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Review Regression Estimation

We can solve this equation

X′Xb = X′y

(if the inverse of X′X exists) by the following

(X′X)−1X′Xb = (X′X)−1X′y

and since
(X′X)−1X′X = I

we have
b = (X′X)−1X′y



Least Square Solution

The matrix normal equations can be derived directly from the
minimization of

Q = (y − Xβ)′(y − Xβ)

w.r.t to β



Fitted Values and Residuals

Let the vector of the fitted values are

ŷ =



ŷ1

ŷ2

.

.

.
ŷn


in matrix notation we then have ŷ = Xb



Hat Matrix-Puts hat on y

We can also directly express the fitted values in terms of X and y
matrices

ŷ = X(X′X)−1X′y

and we can further define H, the “hat matrix”

ŷ = Hy H = X(X′X)−1X′

The hat matrix plans an important role in diagnostics for
regression analysis.



Hat Matrix Properties

1. the hat matrix is symmetric
2. the hat matrix is idempotent, i.e. HH = H

Important idempotent matrix property

For a symmetric and idempotent matrix A, rank(A) = trace(A),
the number of non-zero eigenvalues of A.



Residuals

The residuals, like the fitted value ŷ can be expressed as linear
combinations of the response variable observations Yi

e = y − ŷ = y −Hy = (I−H)y

also, remember

e = y − ŷ = y − Xb

these are equivalent.



Covariance of Residuals

Starting with
e = (I−H)y

we see that
σ2{e} = (I−H)σ2{y}(I−H)′

but
σ2{y} = σ2{ε} = σ2I

which means that

σ2{e} = σ2(I−H)I(I−H) = σ2(I−H)(I−H)

and since I−H is idempotent (check) we have σ2{e} = σ2(I−H)



ANOVA

We can express the ANOVA results in matrix form as well, starting
with

SSTO =
∑

(Yi − Ȳ )2 =
∑

Y 2
i −

(
P

Yi )
2

n

where

y′y =
∑

Y 2
i

(
P

Yi )
2

n = 1
ny′Jy

leaving

SSTO = y′y − 1
ny′Jy



SSE

Remember
SSE =

∑
e2
i =

∑
(Yi − Ŷi )

2

In matrix form this is

SSE = e′e = (y − Xb)′(y − Xb)

= y′y − 2b′X′y + b′X′Xb

= y′y − 2b′X′y + b′X′X(X′X)−1X′y

= y′y − 2b′X′y + b′IX′y

Which when simplified yields SSE = y′y − b′X′y or, remembering
that b = (X′X)−1X′y yields

SSE = y′y − y′X(X′X)−1X′y



SSR

We know that SSR = SSTO − SSE , where

SSTO = y′y − 1

n
y′Jy and SSE = y′y − b′X′y

From this

SSR = b′X′y − 1

n
y′Jy

and replacing b like before

SSR = y′X(X′X)−1X′y − 1

n
y′Jy



Quadratic forms

I The ANOVA sums of squares can be interpretted as quadratic
forms. An example of a quadratic form is given by

5Y 2
1 + 6Y1Y2 + 4Y 2

2

I Note that this can be expressed in matrix notation as (where
A is always (in the case of a quadratic form) a symmetric
matrix)

(
Y1 Y2

)(5 3
3 4

)(
Y1

Y2

)
= y′Ay

I The off diagonal terms must both equal half the coefficient of
the cross-product because multiplication is associative.



Quadratic Forms

I In general, a quadratic form is defined by

y′Ay =
∑

i

∑
j aijYiYj where aij = aji

with A the matrix of the quadratic form.

I The ANOVA sums SSTO,SSE and SSR can all be arranged
into quadratic forms.

SSTO = y′(I− 1

n
J)y

SSE = y′(I−H)y

SSR = y′(H− 1

n
J)y



Quadratic Forms

Cochran’s Theorem
Let X1,X2, . . . ,Xn be independent, N(0, σ2)-distributed random
variables, and suppose that

n∑
i=1

X 2
i = Q1 + Q2 + . . .+ Qk ,

where Q1,Q2, . . . ,Qk are nonnegative-definite quadratic forms in
the random variables X1,X2, . . . ,Xn, with rank(Ai ) = ri ,
i = 1, 2, . . . , k. namely,

Qi = X′AX, i = 1, 2, . . . , k .

