parameter(s) Θ, doing this one can arrive at estimators for parameters as well.

$$
\mathcal{L}\left(\left\{X_{i}\right\}_{i=1}^{n}, \Theta\right)=\prod_{i=1}^{n} F\left(X_{i} ; \Theta\right)
$$

- To do this, find solutions to (analytically or by following gradient)

$$
\frac{d \mathcal{L}\left(\left\{X_{i}\right\}_{i=1}^{n}, \Theta\right)}{d \Theta}=0
$$

Important Trick

Never (almost) maximize the likelihood function, maximize the log likelihood function instead.

$$
\begin{aligned}
\log \left(\mathcal{L}\left(\left\{X_{i}\right\}_{i=1}^{n}, \Theta\right)\right) & =\log \left(\prod_{i=1}^{n} F\left(X_{i} ; \Theta\right)\right) \\
& =\sum_{i=1}^{n} \log \left(F\left(X_{i} ; \Theta\right)\right)
\end{aligned}
$$

Quite often the log of the density is easier to work with mathematically.

ML Normal Regression

Likelihood function

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) & =\prod_{i=1}^{n} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{1}{2 \sigma^{2}}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}} \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}}
\end{aligned}
$$

which if you maximize (how?) w.r.t. to the parameters you get.. .

Maximum Likelihood Estimator(s)

- β_{0}
b_{0} same as in least squares case
- β_{1}
b_{1} same as in least squares case
- σ_{2}

$$
\hat{\sigma}^{2}=\frac{\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n}
$$

- Note that ML estimator is biased as s^{2} is unbiased and

$$
s^{2}=M S E=\frac{n}{n-2} \hat{\sigma}^{2}
$$

Comments

- Least squares minimizes the squared error between the prediction and the true output
- The normal distribution is fully characterized by its first two central moments (mean and variance)
- Food for thought:
- What does the bias in the ML estimator of the error variance mean? And where does it come from?

