Matrix Approach to Linear Regresssion

Frank Wood

November 3, 2010

Random Vectors and Matrices

Let's say we have a vector consisting of three random variables

$$
\mathbf{y}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

The expectation of a random vector is defined as

$$
\mathbb{E}(\mathbf{y})=\left(\begin{array}{l}
\mathbb{E}\left(Y_{1}\right) \\
\mathbb{E}\left(Y_{2}\right) \\
\mathbb{E}\left(Y_{3}\right)
\end{array}\right)
$$

Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

$$
\mathbb{E}(\mathbf{y})=\left[\mathbb{E}\left(Y_{i j}\right)\right] \quad i=1, \ldots n ; j=1, \ldots, p
$$

Covariance Matrix of a Random Vector

The correlation of variances and covariances of and between the elements of a random vector can be collection into a matrix called the covariance matrix

$$
\operatorname{cov}(\mathbf{y})=\sigma^{2}\{\mathbf{y}\}=\left(\begin{array}{ccc}
\sigma^{2}\left(Y_{1}\right) & \sigma\left(Y_{1}, Y_{2}\right) & \sigma\left(Y_{1}, Y_{3}\right) \\
\sigma\left(Y_{2}, Y_{1}\right) & \sigma^{2}\left(Y_{2}\right) & \sigma\left(Y_{2}, Y_{3}\right) \\
\sigma\left(Y_{3}, Y_{1}\right) & \sigma\left(Y_{3}, Y_{2}\right) & \sigma^{2}\left(Y_{3}\right)
\end{array}\right)
$$

remember $\sigma\left(Y_{2}, Y_{1}\right)=\sigma\left(Y_{1}, Y_{2}\right)$ so the covariance matrix is symmetric

Derivation of Covariance Matrix

In vector terms the covariance matrix is defined by

$$
\sigma^{2}\{\mathbf{y}\}=\mathbb{E}(\mathbf{y}-\mathbb{E}(\mathbf{y}))(\mathbf{y}-\mathbb{E}(\mathbf{y}))^{\prime}
$$

because

$$
\sigma^{2}\{\mathbf{y}\}=\mathbb{E}\left(\left(\begin{array}{l}
Y_{1}-\mathbb{E}\left(Y_{1}\right) \\
Y_{2}-\mathbb{E}\left(Y_{2}\right) \\
Y_{3}-\mathbb{E}\left(Y_{3}\right)
\end{array}\right)\left(Y_{1}-\mathbb{E}\left(Y_{1}\right) \quad Y_{2}-\mathbb{E}\left(Y_{2}\right) \quad Y_{3}-\mathbb{E}\left(Y_{3}\right)\right)\right)
$$

Regression Example

- Take a regression example with $n=3$ with constant error terms $\sigma^{2}\left\{\epsilon_{i}\right\}$ and are uncorrelated so that $\sigma^{2}\left\{\epsilon_{i}, \epsilon_{j}\right\}=0$ for all $i \neq j$
- The covariance matrix for the random vector ϵ is

$$
\sigma^{2}\{\epsilon\}=\left(\begin{array}{ccc}
\sigma^{2} & 0 & 0 \\
0 & \sigma^{2} & 0 \\
0 & 0 & \sigma^{2}
\end{array}\right)
$$

which can be written as $\sigma^{2}\{\epsilon\}=\sigma^{2}$ I

Basic Results

If \mathbf{A} is a constant matrix and \mathbf{y} is a random vector then $\mathbf{W}=\mathbf{A y}$ is a random vector

$$
\begin{gathered}
\mathbb{E}(\mathbf{A})=\mathbf{A} \\
\mathbb{E}(\mathbf{W})=\mathbb{E}(\mathbf{A y})=\mathbf{A} \mathbb{E}(\mathbf{y}) \\
\sigma^{2}\{\mathbf{W}\}=\sigma^{2}\{\mathbf{A y}\}=\mathbf{A} \sigma^{2}\{\mathbf{y}\} \mathbf{A}^{\prime}
\end{gathered}
$$

Multivariate Normal Density

- Let Y be a vector of p observations

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{p}
\end{array}\right)
$$

- Let μ be a vector of p means of each of the p observations

$$
\mu=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\cdot \\
\cdot \\
\cdot \\
\mu_{p}
\end{array}\right)
$$

