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Quick Example - Scatter Plot

Use linear regression/demo.m



Linear Regression

I Want to find parameters for a function of the form

Yi = β0 + β1Xi + εi

I Distribution of error random variable not specified



Quick Example - Scatter Plot



Formal Statement of Model

Yi = β0 + β1Xi + εi

I Yi value of the response variable in the i th trial

I β0 and β1 are parameters

I Xi is a known constant, the value of the predictor variable in
the i th trial

I εi is a random error term with mean E{εi} = 0 and finite
variance σ2{εi} = σ2

I i = 1, . . . , n



Properties

I The response Yi is the sum of two components
I Constant term β0 + β1Xi

I Random term εi

I The expected response is

E{Yi} = E{β0 + β1Xi + εi}
= β0 + β1Xi + E{εi}
= β0 + β1Xi



Expectation Review

I Definition

E{X} = E{X} =

∫
XP(X )dX , X ∈ R

I Linearity property

E{aX} = aE{X}
E{aX + bY } = aE{X}+ bE{Y }

I Obvious from definition



Example Expectation Derivation

P(X ) = 2X , 0 ≤ X ≤ 1

Expectation

E{X} =

∫ 1

0
XP(X )dX

=

∫ 1

0
2X 2dX

=
2X 3

3
|10

=
2

3



Expectation of a Product of Random Variables

If X,Y are random variables with joint distribution P(X ,Y ) then
the expectation of the product is given by

E{XY } =

∫
XY

XYP(X ,Y )dXdY .



Expectation of a product of random variables

What if X and Y are independent? If X and Y are independent
with density functions f and g respectively then

E{XY } =

∫
XY

XYf (X )g(Y )dXdY

=

∫
X

∫
Y

XYf (X )g(Y )dXdY

=

∫
X

Xf (X )[

∫
Y

Yg(Y )dY ]dX

=

∫
X

Xf (X )E{Y }dX

= E{X}E{Y }



Regression Function

I The response Yi comes from a probability distribution with
mean

E{Yi} = β0 + β1Xi

I This means the regression function is

E{Y } = β0 + β1X

Since the regression function relates the means of the
probability distributions of Y for a given X to the level of X



Error Terms

I The response Yi in the i th trial exceeds or falls short of the
value of the regression function by the error term amount εi

I The error terms εi are assumed to have constant variance σ2



Response Variance

Responses Yi have the same constant variance

σ2{Yi} = σ2{β0 + β1Xi + εi}
= σ2{εi}
= σ2



Variance (2nd central moment) Review

I Continuous distribution

σ2{X} = E{(X−E{X})2} =

∫
(X−E{X})2P(X )dX , X ∈ R

I Discrete distribution

σ2{X} = E{(X −E{X})2} =
∑

i

(Xi −E{X})2P(Xi ), X ∈ Z



Alternative Form for Variance

σ2{X} = E{(X − E{X})2}
= E{(X 2 − 2XE{X}+ E{X}2)}
= E{X 2} − 2E{X}E{X}+ E{X}2

= E{X 2} − 2E{X}2 + E{X}2

= E{X 2} − E{X}2.



Example Variance Derivation

P(X ) = 2X , 0 ≤ X ≤ 1

σ2{X} = E{(X − E{X})2} = E{X 2} − E{X}2

=

∫ 1

0
2XX 2dX − (

2

3
)2

=
2X 4

4
|10 −

4

9

=
1

2
− 4

9
=

1

18



Variance Properties

σ2{aX} = a2 σ2{X}
σ2{aX + bY } = a2 σ2{X}+ b2 σ2{Y } ifX ⊥⊥ Y

σ2{a + cX} = c2 σ2{X} ifa, c both constant

More generally

σ2{
∑

aiXi} =
∑

i

∑
j

aiajCov(Xi ,Xj)



Covariance

I The covariance between two real-valued random variables X
and Y, with expected values E{X} = µ and E{Y } = ν is
defined as

Cov(X ,Y ) = E{(X − µ)(Y − ν)}

I Which can be rewritten as

Cov(X ,Y ) = E{XY − νX − µY + µν},
Cov(X ,Y ) = E{XY } − νE{X} − µE{Y }+ µν,

Cov(X ,Y ) = E{XY } − µν.



Covariance of Independent Variables

If X and Y are independent, then their covariance is zero. This
follows because under independence

E{XY } = E{X}E{Y } = µν.

and then
Cov(XY ) = µν − µν = 0.



Least Squares Linear Regression

I Seek to minimize

Q =
n∑

i=1

(Yi − (b0 + b1Xi ))2

I By careful choice of b0 and b1 where b0 is a point estimator
for β0 and b1 is the same for β1

How?



Guess #1



Guess #2



Function maximization

I Important technique to remember!
I Take derivative
I Set result equal to zero and solve
I Test second derivative at that point

I Question: does this always give you the maximum?

I Going further: multiple variables, convex optimization



Function Maximization

Find
argmax

x
−x2 + ln(x)
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Least Squares Max(min)imization

I Function to minimize w.r.t. b0 and b1, b0 and b1 are called
point estimators of β0 and β1 respectively

Q =
n∑

i=1

(Yi − (b0 + b1Xi ))2

I Minimize this by maximizing -Q

I Either way, find partials and set both equal to zero

dQ

db0
= 0

dQ

db1
= 0



Normal Equations

I The result of this maximization step are called the normal
equations. ∑

Yi = nb0 + b1

∑
Xi∑

XiYi = b0

∑
Xi + b1

∑
X 2

i

I This is a system of two equations and two unknowns. The
solution is given by. . .



Solution to Normal Equations

After a lot of algebra one arrives at

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄

X̄ =

∑
Xi

n

Ȳ =

∑
Yi

n


