Regression Introduction and Estimation Review

Dr. Frank Wood

Quick Example - Scatter Plot

Use linear_regression/demo.m

Linear Regression

- Want to find parameters for a function of the form

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Distribution of error random variable not specified

Quick Example - Scatter Plot

Formal Statement of Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} value of the response variable in the $i^{\text {th }}$ trial
- β_{0} and β_{1} are parameters
- X_{i} is a known constant, the value of the predictor variable in the $i^{\text {th }}$ trial
- ϵ_{i} is a random error term with mean $E\left\{\epsilon_{i}\right\}=0$ and finite variance $\sigma^{2}\left\{\epsilon_{i}\right\}=\sigma^{2}$
- $i=1, \ldots, n$

Properties

- The response Y_{i} is the sum of two components
- Constant term $\beta_{0}+\beta_{1} X_{i}$
- Random term ϵ_{i}
- The expected response is

$$
\begin{aligned}
E\left\{Y_{i}\right\} & =E\left\{\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right\} \\
& =\beta_{0}+\beta_{1} X_{i}+E\left\{\epsilon_{i}\right\} \\
& =\beta_{0}+\beta_{1} X_{i}
\end{aligned}
$$

Expectation Review

- Definition

$$
E\{X\}=E\{X\}=\int X P(X) d X, X \in \mathcal{R}
$$

- Linearity property

$$
\begin{aligned}
E\{a X\} & =a E\{X\} \\
E\{a X+b Y\} & =a E\{X\}+b E\{Y\}
\end{aligned}
$$

- Obvious from definition

Example Expectation Derivation

$$
P(X)=2 X, 0 \leq X \leq 1
$$

Expectation

$$
\begin{aligned}
E\{X\} & =\int_{0}^{1} X P(X) d X \\
& =\int_{0}^{1} 2 X^{2} d X \\
& =\left.\frac{2 X^{3}}{3}\right|_{0} ^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

Expectation of a Product of Random Variables

If X, Y are random variables with joint distribution $P(X, Y)$ then the expectation of the product is given by

$$
E\{X Y\}=\int_{X Y} X Y P(X, Y) d X d Y
$$

Expectation of a product of random variables

What if X and Y are independent? If X and Y are independent with density functions f and g respectively then

$$
\begin{aligned}
E\{X Y\}= & \int_{X Y} X Y f(X) g(Y) d X d Y \\
& =\int_{X} \int_{Y} X Y f(X) g(Y) d X d Y \\
& =\int_{X} X f(X)\left[\int_{Y} Y g(Y) d Y\right] d X \\
& =\int_{X} X f(X) E\{Y\} d X \\
& =E\{X\} E\{Y\}
\end{aligned}
$$

Regression Function

- The response Y_{i} comes from a probability distribution with mean

$$
E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i}
$$

- This means the regression function is

$$
E\{Y\}=\beta_{0}+\beta_{1} X
$$

Since the regression function relates the means of the probability distributions of Y for a given X to the level of X

Error Terms

- The response Y_{i} in the $i^{\text {th }}$ trial exceeds or falls short of the value of the regression function by the error term amount ϵ_{i}
- The error terms ϵ_{i} are assumed to have constant variance σ^{2}

Response Variance

Responses Y_{i} have the same constant variance

$$
\begin{aligned}
\sigma^{2}\left\{Y_{i}\right\} & =\sigma^{2}\left\{\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right\} \\
& =\sigma^{2}\left\{\epsilon_{i}\right\} \\
& =\sigma^{2}
\end{aligned}
$$

Variance (2 ${ }^{\text {nd }}$ central moment) Review

- Continuous distribution

$$
\sigma^{2}\{X\}=E\left\{(X-E\{X\})^{2}\right\}=\int(X-E\{X\})^{2} P(X) d X, X \in \mathcal{R}
$$

- Discrete distribution

$$
\sigma^{2}\{X\}=E\left\{(X-E\{X\})^{2}\right\}=\sum_{i}\left(X_{i}-E\{X\}\right)^{2} P\left(X_{i}\right), X \in \mathcal{Z}
$$

