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Extra Sums of Squares

I A topic unique to multiple regression

I An extra sum of squares measures the marginal decrease in
the error sum of squares when on or several predictor variables
are added to the regression model, given that other variables
are already in the model.

I Equivalently-one can view an extra sum of squares as
measuring the marginal increase in the regression sum of
squares



Example

I Multiple regression
– Output: Body fat percentage – Input:
1. triceps skin fold thickness(X1)
2. thigh circumference (X2)
3. midarm circumference (X3)

I Aim
–Replace cumbersome immersion procedure with model.

I Goal
– Determine which predictor vafriables provide a good model.



The Data

Figure:



Regression of Y on X1

Figure:



Regression of Y on X2

Figure:



Regression of Y on X1 and X2

Figure:



Regression of Y on X1 and X2 cont.

Figure:



Notation

I SSR X1 only denoted by -SSR(X1)=352.27

I SSE X1 only denoted by -SSE(X1)=143.12

I Accordingly,
–SSR(X1,X2)=385.44
–SSE(X1,X2)=109.95



More Powerful Model, Smaller SSE

I When X1 and X2 are in the model, SSE(X1,X2)=109.95 is
smaller than when the model contains only X1

I The difference is called an extra sum of squares and will be
denoted by
–SSR(X2|X1) = SSE (X1)− SSE (X1,X2) = 33.17

I The extra sum of squares SSR(X2|X1) measure the marginal
effect of adding X2 to the regression model when X1 is already
in the model



SSR increase ¡-¿ SSE decrease

The extra sum of squares SSR(X1|X2) can equivalently be viewed
as the marginal increase in the regression sum of squares.
–SSR(X2|X1) = SSR(X1,X2)− SSR(X1)
–= 385.44− 352.27 = 33.17



Why does this relationship exist?

I Remember SSTO = SSR + SSE

I SSTO measures only the variability of the Y’s and does not
depend on the regression model fitted.

I Any increase in SSR must be accompanied by a corresponding
decrease in the SSE.



Example relations

SSR(X3|X1,X2) = SSE (X1,X2)− SSE (X1,X2,X3) = 11.54
or SSR(X3|X1,X2) = SSR(X1,X2,X3)− SSR(X1,X2) = 11.54
or with multiple variables included at time
–SSR(X2,X3|X1) = SSE (X1)− SSE (X1,X2,X3) = 44.71
–or SSR(X2,X3|X1) = SSR(X1,X2,X3)− SSR(X1) = 44.71



Extra sums of squares

An extra sum of squares always involves the difference between the
error sum of squares for the regression model containing the X
variables in the model already the error sum of squares for the
regression model containing both the original X variables and the
new X variables.



Definitions

I Definition
–SSR(X1|X2) = SSE (X2)− SSE (X1,X2)

I Equivalently
–SSR(X1|X2) = SSR(X1,X2)− SSR(X2)

I We can switch the order of X1 and X2 in these expressions

I We can easily generalize these definitions for more than two
variables
–SSR(X3|X1,X2) = SSE (X1,X2)− SSE (X1,X2,X3)
–SSR(X3|X1,X2) = SSR(X1,X2,X3)− SSR(X1,X2)



N! different partitions

Figure:



ANOVA Table

Various software packages can provide extra sums of squares for
regression analysis. These are usually provided in the order in
which the input variables are provided to the system, for instance

Figure:



Why? Who cares?

Extra sums of squares are of interest because they occur in a
variety of tests about regression coefficients where the question of
concern is whether certain X variables can be dropped from the
regression model.



Test whether a single βk = 0

I Does Xk provide statistically significant improvement to the
regression model fit?

I We can use the general linear test approach

I Example
–First order model with three predictor variables
Yi = β) + β1Xi1 + β2Xi2 + β3Xi3 + εi
–We want to answer the following hypotheses test

H0 : β3 = 0
H1 : β3 6= 0



Test whether a single βk = 0

I For the full model we have SSE (F ) = SSE (X1,X2,X3)

I The reduced model is Yi = β) + β1Xi1 + β2Xi2 + εi
I And for this model we have SSE (R) = SSE (X1,X2)

I Where there are dfr = n − 3 degrees of freedom associated
with the reduced model



Test whether a single βk = 0

The general linear test statistics is

F ∗ = SSE(R)−SSE(F )
dfR−dfF

/SSE(F )
dfF

which becomes

F ∗ = SSE(X1,X2)−SSE(X1,X2,X3)
(n−3)−(n−4) /SSE(X1,X2,X3)

n−4

but SSE (X1,X2)− SSE (X1,X2,X3) = SSR(X3|X1,X2)



Test whether a single βk = 0

The general linear test statistics is

F ∗ = SSR(X3|X1,X2)
1 /SSE(X1,X2,X3)

n−4 = MSR(X3|X1,X2)
MSE(X1,X2,X3)

Extra sum of squares has one associated degree of freedom.



