
ANOVA

Dr. Frank Wood



ANOVA

I ANOVA is nothing new but is instead a way of organizing the
parts of linear regression so as to make easy inference recipes.

I Will return to ANOVA when discussing multiple regression
and other types of linear statistical models.



Partitioning Total Sum of Squares

I “The ANOVA approach is based on the partitioning of sums
of squares and degrees of freedom associated with the
response variable Y”

I We start with the observed deviations of Yi around the
observed mean

Yi − Ȳ



Partitioning of Total Deviations



Measure of Total Variation

I The measure of total variation is denoted by

SSTO =
∑

(Yi − Ȳ )2

I SSTO stands for total sum of squares

I If all Y ′i s are the same, SSTO = 0

I The greater the variation of the Y ′i s the greater SSTO



Variation after predictor effect

I The measure of variation of the Y ′i s that is still present when
the predictor variable X is taken into account is the sum of
the squared deviations

SSE =
∑

(Yi − Ŷi )
2

I SSE denotes error sum of squares



Regression Sum of Squares

I The difference between SSTO and SSE is SSR

SSR =
∑

(Ŷi − Ȳ )2

I SSR stands for regression sum of squares



Partitioning of Sum of Squares

Yi − Ȳ︸ ︷︷ ︸
Total deviation

= Ŷi − Ȳ︸ ︷︷ ︸
Deviation of fitted regression value around mean

+ Yi − Ŷi︸ ︷︷ ︸
Deviation around fitted regression line



Remarkable Property

I The sums of the same deviations squared has the same
property!∑

(Yi − Ȳ )2 =
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2

or SSTO = SSR + SSE



Remarkable Property

Proof:
∑

(Yi − Ȳ )2 =
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2∑

(Yi − Ȳ )2 =
∑

[(Ŷi − Ȳ ) + (Yi − Ŷi )]2

=
∑

[(Ŷi − Ȳ )2 + (Yi − Ŷi )
2 + 2(Ŷi − Ȳ )(Yi − Ŷi )]

=
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2 + 2

∑
(Ŷi − Ȳ )(Yi − Ŷi )

but∑
(Ŷi − Ȳ )(Yi − Ŷi ) =

∑
Ŷi (Yi − Ŷi )−

∑
Ȳ (Yi − Ŷi ) = 0

By properties previously demonstrated. Namely∑
Ŷiei = 0

and ∑
ei = 0



Remember: Lecture 3

I The i th residual is defined to be

ei = Yi − Ŷi

I The sum of the residuals is zero:∑
i

ei =
∑

(Yi − b0 − b1Xi )

=
∑

Yi − nb0 − b1

∑
Xi

= 0

By first normal equation.



Remember: Lecture 3

The sum of the weighted residuals is zero when the residual in the
i th trial is weighted by the fitted value of the response variable for
the i th trial ∑

i

Ŷiei =
∑

i

(b0 + b1Xi )ei

= b0

∑
i

ei + b1

∑
i

eiXi

= 0

By previous properties. The left is given by
∑

ei = 0, the right can
be expanded to yield the second normal equation.



Breakdown of Degrees of Freedom

I SSTO
I 1 linear constraint due to the calculation and inclusion of the

mean
I n-1 degrees of freedom

I SSE
I 2 linear constraints arising from the estimation of β1 and β0

I n-2 degrees of freedom

I SSR
I Two degrees of freedom in the regression parameters, one is

lost due to linear constraint
I 1 degree of freedom



Mean Squares

A sum of squares divided by its associated degrees of freedom is
called a mean square
The regression mean square is

MSR =
SSR

1
= SSR

The error mean square is

MSE =
SSE

n − 2



ANOVA table for simple linear regression

Source of Variation SS df MS E{MS}
Regression SSR =

∑
(Ŷi − Ȳ )2 1 MSR = SSR/1 σ2 + β2

1

∑
(Xi − X̄ )2

Error SSE =
∑

(Yi − Ŷi )
2 n − 2 MSE = SSE/(n − 2) σ2

Total SSTO =
∑

(Yi − Ȳ )2 n − 1



E{MSE} = σ2

I Remember the following theorem, presented in an earlier
lecture.

For the normal error regression model, SSE
σ2 is distributed as

χ2 with n − 2 degrees of freedom and is independent of both
b0 and b1.

Rewritten this yields

SSE/σ2 ∼ χ2(n − 2)

I That means that E{SSE/σ2} = n − 2

I And thus that E{SSE/(n − 2)} = E{MSE} = σ2



E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

I To begin, we take an alternative but equivalent form for SSR

SSR = b2
1

∑
(Xi − X̄ )2

I And note that, by definition of variance we can write

σ2{b1} = E{b2
1} − (E{b1})2



E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

I But we know that b1 is an unbiased estimator of β1 so
E{b1} = β1

I We also know (from previous lectures) that

σ2{b1} =
σ2∑

(Xi − X̄ )2

I So we can rearrange terms and plug in

σ2{b1} = E{b2
1} − (E{b1})2

E{b2
1} =

σ2∑
(Xi − X̄ )2

+ β2
1



E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

I From the previous slide

E{b2
1} =

σ2∑
(Xi − X̄ )2

+ β2
1

I Which brings us to our desired result

E{MSR} = E{SSR/1} = E{b2
1}

∑
(Xi−X̄ )2 = σ2+β2

1

∑
(Xi−X̄ )2



Comments and Intuition

I The mean of the sampling distribution of MSE is σ2 regardless
of whether X and Y are linearly related (i.e. whether β1 = 0)

