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Random Vectors and Matrices

Let's say we have a vector consisting of three random variables

Y1
y=|Y2
Y3

The expectation of a random vector is defined as



Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

E(y) = [E(Y;)] i=1,..nj=1,..,p



Covariance Matrix of a Random Vector

The correlation of variances and covariances of and between the
elements of a random vector can be collection into a matrix called
the covariance matrix

0'2(Y1) O’(Yl, Yg) O‘(Yl, Y3)
cov(y) = o*{y} = [ o(Y2, V1)  0%(Y2) (Y2, Y3)
a(Ys, Y1) o(Yz, Ys)  o?(Y3)

remember o (Y2, Y1) = o(Yi, Y2) so the covariance matrix is
symmetric



Derivation of Covariance Matrix
In vector terms the covariance matrix is defined by
o*{y} = E(y — E(y))(y — E(y))’

because

Y1 —E(%)

UZ{Y}E((YzE(Y2)) (Y1 —E(Y1) Y2—E(Y2) Ys—E(Y3)))
Y; — E(Y3)



Regression Example

» Take a regression example with n = 3 with constant error
terms 02{¢;} and are uncorrelated so that o2{¢;,€;} = 0 for

all i #§

» The covariance matrix for the random vector € is

a2 0 0
o¥ey=[0 0% 0
0 0 o?

which can be written as 02{¢} = o2 |



Basic Results

If A is a constant matrix and y is a random vector then W = Ay
is a random vector

E(A) = A

E(W) = E(Ay) = AE(y)
o {W} = o> {Ay} = Ac?{y}A’



Multivariate Normal Density

» Let Y be a vector of p observations
Y1
Y>
Yo
> Let u be a vector of p means of each of the p observations

M1
2

Hp



Multivariate Normal Density

let > be the covariance matrix of Y

2
2
0921 05 -. O2p
p—
g g 0'2
pl p2 e b

Then the multivariate normal density is given by

1

PY|u,Y)=——5

(Y =Y ETHY — )



Example 2d Multivariate Normal Distribution
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Matrix Simple Linear Regression

v

Nothing new-only matrix formalism for previous results

v

Remember the normal error regression model
Yi = fo+ AXi+e€, €~N(0,0%), i=1,..,n
Expanded out this looks like

Y1 =00+ iX1+ e
Yo = 0Bo+ 1 Xo+ e

v

Yo = Bo+ B1Xn + €n
which points towards an obvious matrix formulation.

v



Regression Matrices

» If we identify the following matrices

Yl 1 X1 €1
Y2 1 X2 €2
: . ﬁ0>
Y — X = = g
: : b <51 ‘
Y, 1 X, €n

» We can write the linear regression equations in a compact
formy = X3+ ¢



Regression Matrices

» Of course, in the normal regression model the expected value
of each of the €'s is zero, we can write E(y) = Xf3

» This is because

E(e) =0
E(e1) 0



Error Covariance

Because the error terms are independent and have constant
variance o2

o2 0 0

2
02{6} _ O g 0
0 O o2



Matrix Normal Regression Model
In matrix terms the normal regression model can be written as
y=XG+¢€
where E(€) = 0 and 0%{e} = 5°l, i.e. € ~ N(0,02I)



Least Square Estimation

If we remember both the starting normal equations that we derived

nbp+ b1 > Xi=>Yi
bo Y Xi+ b1 Y X2 =3 XY,

and the fact that

1 X
1 X
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Y=Ixe Xo o Xl || T XY
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Least Square Estimation

Then we can see that these equations are equivalent to the
following matrix operations

X'X b = X'y

with

= (5)

with the solution to this equation given by
b= (X'X)" X'y

when (X’X)! exists.



When does (X'X) ™! exist?

Xisan n x p (or p+ 1 depending on how you define p) design
matrix.

X must have full column rank in order for the inverse to exist, i.e.
rank(X) = p = (X’X)~! exists.