Example

Body fat: Can X3 (midarm circumference) be dropped from the
model?

Figure:

F ∗ = SSR(X3|X1,X2)
1 /SSE(X1,X2,X3)

n−4 = 1.88



Example Cont.

I For α = .01 we require F (.99; 1, 16) = 8.53

I We observe F ∗ = 1.88

I We conclude H0 : β3 = 0



Test whether βk = 0

Another example
H0 : β2 = β3 = 0
H1 : not both β2 and β3 are zero
The general linear test can be used again

F ∗ = SSE(X1)−SSE(X1,X2,X3)
(n−2)−(n−4) /SSE(X1,X2,X3)

n−4

But SSE (X1)− SSE (X1,X2,X3) = SSR(X2,X3|X1)
so the expression can be simplified.



Tests concerning regression coefficients

Summary:
– General linear test can be used to determine whether or not a
predictor variable( or sets of variables) should be included in the
model
– The ANOVA SSE’s can be used to compute F ∗ test statistics
– Some more general tests require fitting the model more than
once unlike the examples given.



Standardized Multiple Regression

I Numerical precision errors can occur when
- (X ′X )−1 is poorly conditioned near singular : colinearity
- And when the predictor variables have substantially different
magnitudes

I Solution
– Regularization
– Standardized multiple regression

I First, transformed variables



Correlation Transformation

Makes all entries in X ′X matrix for the transformed variables fall
between -1 and 1 inclusive
Another motivation
– Lack of comparability of regression coefficients
Ŷ = 200 + 20000X1 + .2X2

Y in dollars, X1 in thousand dollars, X2 in cents
– Which is most important predictor?



Correlation Transformation

1. Centering

Yi−Ȳ
sy

Xik−X̄
sk

, k − 1, ..., p − 1

2. Scaling

sy =
√P

(Yi−Ȳ )2

n−1

sk =
√P

(Xik−X̄k )2

n−1 , k − 1, ..., p − 1



Correlation Transformation

Transformed variables
Y ∗i = 1√

n−1
(Yi−Ȳ

sy
)

X ∗ik = 1√
n−1

(Xik−X̄k
sk

), k = 1, ..., p − 1



Standardized Regression Model

Define the matrix consisting of the transformed X variables

X =


X11 ... X1,p−1

X21 ... X2,p−1

...
Xn1 ... Xn,p−1


And define X ′X = rxx



Correlation matrix of the X variables

Can show that

rxx =


1 r12 ... r1,p−1

r21 1 ... r2,p−1

...
rp−1,1 rp−1,2 ... 1


where each entry is just the coefficient of correlation between Xi

and Xj

∑
x∗i1x

∗
i2 =

∑
(
Xi1 − X̄1√

n − 1s1
)(

Xi2 − X̄2√
n − 1s2

)

=
1

n − 1

∑
(Xi1 − X̄1)(Xi2 − X̄2)

s1s2

=

∑
(Xi1 − X̄1)(Xi2 − X̄2)

[
∑

(Xi1 − X̄1)2
∑

(Xi2 − X̄2)2]1/2



Standardized Regression Model

I If we define in a similar way X ′Y = ryx , where ryx is the
coefficient of simple correlations between the response variable
Y and Xj

I Then we can set up a standard linear regression problem

rxxb = ryx



Standardized Regression Model

The solution

b =



b∗1
b∗2
.
.
.

b∗p−1


can be related to the solution to the untransformed regression
problem through the relationship

bk = (
sy
sk

)b∗k , k = 1, ..., p − 1

b0 = Ȳ − b1X̄1 − ...− bp−1X̄p−1



Multi-colinearity

I Brief summary

I (X ′X )−1 must be full rank to compute the regression solution
–rank(AB) <= min(rank(A), rank(B))

I Multi-colinearity means that rows of X are linearly dependent

I Regression solution is degenerate

I High degrees of colinearity produce numerical instability

I Very important to consider in real world applications


