LINEAR REGRESSION MODELS W4315 HOMEWORK 5 QUESTIONS

November 21, 2011

Instructor: Frank Wood

1. (10 points) ${ }^{1}$ Bonferroni inequality (4.2a) which is given as

$$
P\left(\bar{A}_{1} \bigcap \bar{A}_{2}\right) \geq 1-\alpha-\alpha=1-2 \alpha
$$

deals with the case of two statements, A_{1} and A_{2}. Extend the inequality to the case of n statements, namely, $A_{1}, A_{2} \ldots, A_{n}$, each with statement confidence coefficient $1-\alpha$.
2. (30 points) ${ }^{3}$ In a small-scale regression study, the following data were obtained: Assume

i:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$X_{i 1}$	7	4	16	3	21	8
$X_{i 2}$	33	41	7	49	5	31
Y_{i}	42	33	75	28	91	55

that regression model (1) which is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta X_{i 2}+\epsilon_{i} \tag{1}
\end{equation*}
$$

with independent normal error terms is appropriate. Using matrix methods, obtain (a) \mathbf{b}; (b) $\mathbf{e} ;(\mathrm{c}) \mathbf{H}$; (d) SSR; (e) $s^{2}\{\mathbf{b}\} ;(\mathrm{f}) \hat{Y}_{h}$ when $X_{h 1}=10, X_{h 2}=30$; (g) $s^{2}\left\{\hat{Y}_{h}\right\}$ when $X_{h 1}=10$, $X_{h 2}=30$. For the notations, please refer to section 6.4.
3. (30 points) Consider the classical regression setup

$$
\mathbf{y}=\mathbf{X} \beta+\epsilon
$$

We want to find the maximum likelihood estimate of the parameters.
a. if $\epsilon \sim \mathbf{N}\left(\mathbf{0}, \sigma^{\mathbf{2}} \mathbf{I}\right)$. Derive the maximum likelihood estimate of β and σ^{2}.
b. if $\epsilon \sim \mathbf{N}(\mathbf{0}, \boldsymbol{\Sigma})$ and Σ is known. Derive the maximum likelihood estimate of β.

[^0]4. (30 points) Suppose X_{1}, \ldots, X_{n} are i.i.d. samples from $N\left(0, \sigma^{2}\right)$. Denote \bar{X} as the sample mean. Prove $S=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sim \sigma^{2} \chi^{2}(n-1)$ following the steps below using Cochran's theorem:
a. Remember that we have the decomposition
$$
\sum_{i=1}^{n} X_{i}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+n \bar{X}^{2}
$$

Show the matrices corresponding to all the three quadratic terms in (3).
b. Derive the rank of each matrix above.
c. Use Cochran's theorem to prove $S \sim \sigma^{2} \chi^{2}(n-1)$.

[^0]: ${ }^{1}$ This is problem 4.22 in 'Applied Linear Regression Models(4th edition)' by Kutner etc.
 ${ }^{3}$ This is problem 6.27 in 'Applied Linear Regression Models(4th edition)' by Kutner etc.

