## ANOVA

Dr. Frank Wood

## ANOVA

- ANOVA is nothing new but is instead a way of organizing the parts of linear regression so as to make easy inference recipes.
- Will return to ANOVA when discussing multiple regression and other types of linear statistical models.


## Partitioning Total Sum of Squares

- "The ANOVA approach is based on the partitioning of sums of squares and degrees of freedom associated with the response variable $\mathrm{Y}^{\prime \prime}$
- We start with the observed deviations of $Y_{i}$ around the observed mean

$$
Y_{i}-\bar{Y}
$$

## Partitioning of Total Deviations

(a)

Total Deviations $Y_{i}-\bar{Y}$
(b)

Deviations $y_{i}-\hat{Y}_{i}$
(c)

Deviations $\hat{Y}_{i}-\bar{Y}$


## Measure of Total Variation

- The measure of total variation is denoted by

$$
S S T O=\sum\left(Y_{i}-\bar{Y}\right)^{2}
$$

- SSTO stands for total sum of squares
- If all $Y_{i}^{\prime} s$ are the same, SSTO $=0$
- The greater the variation of the $Y_{i}^{\prime} s$ the greater SSTO


## Variation after predictor effect

- The measure of variation of the $Y_{i}^{\prime} s$ that is still present when the predictor variable X is taken into account is the sum of the squared deviations

$$
S S E=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

- SSE denotes error sum of squares


## Regression Sum of Squares

- The difference between SSTO and SSE is SSR

$$
S S R=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

- SSR stands for regression sum of squares


## Partitioning of Sum of Squares



Deviation of fitted regression value around mean

$$
\underbrace{Y_{i}-\hat{Y}_{i}}
$$

Deviation around fitted regression line

## Remarkable Property

- The sums of the same deviations squared has the same property!

$$
\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

$$
\text { or } S S T O=S S R+S S E
$$

## Remarkable Property

Proof: $\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}$

$$
\begin{aligned}
& \sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum\left[\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)\right]^{2} \\
& \quad=\sum\left[\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\left(Y_{i}-\hat{Y}_{i}\right)^{2}+2\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)\right] \\
& \quad=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}+2 \sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)
\end{aligned}
$$

but

$$
\sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)=\sum \hat{Y}_{i}\left(Y_{i}-\hat{Y}_{i}\right)-\sum \bar{Y}\left(Y_{i}-\hat{Y}_{i}\right)=0
$$

By properties previously demonstrated. Namely

$$
\sum \hat{Y}_{i} e_{i}=0
$$

and

$$
\sum e_{i}=0
$$

## Remember: Lecture 3

- The $i^{\text {th }}$ residual is defined to be

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

- The sum of the residuals is zero:

$$
\begin{aligned}
\sum_{i} e_{i} & =\sum\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& =\sum Y_{i}-n b_{0}-b_{1} \sum X_{i} \\
& =0
\end{aligned}
$$

By first normal equation.

## Remember: Lecture 3

The sum of the weighted residuals is zero when the residual in the $i^{t h}$ trial is weighted by the fitted value of the response variable for the $i^{t h}$ trial

$$
\begin{aligned}
\sum_{i} \hat{Y}_{i} e_{i} & =\sum_{i}\left(b_{0}+b_{1} X_{i}\right) e_{i} \\
& =b_{0} \sum_{i} e_{i}+b_{1} \sum_{i} e_{i} X_{i} \\
& =0
\end{aligned}
$$

By previous properties. The left is given by $\sum e_{i}=0$, the right can be expanded to yield the second normal equation.

## Breakdown of Degrees of Freedom

- SSTO
- 1 linear constraint due to the calculation and inclusion of the mean
- n -1 degrees of freedom
- SSE
- 2 linear constraints arising from the estimation of $\beta_{1}$ and $\beta_{0}$
- n -2 degrees of freedom
- SSR
- Two degrees of freedom in the regression parameters, one is lost due to linear constraint
- 1 degree of freedom


## Mean Squares

A sum of squares divided by its associated degrees of freedom is called a mean square
The regression mean square is

$$
M S R=\frac{S S R}{1}=S S R
$$

The error mean square is

$$
M S E=\frac{S S E}{n-2}
$$

## ANOVA table for simple linear regression

| Source of Variation | SS | df | MS | $E\{M S\}$ |
| :---: | :---: | :---: | :---: | :---: |
| Regression | $S S R=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$ | 1 | $M S R=S S R / 1$ | $\sigma^{2}+\beta_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}$ |
| Error | $S S E=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ | $n-2$ | $M S E=S S E /(n-2)$ | $\sigma^{2}$ |
| Total | $S S T O=\sum\left(Y_{i}-Y\right)^{2}$ | $n-1$ |  |  |

## $E\{M S E\}=\sigma^{2}$

- Remember the following theorem, presented in an earlier lecture.

