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Random Vectors and Matrices

Let’s say we have a vector consisting of three random variables

y =

Y1

Y2

Y3


The expectation of a random vector is defined as

E(y) =

E(Y1)
E(Y2)
E(Y3)





Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

E(y) = [E(Yij)] i = 1, ...n; j = 1, ..., p



Covariance Matrix of a Random Vector

The correlation of variances and covariances of and between the
elements of a random vector can be collection into a matrix called
the covariance matrix

cov(y) = σ2{y} =

 σ2(Y1) σ(Y1,Y2) σ(Y1,Y3)
σ(Y2,Y1) σ2(Y2) σ(Y2,Y3)
σ(Y3,Y1) σ(Y3,Y2) σ2(Y3)


remember σ(Y2,Y1) = σ(Y1,Y2) so the covariance matrix is
symmetric



Derivation of Covariance Matrix

In vector terms the covariance matrix is defined by

σ2{y} = E(y − E(y))(y − E(y))′

because

σ2{y} = E(

Y1 − E(Y1)
Y2 − E(Y2)
Y3 − E(Y3)

(Y1 − E(Y1) Y2 − E(Y2) Y3 − E(Y3)
)
)



Regression Example

I Take a regression example with n = 3 with constant error
terms σ2{εi} and are uncorrelated so that σ2{εi , εj} = 0 for
all i 6= j

I The covariance matrix for the random vector ε is

σ2{ε} =

σ2 0 0
0 σ2 0
0 0 σ2


which can be written as σ2{ε} = σ2 I



Basic Results

If A is a constant matrix and y is a random vector then W = Ay
is a random vector

E(A) = A
E(W) = E(Ay) = A E(y)

σ2{W} = σ2{Ay} = Aσ2{y}A′



Multivariate Normal Density

I Let Y be a vector of p observations

Y =



Y1

Y2

.

.

.
Yp


I Let µ be a vector of p means of each of the p observations

µ =



µ1

µ2

.

.

.
µp





Multivariate Normal Density

let Σ be the covariance matrix of Y

Σ =



σ2
1 σ12 ... σ1p

σ21 σ2
2 ... σ2p

.

.

.
σp1 σp2 ... σ2

p


Then the multivariate normal density is given by

P(Y|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp(−1

2
(Y − µ)′Σ−1(Y − µ))



Example 2d Multivariate Normal Distribution



Matrix Simple Linear Regression

I Nothing new-only matrix formalism for previous results

I Remember the normal error regression model

Yi = β0 + β1Xi + εi , εi ∼ N(0, σ2), i = 1, ..., n

I Expanded out this looks like

Y1 = β0 + β1X1 + ε1
Y2 = β0 + β1X2 + ε2

...
Yn = β0 + β1Xn + εn

I which points towards an obvious matrix formulation.



Regression Matrices

I If we identify the following matrices

Y =



Y1

Y2

.

.

.
Yn

 X =



1 X1

1 X2

.

.

.
1 Xn

 β =

(
β0

β1

)
ε =



ε1
ε2
.
.
.
εn


I We can write the linear regression equations in a compact

form y = Xβ + ε



Regression Matrices

I Of course, in the normal regression model the expected value
of each of the ε’s is zero, we can write E(y) = Xβ

I This is because

E(ε) = 0

E(ε1)
E(ε2)
.
.
.

E(εn)

 =



0
0
.
.
.
0





Error Covariance

Because the error terms are independent and have constant
variance σ2

σ2{ε} =


σ2 0 ... 0
0 σ2 ... 0
...
0 0 ... σ2


σ2{ε} = σ2I



Matrix Normal Regression Model

In matrix terms the normal regression model can be written as

y = Xβ + ε

where E(ε) = 0 and σ2{ε} = σ2I, i.e. ε ∼ N(0, σ2I)



Least Square Estimation

If we remember both the starting normal equations that we derived

nb0 + b1
∑

Xi =
∑

Yi

b0
∑

Xi + b1
∑

X 2
i =

∑
XiYi

and the fact that

X′X =

[
1 1 ... 1
X1 X1 ... Xn

]


1 X1

1 X2

.

.

.
1 Xn

 =

[
n

∑
Xi∑

Xi
∑

X 2
i

]

X′y =

[
1 1 ... 1
X1 X1 ... Xn

]


Y1

Y2

.

.

.
Yn

 =

[ ∑
Yi∑

XiYi

]



Least Square Estimation

Then we can see that these equations are equivalent to the
following matrix operations

X′X b = X′y

with

b =

(
b0

b1

)
with the solution to this equation given by

b = (X′X)−1X′y

when (X′X)−1 exists.



When does (X′X)−1 exist?

X is an n × p (or p + 1 depending on how you define p) design
matrix.

X must have full column rank in order for the inverse to exist, i.e.
rank(X) = p =⇒ (X′X)−1 exists.