I The mean of the sampling distribution of MSR is also σ2

when β1 = 0.
I When β1 = 0 the sampling distributions of MSR and MSE

tend to be the same

This intuition leads us to a battery of simple rules for constructing
linear regression tests



F Test of β1 = 0 vs. β1 6= 0

ANOVA provides a battery of useful tests. For example, ANOVA
provides an easy test for

Two-sided test

H0 : β1 = 0

Ha : β1 6= 0

Two-sided t-test statistic from
before

t∗ =
b1 − 0

s{b1}
ANOVA test statistic

F ∗ =
MSR

MSE

The ANOVA framework makes many common linear regression
tests into almost “shorthand.”



Sampling distribution of F ∗

I The sampling distribution of F ∗ when H0 : β1 = 0 holds can
be derived starting from Cochran’s theorem

Cochran’s theorem
If all n observations Yi come from the same normal distribution
with mean µ and variance σ2, and SSTO is decomposed into k
sums of squares SSr , each with degrees of freedom dfr , then the
SSr/σ

2 terms are independent χ2 variables with dfr degrees of
freedom if

k∑
r=1

dfr = n − 1

Does this directly apply to the regression case?



The F Test

We have decomposed SSTO into two sums of squares SSR and
SSE and their degrees of freedom are additive, hence, by Cochran’s
theorem: If β1 = 0 so that all Yi have the same mean µ = β0 and
the same variance σ2, SSE/σ2 and SSR/σ2 are independent χ2

variables



F ∗ Test Statistic

I F ∗ can be written as follows

F ∗ =
MSR

MSE
=

SSR/σ2

1
SSE/σ2

n−2

I But by Cochran’ s theorem, we have when H0 holds

F ∗ ∼
χ2(1)

1
χ2(n−2)

n−2



F Distribution

I The F distribution is the ratio of two independent χ2 random
variables.

I The test statistic F ∗ follows the distribution
F ∗ ∼ F (1, n − 2)



Hypothesis Test Decision Rule

Since F ∗ is distributed as F (1, n − 2) when H0 holds, the decision
rule to follow when the risk of a Type I error is to be controlled at
α is:

If F ∗ ≤ F (1− α; 1, n − 2), conclude H0

If F ∗ > F (1− α; 1, n − 2), conclude Ha



F distribution

I PDF, CDF, Inverse CDF of F distribution

I Note, MSR/MSE must be big in order to reject hypothesis.



Partitioning of Total Deviations

Does this make sense? When is MSR/MSE big?



General Linear Test

I The test of β1 = 0 versus β1 6= 0 is but a single example of a
general test for a linear statistical models.

I The general linear test has three parts
I Full Model
I Reduced Model
I Test Statistic



Full Model Fit

I A full linear model is first fit to the data

Yi = β0 + β1Xi + εi

I Using this model the error sum of squares is obtained, here for
example the simple linear model with non-zero slope is the
“full” model

SSE (F ) =
∑

[Yi − (b0 + b1Xi )]2 =
∑

(Yi − Ŷi )
2 = SSE



Fit Reduced Model

I One can test the hypothesis that a simpler model is a
“better” model via a general linear test (which is really a
likelihood ratio test in disguise). For instance, consider a
“reduced” model in which the slope is zero (i.e. no
relationship between input and output).

H0 : β1 = 0
Ha : β1 6= 0

I The model when H0 holds is called the reduced or restricted
model.

Yi = β0 + εi

I The SSE for the reduced model is obtained

SSE (R) =
∑

(Yi − b0)2 =
∑

(Yi − Ȳ )2 = SSTO



Test Statistic

I The idea is to compare the two error sums of squares SSE(F)
and SSE(R).

I Because the full model F has more parameters than the
reduced model R SSE (F ) ≤ SSE (R) always

I In the general linear test, the test statistic is

F ∗ =

SSE(R)−SSE(F )
dfR−dfF
SSE(F )

dfF

which follows the F distribution when H0 holds.

I dfR and dfF are those associated with the reduced and full
model error sums of square respectively



R2

I SSTO measures the variation in the observations Yi when X is
not considered

I SSE measures the variation in the Yi after a predictor variable
X is employed

I A natural measure of the effect of X in reducing variation in Y
is to express the reduction in variation (SSTO − SSE = SSR)
as a proportion of the total variation

R2 =
SSR

SSTO
= 1− SSE

SSTO

I Note that since 0 ≤ SSE ≤ SSTO then 0 ≤ R2 ≤ 1



Limitations of and misunderstandings about R2

1. Claim: high R2 indicates that useful predictions can be made.
The prediction interval for a particular input of interest may
still be wide even if R2 is high.

2. Claim: high R2 means that there is a good linear fit between
predictor and output. It can be the case that an approximate
(bad) linear fit to a truly curvilinear relationship might result
in a high R2.

3. Claim: low R2 means that there is no relationship between
input and output. Also not true since there can be clear and
strong relationships between input and output that are not
well explained by a linear functional relationship.