For the normal error regression model, $\frac{\text { SSE }}{\sigma^{2}}$ is distributed as $\chi^{2}$ with $n-2$ degrees of freedom and is independent of both $b_{0}$ and $b_{1}$.

Rewritten this yields

$$
S S E / \sigma^{2} \sim \chi^{2}(n-2)
$$

- That means that $E\left\{S S E / \sigma^{2}\right\}=n-2$
- And thus that $E\{S S E /(n-2)\}=E\{M S E\}=\sigma^{2}$


## $E\{M S R\}=\sigma^{2}+\beta_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}$

- To begin, we take an alternative but equivalent form for SSR

$$
S S R=b_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}
$$

- And note that, by definition of variance we can write

$$
\sigma^{2}\left\{b_{1}\right\}=E\left\{b_{1}^{2}\right\}-\left(E\left\{b_{1}\right\}\right)^{2}
$$

## $E\{M S R\}=\sigma^{2}+\beta_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}$

- But we know that $b_{1}$ is an unbiased estimator of $\beta_{1}$ so $E\left\{b_{1}\right\}=\beta_{1}$
- We also know (from previous lectures) that

$$
\sigma^{2}\left\{b_{1}\right\}=\frac{\sigma^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}
$$

- So we can rearrange terms and plug in

$$
\begin{aligned}
\sigma^{2}\left\{b_{1}\right\} & =E\left\{b_{1}^{2}\right\}-\left(E\left\{b_{1}\right\}\right)^{2} \\
E\left\{b_{1}^{2}\right\} & =\frac{\sigma^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}+\beta_{1}^{2}
\end{aligned}
$$

## $E\{M S R\}=\sigma^{2}+\beta_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}$

- From the previous slide

$$
E\left\{b_{1}^{2}\right\}=\frac{\sigma^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}+\beta_{1}^{2}
$$

- Which brings us to our desired result

$$
E\{M S R\}=E\{S S R / 1\}=E\left\{b_{1}^{2}\right\} \sum\left(X_{i}-\bar{X}\right)^{2}=\sigma^{2}+\beta_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}
$$

## Comments and Intuition

- The mean of the sampling distribution of MSE is $\sigma^{2}$ regardless of whether X and Y are linearly related (i.e. whether $\beta_{1}=0$ )
- The mean of the sampling distribution of MSR is also $\sigma^{2}$ when $\beta_{1}=0$.
- When $\beta_{1}=0$ the sampling distributions of MSR and MSE tend to be the same

This intuition leads us to a battery of simple rules for constructing linear regression tests

## F Test of $\beta_{1}=0$ vs. $\beta_{1} \neq 0$

ANOVA provides a battery of useful tests. For example, ANOVA provides an easy test for

Two-sided t-test statistic from before

Two-sided test

$$
\begin{array}{lll}
H_{0}: \beta_{1}=0 \\
H_{a}: & \beta_{1} \neq 0
\end{array}
$$

$$
t^{*}=\frac{b_{1}-0}{s\left\{b_{1}\right\}}
$$

ANOVA test statistic

$$
F^{*}=\frac{M S R}{M S E}
$$

The ANOVA framework makes many common linear regression tests into almost "shorthand."

## Sampling distribution of $F^{*}$

- The sampling distribution of $F^{*}$ when $H_{0}: \beta_{1}=0$ holds can be derived starting from Cochran's theorem


## Cochran's theorem

If all n observations $Y_{i}$ come from the same normal distribution with mean $\mu$ and variance $\sigma^{2}$, and SSTO is decomposed into $k$ sums of squares $S S_{r}$, each with degrees of freedom $d f_{r}$, then the $S S_{r} / \sigma^{2}$ terms are independent $\chi^{2}$ variables with $d f_{r}$ degrees of freedom if

$$
\sum_{r=1}^{k} d f_{r}=n-1
$$

Does this directly apply to the regression case?