Multivariate Normal Density

let Σ be the covariance matrix of Y

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{2}^{2} & \ldots & \sigma_{2 p} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
\sigma_{p 1} & \sigma_{p 2} & \ldots & \sigma_{p}^{2}
\end{array}\right)
$$

Then the multivariate normal density is given by

$$
P(\mathbf{Y} \mid \mu, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{Y}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\mu)\right)
$$

Example 2d Multivariate Normal Distribution

Matrix Simple Linear Regression

- Nothing new-only matrix formalism for previous results
- Remember the normal error regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

- Expanded out this looks like

$$
\begin{gathered}
Y_{1}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{1} \\
Y_{2}=\beta_{0}+\beta_{1} X_{2}+\epsilon_{2} \\
\ldots \\
Y_{n}=\beta_{0}+\beta_{1} X_{n}+\epsilon_{n}
\end{gathered}
$$

- which points towards an obvious matrix formulation.

Regression Matrices

- If we identify the following matrices

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \\
\cdot & \\
\cdot & \\
1 & X_{n}
\end{array}\right) \quad \beta=\binom{\beta_{0}}{\beta_{1}} \epsilon=\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{n}
\end{array}\right)
$$

- We can write the linear regression equations in a compact form $\mathbf{y}=\mathbf{X} \beta+\epsilon$

Regression Matrices

- Of course, in the normal regression model the expected value of each of the ϵ 's is zero, we can write $\mathbb{E}(\mathbf{y})=\mathbf{X} \beta$
- This is because

$$
\begin{gathered}
\mathbb{E}(\epsilon)=\mathbf{0} \\
\left(\begin{array}{c}
\mathbb{E}\left(\epsilon_{1}\right) \\
\mathbb{E}\left(\epsilon_{2}\right) \\
\cdot \\
\cdot \\
\cdot \\
\mathbb{E}\left(\epsilon_{n}\right)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right)
\end{gathered}
$$

Error Covariance

Because the error terms are independent and have constant variance σ^{2}

$$
\begin{aligned}
& \sigma^{2}\{\epsilon\}=\left(\begin{array}{cccc}
\sigma^{2} & 0 & \ldots & 0 \\
0 & \sigma^{2} & \ldots & 0 \\
\ldots & & & \\
0 & 0 & \ldots & \sigma^{2}
\end{array}\right) \\
& \sigma^{2}\{\epsilon\}=\sigma^{2} \mathbf{I}
\end{aligned}
$$

Matrix Normal Regression Model

In matrix terms the normal regression model can be written as

$$
\mathbf{y}=\mathbf{X} \beta+\epsilon
$$

where $\mathbb{E}(\epsilon)=\mathbf{0}$ and $\sigma^{2}\{\epsilon\}=\sigma^{2} \mathbf{I}$, i.e. $\epsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

Least Square Estimation

If we remember both the starting normal equations that we derived

$$
\begin{gathered}
n b_{0}+b_{1} \sum X_{i}=\sum Y_{i} \\
b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2}=\sum X_{i} Y_{i}
\end{gathered}
$$

and the fact that

$$
\begin{gathered}
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{1} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \\
\cdot & \\
\cdot & \\
1 & X_{n}
\end{array}\right]=\left[\begin{array}{cc}
n & \sum X_{i} \\
\sum X_{i} & \sum X_{i}^{2}
\end{array}\right] \\
\mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{1} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum Y_{i} \\
\sum X_{i} Y_{i}
\end{array}\right]
\end{gathered}
$$

Least Square Estimation

Then we can see that these equations are equivalent to the following matrix operations

$$
\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}=\mathbf{X}^{\prime} \mathbf{y}
$$

with

$$
\mathbf{b}=\binom{b_{0}}{b_{1}}
$$

with the solution to this equation given by

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

when $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists.

When does $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exist?

\mathbf{X} is an $n \times p$ (or $p+1$ depending on how you define p) design matrix.
\mathbf{X} must have full column rank in order for the inverse to exist, i.e. $\operatorname{rank}(\mathbf{X})=p \Longrightarrow\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists.

