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Digression : Gauss-Markov Theorem

In a regression model where E{εi} = 0 and variance
σ2{εi} = σ2 <∞ and εi and εj are uncorrelated for all i and j the
least squares estimators b0 and b1 are unbiased and have minimum
variance among all unbiased linear estimators.

Remember

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2
=
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2

b0 = Ȳ − b1X̄

σ2{b1} = σ2{
∑

kiYi} =
∑

k2
i σ

2{Yi}

= σ2 1∑
(Xi − X̄ )2



Gauss-Markov Theorem

I The theorem states that b1 has minimum variance among all
unbiased linear estimators of the form

β̂1 =
∑

ciYi

I As this estimator must be unbiased we have

E{β̂1} =
∑

ci E{Yi} = β1

=
∑

ci (β0 + β1Xi ) = β0

∑
ci + β1

∑
ciXi = β1

I This imposes some restrictions on the ci ’s.



Proof

I Given these constraints

β0

∑
ci + β1

∑
ciXi = β1

clearly it must be the case that
∑

ci = 0 and
∑

ciXi = 1

I The variance of this estimator is

σ2{β̂1} =
∑

c2
i σ

2{Yi} = σ2
∑

c2
i

I This also places a kind of constraint on the ci ’s



Proof cont.

Now define ci = ki + di where the ki are the constants we already
defined and the di are arbitrary constants. Let’s look at the
variance of the estimator

σ2{β̂1} =
∑

c2
i σ

2{Yi} = σ2
∑

(ki + di )
2

= σ2(
∑

k2
i +

∑
d2
i + 2

∑
kidi )

Note we just demonstrated that

σ2
∑

k2
i = σ2{b1}

So σ2{β̂1} is related to σ2{b1} plus some extra stuff.



Proof cont.

Now by showing that
∑

kidi = 0 we’re almost done∑
kidi =

∑
ki (ci − ki )

=
∑

ki (ci − ki )

=
∑

kici −
∑

k2
i

=
∑

ci

(
Xi − X̄∑
(Xi − X̄ )2

)
− 1∑

(Xi − X̄ )2

=

∑
ciXi − X̄

∑
ci∑

(Xi − X̄ )2
− 1∑

(Xi − X̄ )2
= 0



Proof end

So we are left with

σ2{β̂1} = σ2(
∑

k2
i +

∑
d2
i )

= σ2(b1) + σ2(
∑

d2
i )

which is minimized when the di = 0 ∀ i .

If di = 0 then ci = ki .

This means that the least squares estimator b1 has minimum
variance among all unbiased linear estimators.