If r1 + r2 + . . .+ rk = n, then

1. Q1,Q2, . . . ,Qk are independent; and

2. Qi ∼ σ2χ2(ri ), i = 1, 2, . . . , k



Tests and Inference

I The ANOVA tests and inferences we can perform are the
same as before

I Only the algebraic method of getting the quantities changes

I Matrix notation is a writing short-cut, not a computational
shortcut



Inference

We can derive the sampling variance of the β vector estimator by
remembering that b = (X′X)−1X′y = Ay

where A is a constant matrix

A = (X′X)−1X′ A′ = X(X′X)−1

Using the standard matrix covariance operator we see that

σ2{b} = Aσ2{y}A′



Variance of b

Since σ2{y} = σ2I we can write

σ2{b} = (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1I

= σ2(X′X)−1

Of course

E(b) = E((X′X)−1X′y) = (X′X)−1X′ E(y) = (X′X)−1X′Xβ = β



Variance of b

Of course this assumes that we know σ2. If we don’t, as usual,
replace it with MSE.

σ2{b} =

(
σ2

n + σ2X̄ 2P
(Xi−X̄ )2

−X̄σ2P
(Xi−X̄ )2

−X̄σ2P
(Xi−X̄ )2

σ2P
(Xi−X̄ )2

)

s2{b} = MSE (X′X)−1 =

(
MSE

n + X̄ 2MSEP
(Xi−X̄ )2

−X̄MSEP
(Xi−X̄ )2

−X̄MSEP
(Xi−X̄ )2

MSEP
(Xi−X̄ )2

)



Mean Response

I To estimate the mean response we can create the following
matrix

Xh =
(
1 Xh

)
I The prediction is then Ŷh = Xhb

Ŷh = X ′hb =
(
1 Xh

)(b0

b1

)
=
(
b0 + b1Xh

)



Variance of Mean Response

I Is given by

σ2{Ŷh} = σ2X ′h(X′X)−1Xh

and is arrived at in the same way as for the variance of β

I Similarly the estimated variance in matrix notation is given by

s2{Ŷh} = MSE (X ′h(X′X)−1Xh)



Wrap-Up

I Expectation and variance of random vector and matrices

I Simple linear regression in matrix form

I Next: multiple regression



Multiple regression

I One of the most widely used tools in statistical analysis

I Matrix expressions for multiple regression are the same as for
simple linear regression



Need for Several Predictor Variables

Often the response is best understood as being a function of
multiple input quantities

I Examples
I Spam filtering-regress the probability of an email being a spam

message against thousands of input variables
I Football prediction - regress the probability of a goal in some

short time span against the current state of the game.



First-Order with Two Predictor Variables

I When there are two predictor variables X1 and X2 the
regression model

Yi = β0 + β1Xi1 + β2Xi2 + εi

is called a first-order model with two predictor variables.

I A first order model is linear in the predictor variables.

I Xi1 and Xi2 are the values of the two predictor variables in the
i th trial.



Functional Form of Regression Surface

I Assuming noise equal to zero in expectation

E(Y ) = β0 + β1X1 + β2X2

I The form of this regression function is of a plane
I -e.g. E(Y ) = 10 + 2X1 + 5X2



Loess example



Meaning of Regression Coefficients

I β0 is the intercept when both X1 and X2 are zero;

I β1 indicates the change in the mean response E(Y ) per unit
increase in X1 when X2 is held constant

I β2 -vice versa

I Example: fix X2 = 2

E(Y ) = 10 + 2X1 + 5(2) = 20 + 2X1 X2 = 2

intercept changes but clearly linear

I In other words, all one dimensional restrictions of the
regression surface are lines.



Terminology

1. When the effect of X1 on the mean response does not depend
on the level X2 (and vice versa) the two predictor variables are said
to have additive effects or not to interact.
2. The parameters β1 and β2 are sometimes called partial
regression coefficients.



Comments

1. A planar response surface may not always be appropriate, but
even when not it is often a good approximate descriptor of the
regression function in ”local” regions of the input space
2. The meaning of the parameters can be determined by taking
partials of the regression function w.r.t. to each.



First order model with > 2 predictor variables

Let there be p − 1 predictor variables, then

Yi = β0 + β1Xi1 + β2Xi2 + ...+ β + p − 1Xi ,p−1 + εi

which can also be written as

Yi = β0 +

p−1∑
k=1

βkXik + εi

and if Xi0 = 1 is also can be written as

Yi =

p−1∑
k=1

βkXik + εi

where Xi0 = 1



Geometry of response surface

I In this setting the response surface is a hyperplane

I This is difficult to visualize but the same intuitions hold

I Fixing all but one input variables, each βp tells how much the
response variable will grow or decrease according to that one
input variable



General Linear Regression Model

We have arrived at the general regression model. In general the
X1, ...,Xp−1 variables in the regression model do not have to
represent different predictor variables, nor do they have to all be
quantitative(continuous).

The general model is

Yi =

p−1∑
k=1

βkXik + εi where Xi0 = 1

with response function when E(εi )=0 is

E(Y ) = β0 + β1X1 + ...+ βp−1Xp−1


