Remedial Measures Wrap-Up and Transformations-Box Cox

Frank Wood

October 14, 2010

Last Class

- Graphical procedures for determining appropriateness of regression fit
 - Normal probability plot
- Tests to determine
 - Constancy of error variance
 - Appropriateness of linear fit
- what do we do if we determine(through testing or otherwise) that the linear regression fit is not good?

Overview of Remedial Measures

If simple regression model is not appropriate then there are two choices:

- 1. Abandon simple regression model and develop and use a more appropriate model
- 2. Employ some transformation of the data so that the simple regression model is appropriate for the transformed data.

Fixes For...

- Nonlinearity of regression function Transformation(s) (today)
- ► Nonconstancy of error variance Weighted least squares (nice project idea, coming later in class) and transformations
- ► Nonindependence of error terms Directly model correlation or use first differences (may skip)
- ► Non-normality of error terms Transformation(s) (today)
- Outlying observations Robust regression (another nice project idea)

Nonlinearity of regression function

Direct approach

 Modify regression model by altering the nature of the regression function. For instance, a quadratic regression function might be used

$$E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2$$

or an exponential function

$$E(Y) = \beta_0 \beta_1^X$$

 Such approaches employ a tranformation to (approximately) linearize a regression function

Quick Questions

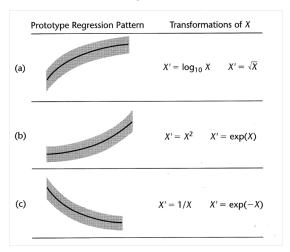
- ▶ How would you fit such models?
- ► How does the exponential regression function relate to regular linear regression?
- Where did the error terms go?

Transformations

Transformations for nonlinearity relation only

- Appropriate when the distribution of the error terms is reasonably close to a normal distribution
- In this situation
- 1. transformation of X should be attempted;
- 2. transformation of Y should not be attempted because it will materially effect the distribution of the error terms.

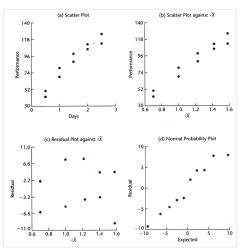
Prototype Regression Patterns



Example

Experiment

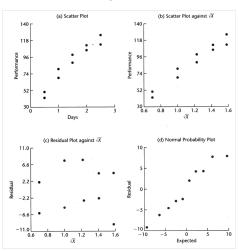
- -X: days of training received
- -Y: sales performance(score)



Example Data Transformation

Sales Trainee i	(1) Days of Training X _i	(2) Performance Score Y _i	(3) $X_i' = \sqrt{X_i}$
1	.5	42.5	.70711
2	.5	50.6	.70711
3	1.0	68.5	1.00000
4	1.0	80.7	1.00000
5	1.5	89.0	1.22474
6	1.5	99.6	1.22474
7	2.0	105.3	1.41421
8	2.0	111.8	1.41421
9	2.5	112.3	1.58114
10	2.5	125.7	1.58114

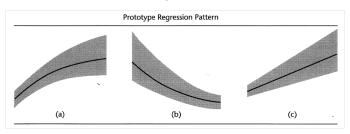
Graphical Residual Analysis



Transformations on Y

- Non-normality and unequal variances of error terms frequently appear together
- ➤ To remedy these in the normal regression model we need a transformation on Y
- This is because
 - Shapes and spreads of distributions of Y need to be changed
 - May help linearize a curvilinear regression relation
- Can be combined with transformation on X

Prototype Regression Patterns and Y Transformations



Transformations on Y:

$$y' = \sqrt{Y}$$

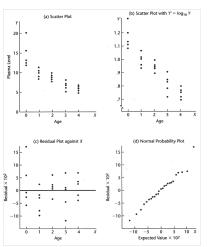
$$y' = log_{10}Y$$
$$y' = 1/Y$$

$$y'=1/Y$$

Example

- Use of logarithmic transformation of Y to linearize regression relations and stabilize error variance
- ▶ Data on age(X) and plasma level of a polyamine (Y) for a portion of the 25 healthy children in a study. Younger children exhibit greater variability than older children.

Plasma Level vs. Age



Associated Data

Child	(1) Age	(2) Plasma Level	(3)
1	X _i	Y _i	$Y_i' = \log_{10} Y_i$
1	0 (newborn)	13.44	1.1284
2	0 (newborn)	12.84	1.1086
3	0 (newborn)	11.91	1.0759
4	0 (newborn)	20.09	1.3030
5	0 (newborn)	15.60	1.1931
6	1.0	10.11	1.0048
7	1.0	11.38	1.0561
19	3.0	6.90	.8388
20	3.0	6.77	.8306
21	4.0	4.86	.6866
22	4.0	5.10	.7076
23	4.0	5.67	.7536
24	4.0	5.75	.7597
25	4.0	6.23	.7945

if we fit a simple linear regression line to the log transformed Y data we obtain:

$$\hat{Y}' = 1.135 - .1023X$$

- And the coefficient of correlation between the ordered residuals and their expected values under normality is .981(for $\alpha = .05$ B.6 in the book shows a critical value of .959)
- ► Normality of error terms supported, regression model for transformed Y data appropriate.

Box Cox Transforms

- ▶ It can be difficult to graphically determine which transformation of Y is most appropriate for correcting
 - skewness of the distributions of error terms
 - unequal variances
 - nonlinearity of the regression function
- The Box-Cox procedure automatically identifies a transformation from the family of power transformations on Y

Box Cox Transforms

► This family is of the form

$$Y' = Y^{\lambda}$$

Examples include

$$\lambda = 2 \qquad Y' = Y^2$$

$$\lambda = .5 \qquad Y' = \sqrt{Y}$$

$$\lambda = 0 \qquad Y' = InY \text{ (by definition)}$$

$$\lambda = -.5 \qquad Y' = \frac{1}{\sqrt{Y}}$$

$$\lambda = -1 \qquad Y' = \frac{1}{Y}$$

Box Cox Cont.

► The normal error regression model with the response variable a member of the family of power transformations becomes

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \epsilon_i$$

- This model has an additional parameter that needs to be estimated
- Maximum likelihood is a way to estimate this parameter

Box Cox Maximum Likelihood Estimation

- ▶ Before setting up MLE, the observations are further standardized so that the magnitude of the error sum of squares does not depend on the value of λ
- ▶ The transformation is give by

$$W_i = K_1(Y_i^{\lambda} - 1) \quad \lambda \neq 0$$

= $k_2(\log_e Y_i) \quad \lambda = 0$

where

$$K_2 = (\prod Y_i)^{1/n}$$
 $K_1 = \frac{1}{\lambda K_2^{\lambda-1}}$

Box Cox Maximum Likelihood Estimation

Maximize

$$log(L(X, Y, \sigma, \lambda, b_1, b_0)) =$$

$$-\sum_{i} \frac{(W_i - (b_1 X_i + b_0))^2}{2\sigma^2} - nlog(\sigma)$$
w.r.t λ σ b_1 b_0

- ► How?
 - Take partial derivatives
 - Solve
 - or... gradient ascent methods

Comments on Box Cox

- ► The Box-Cox procedure is ordinarily used only to provide a guide for selecting a transformation
- ▶ At time, theoretical or other a priori considerations can be utilized to help in choosing an appropriate transformation
- ▶ It is important to perform residual analysis after the transformation to ensure the transformation is appropriate
- ▶ When transformed models are employed, *b*₀ and *b*₂ obtained via least squares have the least squares property w.r.t the transformed observations not the original ones.