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Quick Example - Scatter Plot

Use linear regression/demo.m



Linear Regression

I Want to find parameters for a function of the form

Yi = β0 + β1Xi + εi

I Distribution of error random variable not specified



Quick Example - Scatter Plot



Formal Statement of Model

Yi = β0 + β1Xi + εi

I Yi value of the response variable in the i th trial

I β0 and β1 are parameters

I Xi is a known constant, the value of the predictor variable in
the i th trial

I εi is a random error term with mean E(εi ) and variance
Var(εi ) = σ2

I i = 1, . . . , n



Properties

I The response Yi is the sum of two components
I Constant term β0 + β1Xi

I Random term εi

I The expected response is

E(Yi ) = E(β0 + β1Xi + εi )

= β0 + β1Xi + E(εi )

= β0 + β1Xi



Expectation Review

I Definition

E(X ) = E(X ) =

∫
XP(X )dX , X ∈ R

I Linearity property

E(aX ) = a E(X )

E(aX + bY ) = a E(X ) + b E(Y )

I Obvious from definition



Example Expectation Derivation

P(X ) = 2X , 0 ≤ X ≤ 1

Expectation

E(X ) =

∫ 1

0
XP(X )dX

=

∫ 1

0
2X 3dX

=
2X 2

3
|10

=
2

3



Expectation of a Product of Random Variables

If X,Y are random variables with joint distribution P(X ,Y ) then
the expectation of the product is given by

E(XY ) =

∫
XY

XYP(X ,Y )dXdY .



Expectation of a product of random variables

What if X and Y are independent? If X and Y are independent
with density functions f and g respectively then

E(XY ) =

∫
XY

XYf (X )g(Y )dXdY

=

∫
X

∫
Y

XYf (X )g(Y )dXdY

=

∫
X

Xf (X )[

∫
Y

Yg(Y )dY ]dX

=

∫
X

Xf (X ) E(Y )dX

= E(X ) E(Y )



Regression Function

I The response Yi comes from a probability distribution with
mean

E(Yi ) = β0 + β1Xi

I This means the regression function is

E(Y ) = β0 + β1X

Since the regression function relates the means of the
probability distributions of Y for a given X to the level of X



Error Terms

I The response Yi in the i th trial exceeds or falls short of the
value of the regression function by the error term amount εi

I The error terms εi are assumed to have constant variance σ2



Response Variance

Responses Yi have the same constant variance

Var(Yi ) = Var(β0 + β1Xi + εi )

= Var(εi )

= σ2



Variance (2nd central moment) Review

I Continuous distribution

Var(X ) = E((X −E(X ))2) =

∫
(X −E(X ))2P(X )dX , X ∈ R

I Discrete distribution

Var(X ) = E((X − E(X ))2) =
∑

i

(Xi − E(X ))2P(Xi ), X ∈ Z



Alternative Form for Variance

Var(X ) = E((X − E(X ))2)

= E((X 2 − 2X E(X ) + E(X )2))

= E(X 2)− 2 E(X ) E(X ) + E(X )2

= E(X 2)− 2 E(X )2 + E(X )2

= E(X 2)− E(X )2.



Example Variance Derivation

P(X ) = 2X , 0 ≤ X ≤ 1

Var(X ) = E((X − E(X ))2) = E(X 2)− E(X )2

=

∫ 1

0
2XX 2dX − (

2

3
)2

=
2X 4

4
|10 −

4

9

=
1

2
− 4

9
=

1

18



Variance Properties

Var(aX ) = a2 Var(X )

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) ifX ⊥⊥ Y

Var(a + cX ) = c2 Var(X ) ifa, c both constant

More generally

Var(
∑

aiXi ) =
∑

i

∑
j

aiajCov(Xi ,Xj)



Covariance

I The covariance between two real-valued random variables X
and Y, with expected values E(X ) = µ and E(Y ) = ν is
defined as

Cov(X ,Y ) = E((X − µ)(Y − ν))

I Which can be rewritten as

Cov(X ,Y ) = E(XY − νX − µY + µν),

Cov(X ,Y ) = E(XY )− ν E(X )− µE(Y ) + µν,

Cov(X ,Y ) = E(XY )− µν.



Covariance of Independent Variables

If X and Y are independent, then their covariance is zero. This
follows because under independence

E(XY ) = E(X ) E(Y ) = µν.

and then
Cov(XY ) = µν − µν = 0.



Least Squares Linear Regression

I Seek to minimize

Q =
n∑

i=1

(Yi − (β0 + β1Xi ))2

I By careful choice of b0 and b1 where b0 is a point estimator
for β0 and b1 is the same for β1

How?



Guess #1



Guess #2



Function maximization

I Important technique to remember!
I Take derivative
I Set result equal to zero and solve
I Test second derivative at that point

I Question: does this always give you the maximum?

I Going further: multiple variables, convex optimization



Function Maximization

Find
argmax

x
−x2 + ln(x)
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Least Squares Max(min)imization

I Function to minimize w.r.t. b0 and b1, b0 and b1 are called
point estimators of β0 and β1 respectively

Q =
n∑

i=1

(Yi − (b0 + b1Xi ))2

I Minimize this by maximizing -Q

I Either way, find partials and set both equal to zero

dQ

db0
= 0

dQ

db1
= 0



Normal Equations

I The result of this maximization step are called the normal
equations. ∑

Yi = nb0 + b1

∑
Xi∑

XiYi = b0

∑
Xi + b1

∑
X 2

i

I This is a system of two equations and two unknowns. The
solution is given by. . .



Solution to Normal Equations

After a lot of algebra one arrives at

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄

X̄ =

∑
Xi

n

Ȳ =

∑
Yi

n