## The F Test

We have decomposed SSTO into two sums of squares SSR and SSE and their degrees of freedom are additive, hence, by Cochran's theorem: If $\beta_{1}=0$ so that all $Y_{i}$ have the same mean $\mu=\beta_{0}$ and the same variance $\sigma^{2}$, SSE / $\sigma^{2}$ and $S S R / \sigma^{2}$ are independent $\chi^{2}$ variables

## $F^{*}$ Test Statistic

- $F^{*}$ can be written as follows

$$
F^{*}=\frac{M S R}{M S E}=\frac{\frac{S S R / \sigma^{2}}{1}}{\frac{S S E / \sigma^{2}}{n-2}}
$$

- But by Cochran' s theorem, we have when $H_{0}$ holds

$$
F^{*} \sim \frac{\frac{\chi^{2}(1)}{1}}{\frac{\chi^{2}(n-2)}{n-2}}
$$

## F Distribution

- The F distribution is the ratio of two independent $\chi^{2}$ random variables.
- The test statistic $F^{*}$ follows the distribution $F^{*} \sim F(1, n-2)$


## Hypothesis Test Decision Rule

Since $F^{*}$ is distributed as $F(1, n-2)$ when $H_{0}$ holds, the decision rule to follow when the risk of a Type I error is to be controlled at $\alpha$ is:

If $F^{*} \leq F(1-\alpha ; 1, n-2)$, conclude $H_{0}$
If $F^{*}>F(1-\alpha ; 1, n-2)$, conclude $H_{a}$

## F distribution

- PDF, CDF, Inverse CDF of F distribution


- Note, MSR/MSE must be big in order to reject hypothesis.


## Partitioning of Total Deviations

Does this make sense? When is MSR/MSE big?


## General Linear Test

- The test of $\beta_{1}=0$ versus $\beta_{1} \neq 0$ is but a single example of a general test for a linear statistical models.
- The general linear test has three parts
- Full Model
- Reduced Model
- Test Statistic


## Full Model Fit

- A full linear model is first fit to the data

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Using this model the error sum of squares is obtained, here for example the simple linear model with non-zero slope is the "full" model

$$
\operatorname{SSE}(F)=\sum\left[Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right]^{2}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\operatorname{SSE}
$$

## Fit Reduced Model

- One can test the hypothesis that a simpler model is a "better" model via a general linear test (which is really a likelihood ratio test in disguise). For instance, consider a "reduced" model in which the slope is zero (i.e. no relationship between input and output).
$H_{0}: \beta_{1}=0$
$H_{a}: \beta_{1} \neq 0$
- The model when $H_{0}$ holds is called the reduced or restricted model.

$$
Y_{i}=\beta_{0}+\epsilon_{i}
$$

- The SSE for the reduced model is obtained

$$
\operatorname{SSE}(R)=\sum\left(Y_{i}-b_{0}\right)^{2}=\sum\left(Y_{i}-\bar{Y}\right)^{2}=S S T O
$$

## Test Statistic

- The idea is to compare the two error sums of squares $\operatorname{SSE}(F)$ and $\operatorname{SSE}(\mathrm{R})$.
- Because the full model $F$ has more parameters than the reduced model $\mathrm{R} \operatorname{SSE}(F) \leq \operatorname{SSE}(R)$ always
- In the general linear test, the test statistic is

$$
F^{*}=\frac{\frac{\operatorname{SSE}(R)-\operatorname{SSE}(F)}{d f_{R}-d f_{F}}}{\frac{\operatorname{SSE}(F)}{d f_{F}}}
$$

which follows the F distribution when $H_{0}$ holds.

- $d f_{R}$ and $d f_{F}$ are those associated with the reduced and full model error sums of square respectively
- SSTO measures the variation in the observations $Y_{i}$ when $X$ is not considered
- SSE measures the variation in the $Y_{i}$ after a predictor variable $X$ is employed
- A natural measure of the effect of $X$ in reducing variation in $Y$ is to express the reduction in variation ( $S S T O-S S E=S S R$ ) as a proportion of the total variation

$$
R^{2}=\frac{S S R}{S S T O}=1-\frac{S S E}{S S T O}
$$

- Note that since $0 \leq S S E \leq S S T O$ then $0 \leq R^{2} \leq 1$


## Limitations of and misunderstandings about $R^{2}$

1. Claim: high $R^{2}$ indicates that useful predictions can be made. The prediction interval for a particular input of interest may still be wide even if $R^{2}$ is high.
2. Claim: high $R^{2}$ means that there is a good linear fit between predictor and output. It can be the case that an approximate (bad) linear fit to a truly curvilinear relationship might result in a high $R^{2}$.
3. Claim: low $R^{2}$ means that there is no relationship between input and output. Also not true since there can be clear and strong relationships between input and output that are not well explained by a linear functional relationship.