Alternative Form for Variance

$$
\begin{aligned}
\sigma^{2}\{X\} & =E\left\{(X-E\{X\})^{2}\right\} \\
& =E\left\{\left(X^{2}-2 X E\{X\}+E\{X\}^{2}\right)\right\} \\
& =E\left\{X^{2}\right\}-2 E\{X\} E\{X\}+E\{X\}^{2} \\
& =E\left\{X^{2}\right\}-2 E\{X\}^{2}+E\{X\}^{2} \\
& =E\left\{X^{2}\right\}-E\{X\}^{2} .
\end{aligned}
$$

Example Variance Derivation

$$
\begin{aligned}
& P(X)=2 X, 0 \leq X \leq 1 \\
\sigma^{2}\{X\}= & E\left\{(X-E\{X\})^{2}\right\}=E\left\{X^{2}\right\}-E\{X\}^{2} \\
= & \int_{0}^{1} 2 X X^{2} d X-\left(\frac{2}{3}\right)^{2} \\
= & \left.\frac{2 X^{4}}{4}\right|_{0} ^{1}-\frac{4}{9} \\
= & \frac{1}{2}-\frac{4}{9}=\frac{1}{18}
\end{aligned}
$$

Variance Properties

$$
\begin{aligned}
\sigma^{2}\{a X\} & =a^{2} \sigma^{2}\{X\} \\
\sigma^{2}\{a X+b Y\} & =a^{2} \sigma^{2}\{X\}+b^{2} \sigma^{2}\{Y\} \text { if } X \Perp Y \\
\sigma^{2}\{a+c X\} & =c^{2} \sigma^{2}\{X\} \text { ifa }, c \text { both constant }
\end{aligned}
$$

More generally

$$
\sigma^{2}\left\{\sum a_{i} X_{i}\right\}=\sum_{i} \sum_{j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Covariance

- The covariance between two real-valued random variables X and Y , with expected values $E\{X\}=\mu$ and $E\{Y\}=\nu$ is defined as

$$
\operatorname{Cov}(X, Y)=E\{(X-\mu)(Y-\nu)\}
$$

- Which can be rewritten as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\{X Y-\nu X-\mu Y+\mu \nu\} \\
\operatorname{Cov}(X, Y) & =E\{X Y\}-\nu E\{X\}-\mu E\{Y\}+\mu \nu \\
\operatorname{Cov}(X, Y) & =E\{X Y\}-\mu \nu
\end{aligned}
$$

Covariance of Independent Variables

If X and Y are independent, then their covariance is zero. This follows because under independence

$$
E\{X Y\}=E\{X\} E\{Y\}=\mu \nu
$$

and then

$$
\operatorname{Cov}(X Y)=\mu \nu-\mu \nu=0
$$

Least Squares Linear Regression

- Seek to minimize

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}
$$

- By careful choice of b_{0} and b_{1} where b_{0} is a point estimator for β_{0} and b_{1} is the same for β_{1}

How?

Guess \#1

Guess \#2

Function maximization

- Important technique to remember!
- Take derivative
- Set result equal to zero and solve
- Test second derivative at that point
- Question: does this always give you the maximum?
- Going further: multiple variables, convex optimization

Function Maximization

Find

$$
\operatorname{argmax}-x^{2}+\ln (x)
$$

Least Squares Max(min)imization

- Function to minimize w.r.t. b_{0} and b_{1}, b_{0} and b_{1} are called point estimators of β_{0} and β_{1} respectively

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}
$$

- Minimize this by maximizing -Q
- Either way, find partials and set both equal to zero

$$
\begin{aligned}
& \frac{d Q}{d b_{0}}=0 \\
& \frac{d Q}{d b_{1}}=0
\end{aligned}
$$

Normal Equations

- The result of this maximization step are called the normal equations.

$$
\begin{aligned}
\sum Y_{i} & =n b_{0}+b_{1} \sum X_{i} \\
\sum X_{i} Y_{i} & =b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2}
\end{aligned}
$$

- This is a system of two equations and two unknowns. The solution is given by...

Solution to Normal Equations

After a lot of algebra one arrives at

$$
\begin{aligned}
b_{1} & =\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
b_{0} & =\bar{Y}-b_{1} \bar{X} \\
\bar{X} & =\frac{\sum X_{i}}{n} \\
\bar{Y} & =\frac{\sum Y_{i}}{n}
\end{aligned}
$$

